Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors
Corresponding Author: Ming Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 106
Abstract
Carbon nanofibers films are typical flexible electrode in the field of energy storage, but their application in Zinc-ion hybrid capacitors (ZIHCs) is limited by the low energy density due to the lack of active adsorption sites. In this work, an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization. The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Zn2+ by inducing charge delocalization of the carbonyl group, but also promote the adsorption of Zn2+ by bonding with the carbonyl group to form N–Zn–O bond. Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms, the resulting carbon nanofibers film cathode displays a high energy density, an ultralong-term lifespan, and excellent capacity reservation under commercial mass loading (14.45 mg cm‒2). Particularly, the cathodes can also operate stably in flexible or quasi-solid devices, indicating its application potential in flexible electronic products. This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.
Highlights:
1 The high pyridine/pyrrole nitrogen-doped and carbonyl-functionalized nanosheets on flexible electrospun porous carbon nanofibers film cathode integrates the advantages of large specific surface area, strong hydrophilicity and high Zn2+ adsorption activity.
2 The Zinc-ion hybrid capacitors exhibits a high capacitance retention of 99.2% over 200,000 cycles at 40 A g−1.
3 A synergistic Zn2+ storage mechanism between carbonyl and pyridine/pyrrole nitrogen atoms is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2(9), 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
- Y. Zhao, B.P. Setzler, J. Wang, J. Nash, T. Wang et al., An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3(10), 2472–2484 (2019). https://doi.org/10.1016/j.joule.2019.07.005
- H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- Z. Li, Y. An, S. Dong, C. Chen, L. Wu et al., Progress on zinc ion hybrid supercapacitors: insights and challenges. Energy Storage Mater. 31, 252–266 (2020). https://doi.org/10.1016/j.ensm.2020.06.014
- J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
- Q. Liu, H. Zhang, J. Xie, X. Liu, X. Lu, Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy 2(4), 521–539 (2020). https://doi.org/10.1002/cey2.69
- L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899–3904 (2013). https://doi.org/10.1002/adma.201301204
- H. Peng, S. Huang, D. Tranca, F. Richard, W. Baaziz et al., Quantum capacitance through molecular infiltration of 7,7,8,8-tetracyanoquinodimethane in metal–organic framework/covalent organic framework hybrids. ACS Nano 15(11), 18580–18589 (2021). https://doi.org/10.1021/acsnano.1c09146
- Z. Zhou, X. Zhou, M. Zhang, S. Mu, Q. Liu et al., In situ two-step activation strategy boosting hierarchical porous carbon cathode for an aqueous Zn-based hybrid energy storage device with high capacity and ultra-long cycling life. Small 16(35), 2003174 (2020). https://doi.org/10.1002/smll.202003174
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- H. Ma, H. Chen, M. Wu, F. Chi, F. Liu et al., Maximization of spatial charge density: an approach to ultrahigh energy density of capacitive charge storage. Angew. Chem. Int. Ed. 59(34), 14541–14549 (2020). https://doi.org/10.1002/anie.202005270
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
- H. Zhou, C. Liu, J.C. Wu, M. Liu, D. Zhang et al., Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J. Mater. Chem. A 7(16), 9708–9715 (2019). https://doi.org/10.1039/C9TA01256G
- F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
- S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/C9TA00733D
- T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020). https://doi.org/10.1039/C9CS00846B
- J. Zeng, L. Dong, L. Sun, W. Wang, Y. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Lett. 13, 19 (2020). https://doi.org/10.1007/s40820-020-00546-7
- T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
- T. Jin, Q. Han, L. Jiao, Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 32(3), 1806304 (2020). https://doi.org/10.1002/adma.201806304
- Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
- G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/C8EE02567C
- X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
- P. Yu, W. Tang, F.F. Wu, C. Zhang, H.Y. Luo et al., Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 39(9), 1019–1033 (2020). https://doi.org/10.1007/s12598-020-01443-z
- H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
- L. Wang, J. Tian, J. Li, X. Zeng, Z. Peng et al., Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. J. Cent. South Univ. 26(6), 1458–1468 (2019). https://doi.org/10.1007/s11771-019-4102-y
- Y. Cai, D. Liu, Z. Pan, Y. Yao, J. Li et al., Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from northeast china. Fuel 103, 258–268 (2013). https://doi.org/10.1016/j.fuel.2012.06.055
- J. Jeromenok, J. Weber, Restricted access: on the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials. Langmuir 29(42), 12982–12989 (2013). https://doi.org/10.1021/la402630s
- L. Zhang, Y. Liu, T. Lu, L. Pan, Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J. Electroanal. Chem. 804, 179–184 (2017). https://doi.org/10.1016/j.jelechem.2017.09.062
- H. He, C. Chen, Z. Chen, P. Li, S. Ding et al., Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 63(2), 216–228 (2020). https://doi.org/10.1007/s40843-019-1175-9
- A.L. Woodhead, M.L. Souza, J.S. Church, An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Appl. Surf. Sci. 401, 79–88 (2017). https://doi.org/10.1016/j.apsusc.2016.12.218
