Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage
Corresponding Author: Ming Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 47
Abstract
With the emergence of wearable electronics, flexible energy storage materials have been extensively studied in recent years. However, most studies focus on improving the electrochemical properties, ignoring the flexible mechanism and structure design for flexible electrode materials with high rate capacities and long-time stability. In this study, porous, kinked, and entangled network structures are designed for highly flexible fiber films. Based on theoretical analysis and finite element simulation, the bending degree of the porous structure (30% porosity) increased by 192% at the micro-level. An appropriate increase in kinking degree at the meso-level and contact points in entanglement network at the macro-level are beneficial for the flexibility of fiber films. Therefore, a porous and entangled network of sulfur-/nitrogen-co-doped kinked carbon nanofibers (S/N-KCNFs) is synthesized. The nanofiber films synthesized from melamine as nitrogen sources and segmented vulcanization exhibited a porous, kinked, and entangled network structure, and the stretching degree increased several times. The flexible S/N-KCNFs anode delivered a higher rate performance of 270 mAh g−1 at a current density of 2000 mA g−1 and a higher capacity retention rate of 93.3% after 2000 cycles. Moreover, the foldable pouch cell assembled by potassium-ion hybrid supercapacitor operated safely at large-angle bending and showed long-time stability of 88% capacity retention after 4000 cycles. This study provides a new idea and strategy for the flexible structure design of high-performance potassium-ion storage materials.
Highlights:
1 Flexible films of kink porous carbon nanofibers are designed at the micro, meso and macro levels
2 The fiber-film anodes with porous, kinked, and entangled network structures exhibit high rate and stability for potassium-ion storage
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li et al., Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31(9), 1800716 (2019). https://doi.org/10.1002/adma.201800716
- X. Wang, K. Jiang, G. Shen, Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater. Today 18(5), 265–272 (2015). https://doi.org/10.1016/j.mattod.2015.01.002
- Q. Zhai, F. Xiang, F. Cheng, Y. Sun, X. Yang et al., Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Mater. 33, 116–138 (2020). https://doi.org/10.1016/j.ensm.2020.07.003
- S.G. Woo, S. Yoo, S.H. Lim, J.S. Yu, K. Kim et al., Galvanically replaced, single-bodied lithium-ion battery fabric electrodes. Adv. Funct. Mater. 30(16), 1908633 (2020). https://doi.org/10.1002/adfm.201908633
- Y.H. Zhu, X. Yang, D. Bao, X.F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
- G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
- Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30(17), 1910292 (2020). https://doi.org/10.1002/adfm.201910292
- S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120(5), 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
- X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/D0EE02917C
- E. Zhang, X. Jia, B. Wang, J. Wang, X. Yu et al., Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7(15), 2000470 (2020). https://doi.org/10.1002/advs.202000470
- S. Zeng, X. Zhou, B. Wang, Y. Feng, R. Xu et al., Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 7(26), 15774–15781 (2019). https://doi.org/10.1039/C9TA03245B
- D. Wang, C. Han, F. Mo, Q. Yang, Y. Zhao et al., Energy density issues of flexible energy storage devices. Energy Storage Mater. 28, 264–292 (2020). https://doi.org/10.1016/j.ensm.2020.03.006
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3d porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
- Y. Zhou, X. Xie, L. Song, Y. Guan, X. Yin et al., The preparation and properties of the flexible titanium oxide/carbon nanofibers film. Appl. Phys. A 123(4), 267 (2017). https://doi.org/10.1007/s00339-017-0901-x
- S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719 (2011). https://doi.org/10.1016/j.carbon.2010.12.056
- M. Tebyetekerwa, I. Marriam, Z. Xu, S. Yang, H. Zhang et al., Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ. Sci. 12(7), 2148–2160 (2019). https://doi.org/10.1039/C8EE02607F
- Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
- J. Yan, K. Dong, Y. Zhang, X. Wang, A.A. Aboalhassan et al., Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 10, 5584 (2019). https://doi.org/10.1038/s41467-019-13430-9
- R.W. Zimmerman, Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12(1), 17–24 (1991). https://doi.org/10.1016/0167-6636(91)90049-6
- D.C. Wang, Y. Lei, W. Jiao, Y.F. Liu, C.H. Mu et al., A review of helical carbon materials structure, synthesis and applications. Rare Met. 40, 3–19 (2021). https://doi.org/10.1007/s12598-020-01622-y
- C.L. Pai, M.C. Boyce, G.C. Rutledge, On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer 52(26), 6126–6133 (2011). https://doi.org/10.1016/j.polymer.2011.10.055
- X. Zhang, Q. Li, Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. ACS Nano 4(1), 312–316 (2010). https://doi.org/10.1021/nn901515j
- D. Durville, Numerical simulation of entangled materials mechanical properties. J. Mater. Sci. 40(22), 5941–5948 (2005). https://doi.org/10.1007/s10853-005-5061-2
- L. Su, B. Li, D. Zhao, C. Qin, Z. Jin, Modified polyacrylonitrile-based activated carbon fibers applied in supercapacitor. Pigm. Resin Technol. 45(3), 164–171 (2016). https://doi.org/10.1108/PRT-03-2015-0029
- H. He, C. Chen, Z. Chen, P. Li, S. Ding et al., Ni3s2@s-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 63(2), 216–228 (2020). https://doi.org/10.1007/s40843-019-1175-9
- J.Q. Chi, X.J. Zeng, X. Shang, B. Dong, Y.M. Chai et al., Embedding RhPx in N, P co-doped carbon nanoshells through synergetic phosphorization and pyrolysis for efficient hydrogen evolution. Adv. Funct. Mater. 29(33), 1901790 (2019). https://doi.org/10.1002/adfm.201901790
- Y. Ding, Y. Tang, L. Yang, Y. Zeng, J. Yuan et al., Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J. Mater. Chem. A 4(37), 14307–14315 (2016). https://doi.org/10.1039/C6TA05267C
- D. Nan, Z.H. Huang, R. Lv, L. Yang, J.G. Wang et al., Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J. Mater. Chem. A 2(46), 19678–19684 (2014). https://doi.org/10.1039/C4TA03868A
- C. Ding, L. Huang, J. Lan, Y. Yu, W.H. Zhong et al., Superresilient hard carbon nanofabrics for sodium-ion batteries. Small 16(11), 1906883 (2020). https://doi.org/10.1002/smll.201906883
- X. Min, B. Sun, S. Chen, M. Fang, X. Wu et al., A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 16, 597–606 (2019). https://doi.org/10.1016/j.ensm.2018.08.002
- J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
- P.A. Denis, C.P. Huelmo, F. Iribarne, Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theor. Chem. 1049, 13–19 (2014). https://doi.org/10.1016/j.comptc.2014.08.023
- W. Li, D. Wang, Z. Gong, X. Guo, J. Liu et al., Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three-dimensional flower-like hard carbon architectures. Carbon 161, 97–107 (2020). https://doi.org/10.1016/j.carbon.2020.01.052
- W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
- M. Liu, X. Li, C. Shao, C. Han, Y. Liu et al., Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high-performance flexible energy storage. Energy Storage Mater. 44, 250–262 (2022). https://doi.org/10.1016/j.ensm.2021.10.025
- W. Zhang, Z. Cao, W. Wang, E. Alhajji, A.H. Emwas et al., A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew Chem. Int. Ed. 59(11), 4448–4455 (2020). https://doi.org/10.1002/anie.201913368
- G.D. Park, D.S. Jung, J.K. Lee, Y.C. Kang, Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li–S batteries. Chem. Eng. J. 373, 382–392 (2019). https://doi.org/10.1016/j.cej.2019.05.038
- G.D. Park, J.K. Lee, Y.C. Kang, Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 389, 124350 (2020). https://doi.org/10.1016/j.cej.2020.124350
- B. Fan, J. Yan, A. Hu, Z. Liu, W. Li et al., High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur co-doped carbon. Carbon 164, 1–11 (2020). https://doi.org/10.1016/j.carbon.2020.03.035
- W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv, W. Zhang et al., A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
- K. Wang, N. Li, L. Sun, J. Zhang, X. Liu, Free-standing n-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 12(33), 37506–37514 (2020). https://doi.org/10.1021/acsami.0c12288
- Y. Liu, H. Dai, L. Wu, W. Zhou, L. He et al., A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 9(34), 1901379 (2019). https://doi.org/10.1002/aenm.201901379
- J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