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
- S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G.R. He, C.U. Pittman, Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33(5), 587–595 (1995). https://doi.org/10.1016/0008-6223(94)00144-O
- N. Li, K. Jiang, F. Rodríguez-Hernández, H. Mao, S. Han et al., Polyarylether-based 2D covalent-organic frameworks with in-plane D-A structures and tunable energy levels for energy storage. Adv. Sci. 9(6), 2104898 (2021). https://doi.org/10.1002/advs.202104898
- G.P. López, D.G. Castner, B.D. Ratner, XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17(5), 267–272 (1991). https://doi.org/10.1002/sia.740170508
- S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen et al., Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
- T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- Z. Chen, Y. Chen, Y. Zhao, F. Qiu, K. Jiang et al., B/N-enriched semi-conductive polymer film for micro-supercapacitors with AC line-filtering performance. Langmuir 37(7), 2523–2531 (2021). https://doi.org/10.1021/acs.langmuir.0c03635
- N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang et al., Zinc–organic battery with a wide operation-temperature window from −70 to 150 °c. Angew. Chem. Int. Ed. 59(34), 14577–14583 (2020). https://doi.org/10.1002/anie.202005603
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). https://doi.org/10.1038/nature07872
- C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
- H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
- Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
- W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
- Y. Zhang, Z. Wang, D. Li, Q. Sun, K. Lai et al., Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 8(43), 22874–22885 (2020). https://doi.org/10.1039/D0TA08577D
- Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multi-redox centers. Adv. Mater. 33(32), 2106469 (2021). https://doi.org/10.1002/adma.202106469
- Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu et al., Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 31(6), 2007843 (2021). https://doi.org/10.1002/adfm.202007843
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
- P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 12(11), 2835–2841 (2019). https://doi.org/10.1007/s12274-019-2521-6
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
- X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8(23), 11617–11625 (2020). https://doi.org/10.1039/D0TA02770G
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760 (2009). https://doi.org/10.1126/science.1168049
- Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- Y. Xu, K. Wang, J. Han, C. Liu, Y. An et al., Scalable production of wearable solid-state Li-ion capacitors from n-doped hierarchical carbon. Adv. Mater. 32(45), 2005531 (2020). https://doi.org/10.1002/adma.202005531
- X. Zhu, K. Wang, Y. Xu, G. Zhang, S. Li et al., Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 36, 291–308 (2021). https://doi.org/10.1016/j.ensm.2021.01.002
References
N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2(9), 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
Y. Zhao, B.P. Setzler, J. Wang, J. Nash, T. Wang et al., An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3(10), 2472–2484 (2019). https://doi.org/10.1016/j.joule.2019.07.005
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85, 105942 (2021). https://doi.org/10.1016/j.nanoen.2021.105942
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021). https://doi.org/10.1002/aenm.202003994
Z. Li, Y. An, S. Dong, C. Chen, L. Wu et al., Progress on zinc ion hybrid supercapacitors: insights and challenges. Energy Storage Mater. 31, 252–266 (2020). https://doi.org/10.1016/j.ensm.2020.06.014
J. Yin, W. Zhang, W. Wang, N.A. Alhebshi, N. Salah et al., Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 10(37), 2001705 (2020). https://doi.org/10.1002/aenm.202001705
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
Q. Liu, H. Zhang, J. Xie, X. Liu, X. Lu, Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy 2(4), 521–539 (2020). https://doi.org/10.1002/cey2.69
L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899–3904 (2013). https://doi.org/10.1002/adma.201301204
H. Peng, S. Huang, D. Tranca, F. Richard, W. Baaziz et al., Quantum capacitance through molecular infiltration of 7,7,8,8-tetracyanoquinodimethane in metal–organic framework/covalent organic framework hybrids. ACS Nano 15(11), 18580–18589 (2021). https://doi.org/10.1021/acsnano.1c09146
Z. Zhou, X. Zhou, M. Zhang, S. Mu, Q. Liu et al., In situ two-step activation strategy boosting hierarchical porous carbon cathode for an aqueous Zn-based hybrid energy storage device with high capacity and ultra-long cycling life. Small 16(35), 2003174 (2020). https://doi.org/10.1002/smll.202003174
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
H. Ma, H. Chen, M. Wu, F. Chi, F. Liu et al., Maximization of spatial charge density: an approach to ultrahigh energy density of capacitive charge storage. Angew. Chem. Int. Ed. 59(34), 14541–14549 (2020). https://doi.org/10.1002/anie.202005270
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu et al., Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 31(44), 1904948 (2019). https://doi.org/10.1002/adma.201904948
H. Zhou, C. Liu, J.C. Wu, M. Liu, D. Zhang et al., Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J. Mater. Chem. A 7(16), 9708–9715 (2019). https://doi.org/10.1039/C9TA01256G