- W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32(25), 2000732 (2020). https://doi.org/10.1002/adma.202000732
- Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
- X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
- H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
- H. Wu, S. Lu, S. Xu, J. Zhao, Y. Wang et al., Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 15(2), 2506–2519 (2021). https://doi.org/10.1021/acsnano.0c06667
- D. Zhang, B.N. Popov, R.E. White (1998) Electrochemical investigation of CrO265 doped LiMn2O4 as a cathode material for lithium-ion batteries. J. Power Sources 76(1), 81–90. https://doi.org/10.1016/S0378-7753(98)00143-8
- Y. Wu, L. Zhu, R. Chen, L. Gu, X. Cao et al., Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors. J. Cent. South Univ. 27(12), 3603–3614 (2020). https://doi.org/10.1007/s11771-020-4505-9
References
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li et al., Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31(9), 1800716 (2019). https://doi.org/10.1002/adma.201800716
X. Wang, K. Jiang, G. Shen, Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater. Today 18(5), 265–272 (2015). https://doi.org/10.1016/j.mattod.2015.01.002
Q. Zhai, F. Xiang, F. Cheng, Y. Sun, X. Yang et al., Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Mater. 33, 116–138 (2020). https://doi.org/10.1016/j.ensm.2020.07.003
S.G. Woo, S. Yoo, S.H. Lim, J.S. Yu, K. Kim et al., Galvanically replaced, single-bodied lithium-ion battery fabric electrodes. Adv. Funct. Mater. 30(16), 1908633 (2020). https://doi.org/10.1002/adfm.201908633
Y.H. Zhu, X. Yang, D. Bao, X.F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30(17), 1910292 (2020). https://doi.org/10.1002/adfm.201910292
S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120(5), 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021). https://doi.org/10.1039/D0EE02917C
E. Zhang, X. Jia, B. Wang, J. Wang, X. Yu et al., Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7(15), 2000470 (2020). https://doi.org/10.1002/advs.202000470
S. Zeng, X. Zhou, B. Wang, Y. Feng, R. Xu et al., Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 7(26), 15774–15781 (2019). https://doi.org/10.1039/C9TA03245B
D. Wang, C. Han, F. Mo, Q. Yang, Y. Zhao et al., Energy density issues of flexible energy storage devices. Energy Storage Mater. 28, 264–292 (2020). https://doi.org/10.1016/j.ensm.2020.03.006
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3d porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
Y. Zhou, X. Xie, L. Song, Y. Guan, X. Yin et al., The preparation and properties of the flexible titanium oxide/carbon nanofibers film. Appl. Phys. A 123(4), 267 (2017). https://doi.org/10.1007/s00339-017-0901-x
S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5), 1710–1719 (2011). https://doi.org/10.1016/j.carbon.2010.12.056
M. Tebyetekerwa, I. Marriam, Z. Xu, S. Yang, H. Zhang et al., Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ. Sci. 12(7), 2148–2160 (2019). https://doi.org/10.1039/C8EE02607F
Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
J. Yan, K. Dong, Y. Zhang, X. Wang, A.A. Aboalhassan et al., Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 10, 5584 (2019). https://doi.org/10.1038/s41467-019-13430-9
R.W. Zimmerman, Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12(1), 17–24 (1991). https://doi.org/10.1016/0167-6636(91)90049-6
D.C. Wang, Y. Lei, W. Jiao, Y.F. Liu, C.H. Mu et al., A review of helical carbon materials structure, synthesis and applications. Rare Met. 40, 3–19 (2021). https://doi.org/10.1007/s12598-020-01622-y
C.L. Pai, M.C. Boyce, G.C. Rutledge, On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer 52(26), 6126–6133 (2011). https://doi.org/10.1016/j.polymer.2011.10.055
X. Zhang, Q. Li, Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers. ACS Nano 4(1), 312–316 (2010). https://doi.org/10.1021/nn901515j
D. Durville, Numerical simulation of entangled materials mechanical properties. J. Mater. Sci. 40(22), 5941–5948 (2005). https://doi.org/10.1007/s10853-005-5061-2
L. Su, B. Li, D. Zhao, C. Qin, Z. Jin, Modified polyacrylonitrile-based activated carbon fibers applied in supercapacitor. Pigm. Resin Technol. 45(3), 164–171 (2016). https://doi.org/10.1108/PRT-03-2015-0029
H. He, C. Chen, Z. Chen, P. Li, S. Ding et al., Ni3s2@s-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 63(2), 216–228 (2020). https://doi.org/10.1007/s40843-019-1175-9