F. Wei, X. He, L. Ma, H. Zhang, N. Xiao et al., 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi et al., A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A 7(13), 7784–7790 (2019). https://doi.org/10.1039/C9TA00733D
T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342–2377 (2020). https://doi.org/10.1039/C9CS00846B
J. Zeng, L. Dong, L. Sun, W. Wang, Y. Zhou et al., Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro Lett. 13, 19 (2020). https://doi.org/10.1007/s40820-020-00546-7
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
T. Jin, Q. Han, L. Jiao, Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 32(3), 1806304 (2020). https://doi.org/10.1002/adma.201806304
Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji et al., High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66, 104132 (2019). https://doi.org/10.1016/j.nanoen.2019.104132
G. Sun, H. Yang, G. Zhang, J. Gao, X. Jin et al., A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 11(12), 3367–3374 (2018). https://doi.org/10.1039/C8EE02567C
X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
P. Yu, W. Tang, F.F. Wu, C. Zhang, H.Y. Luo et al., Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 39(9), 1019–1033 (2020). https://doi.org/10.1007/s12598-020-01443-z
H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
L. Wang, J. Tian, J. Li, X. Zeng, Z. Peng et al., Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. J. Cent. South Univ. 26(6), 1458–1468 (2019). https://doi.org/10.1007/s11771-019-4102-y
Y. Cai, D. Liu, Z. Pan, Y. Yao, J. Li et al., Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from northeast china. Fuel 103, 258–268 (2013). https://doi.org/10.1016/j.fuel.2012.06.055
J. Jeromenok, J. Weber, Restricted access: on the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials. Langmuir 29(42), 12982–12989 (2013). https://doi.org/10.1021/la402630s
L. Zhang, Y. Liu, T. Lu, L. Pan, Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J. Electroanal. Chem. 804, 179–184 (2017). https://doi.org/10.1016/j.jelechem.2017.09.062
H. He, C. Chen, Z. Chen, P. Li, S. Ding et al., Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 63(2), 216–228 (2020). https://doi.org/10.1007/s40843-019-1175-9
A.L. Woodhead, M.L. Souza, J.S. Church, An investigation into the surface heterogeneity of nitric acid oxidized carbon fiber. Appl. Surf. Sci. 401, 79–88 (2017). https://doi.org/10.1016/j.apsusc.2016.12.218
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G.R. He, C.U. Pittman, Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33(5), 587–595 (1995). https://doi.org/10.1016/0008-6223(94)00144-O
N. Li, K. Jiang, F. Rodríguez-Hernández, H. Mao, S. Han et al., Polyarylether-based 2D covalent-organic frameworks with in-plane D-A structures and tunable energy levels for energy storage. Adv. Sci. 9(6), 2104898 (2021). https://doi.org/10.1002/advs.202104898
G.P. López, D.G. Castner, B.D. Ratner, XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17(5), 267–272 (1991). https://doi.org/10.1002/sia.740170508
S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen et al., Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
Z. Chen, Y. Chen, Y. Zhao, F. Qiu, K. Jiang et al., B/N-enriched semi-conductive polymer film for micro-supercapacitors with AC line-filtering performance. Langmuir 37(7), 2523–2531 (2021). https://doi.org/10.1021/acs.langmuir.0c03635
N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang et al., Zinc–organic battery with a wide operation-temperature window from −70 to 150 °c. Angew. Chem. Int. Ed. 59(34), 14577–14583 (2020). https://doi.org/10.1002/anie.202005603
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009). https://doi.org/10.1038/nature07872
C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
H. Wang, M. Wang, Y. Tang, A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui et al., Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 387, 124161 (2020). https://doi.org/10.1016/j.cej.2020.124161
W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
Y. Zhang, Z. Wang, D. Li, Q. Sun, K. Lai et al., Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 8(43), 22874–22885 (2020). https://doi.org/10.1039/D0TA08577D
Y. Zhao, Y. Huang, F. Wu, R. Chen, L. Li, High-performance aqueous zinc batteries based on organic/organic cathodes integrating multi-redox centers. Adv. Mater. 33(32), 2106469 (2021). https://doi.org/10.1002/adma.202106469
Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu et al., Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 31(6), 2007843 (2021). https://doi.org/10.1002/adfm.202007843
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 12(11), 2835–2841 (2019). https://doi.org/10.1007/s12274-019-2521-6
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv. Energy Mater. 9(47), 1902915 (2019). https://doi.org/10.1002/aenm.201902915
X. Deng, J. Li, Z. Shan, J. Sha, L. Ma et al., A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 8(23), 11617–11625 (2020). https://doi.org/10.1039/D0TA02770G
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760 (2009). https://doi.org/10.1126/science.1168049
Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9, 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
Y. Xu, K. Wang, J. Han, C. Liu, Y. An et al., Scalable production of wearable solid-state Li-ion capacitors from n-doped hierarchical carbon. Adv. Mater. 32(45), 2005531 (2020). https://doi.org/10.1002/adma.202005531
X. Zhu, K. Wang, Y. Xu, G. Zhang, S. Li et al., Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 36, 291–308 (2021). https://doi.org/10.1016/j.ensm.2021.01.002