J.Q. Chi, X.J. Zeng, X. Shang, B. Dong, Y.M. Chai et al., Embedding RhPx in N, P co-doped carbon nanoshells through synergetic phosphorization and pyrolysis for efficient hydrogen evolution. Adv. Funct. Mater. 29(33), 1901790 (2019). https://doi.org/10.1002/adfm.201901790
Y. Ding, Y. Tang, L. Yang, Y. Zeng, J. Yuan et al., Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J. Mater. Chem. A 4(37), 14307–14315 (2016). https://doi.org/10.1039/C6TA05267C
D. Nan, Z.H. Huang, R. Lv, L. Yang, J.G. Wang et al., Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J. Mater. Chem. A 2(46), 19678–19684 (2014). https://doi.org/10.1039/C4TA03868A
C. Ding, L. Huang, J. Lan, Y. Yu, W.H. Zhong et al., Superresilient hard carbon nanofabrics for sodium-ion batteries. Small 16(11), 1906883 (2020). https://doi.org/10.1002/smll.201906883
X. Min, B. Sun, S. Chen, M. Fang, X. Wu et al., A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 16, 597–606 (2019). https://doi.org/10.1016/j.ensm.2018.08.002
J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
P.A. Denis, C.P. Huelmo, F. Iribarne, Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theor. Chem. 1049, 13–19 (2014). https://doi.org/10.1016/j.comptc.2014.08.023
W. Li, D. Wang, Z. Gong, X. Guo, J. Liu et al., Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three-dimensional flower-like hard carbon architectures. Carbon 161, 97–107 (2020). https://doi.org/10.1016/j.carbon.2020.01.052
W. Zhang, J. Ming, W. Zhao, X. Dong, M.N. Hedhili et al., Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
M. Liu, X. Li, C. Shao, C. Han, Y. Liu et al., Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high-performance flexible energy storage. Energy Storage Mater. 44, 250–262 (2022). https://doi.org/10.1016/j.ensm.2021.10.025
W. Zhang, Z. Cao, W. Wang, E. Alhajji, A.H. Emwas et al., A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew Chem. Int. Ed. 59(11), 4448–4455 (2020). https://doi.org/10.1002/anie.201913368
G.D. Park, D.S. Jung, J.K. Lee, Y.C. Kang, Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li–S batteries. Chem. Eng. J. 373, 382–392 (2019). https://doi.org/10.1016/j.cej.2019.05.038
G.D. Park, J.K. Lee, Y.C. Kang, Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chem. Eng. J. 389, 124350 (2020). https://doi.org/10.1016/j.cej.2020.124350
B. Fan, J. Yan, A. Hu, Z. Liu, W. Li et al., High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur co-doped carbon. Carbon 164, 1–11 (2020). https://doi.org/10.1016/j.carbon.2020.03.035
W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv, W. Zhang et al., A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
K. Wang, N. Li, L. Sun, J. Zhang, X. Liu, Free-standing n-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 12(33), 37506–37514 (2020). https://doi.org/10.1021/acsami.0c12288
Y. Liu, H. Dai, L. Wu, W. Zhou, L. He et al., A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 9(34), 1901379 (2019). https://doi.org/10.1002/aenm.201901379
J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang et al., Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen et al., Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 32(25), 2000732 (2020). https://doi.org/10.1002/adma.202000732
Y. Li, W. Zhong, C. Yang, F. Zheng, Q. Pan et al., N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 358, 1147–1154 (2019). https://doi.org/10.1016/j.cej.2018.10.135
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
X. Hu, G. Zhong, J. Li, Y. Liu, J. Yuan et al., Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 13(8), 2431–2440 (2020). https://doi.org/10.1039/D0EE00477D
H. He, J. Lian, C. Chen, Q. Xiong, M. Zhang, Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021). https://doi.org/10.1016/j.cej.2021.129786
H. Wu, S. Lu, S. Xu, J. Zhao, Y. Wang et al., Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 15(2), 2506–2519 (2021). https://doi.org/10.1021/acsnano.0c06667
D. Zhang, B.N. Popov, R.E. White (1998) Electrochemical investigation of CrO265 doped LiMn2O4 as a cathode material for lithium-ion batteries. J. Power Sources 76(1), 81–90. https://doi.org/10.1016/S0378-7753(98)00143-8
Y. Wu, L. Zhu, R. Chen, L. Gu, X. Cao et al., Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors. J. Cent. South Univ. 27(12), 3603–3614 (2020). https://doi.org/10.1007/s11771-020-4505-9