Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage
Corresponding Author: Wei Han
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 113
Abstract
Combining with the advantages of two-dimensional (2D) nanomaterials, MXenes have shown great potential in next generation rechargeable batteries. Similar with other 2D materials, MXenes generally suffer severe self-agglomeration, low capacity, and unsatisfied durability, particularly for larger sodium/potassium ions, compromising their practical values. In this work, a novel ternary heterostructure self-assembled from transition metal selenides (MSe, M = Cu, Ni, and Co), MXene nanosheets and N-rich carbonaceous nanoribbons (CNRibs) with ultrafast ion transport properties is designed for sluggish sodium-ion (SIB) and potassium-ion (PIB) batteries. Benefiting from the diverse chemical characteristics, the positively charged MSe anchored onto the electronegative hydroxy (–OH) functionalized MXene surfaces through electrostatic adsorption, while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds. This unique MXene-based heterostructure prevents the restacking of 2D materials, increases the intrinsic conductivity, and most importantly, provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites, and thus, boosts the high-rate storage performances in SIB and PIB applications. Both the quantitatively kinetic analysis and the density functional theory (DFT) calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes, which delivered much enhanced Na+ (536.3 mAh g−1@ 0.1 A g−1) and K+ (305.6 mAh g−1@ 1.0 A g−1 ) storage capabilities and excellent long-term cycling stability. Therefore, this work provides new insights into 2D materials engineering and low-cost, but kinetically sluggish post-Li batteries.
Highlights:
1 Unique “Janus” interfacial assemble strategy of 2D MXene nanosheets was proposed firstly.
2 Ternary heterostructure consisting of high capacity transitional metal chalcogenide, high conductive 2D MXene and N rich fungal carbonaceous matrix was achieved for larger radius Na/K ions storages.
3 The highly accessible surfaces and interfaces of the strongly coupled 2D based ternary heterostructures provide superb surficial pseudocapacitive storages for both Na and K ions with low energy barriers was verified.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, 969 (2019). https://doi.org/10.1126/science.aan8285
- G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
- M.K. Asla`m, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000681
- R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
- T. Liu, Y. Zhang, Z. Jiang, X. Zeng, J. Ji et al., Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12(5), 1512–1533 (2019). https://doi.org/10.1039/c8ee03727b
- J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5(3), 389–416 (2018). https://doi.org/10.1093/nsr/nwx077
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mat. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C mxene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
- J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- P. Liu, D. Mitlin, Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc. Chem. Res. 53(6), 1161–1175 (2020). https://doi.org/10.1021/acs.accounts.0c00099
- F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: Synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803A
- Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
- J. Chu, Q. Yu, K. Han, L. Xing, Y. Bao et al., A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon 161, 834–841 (2020). https://doi.org/10.1016/j.carbon.2020.02.020
- Z. Wu, L. Li, T. Liao, X. Chen, W. Jiang et al., Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 22, 62–82 (2018). https://doi.org/10.1016/j.nantod.2018.08.009
- Y. Zhang, J. Xu, J. Mei, S. Sarina, Z. Wu et al., Strongly interfacial-coupled 2D–2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 394, 122529 (2020). https://doi.org/10.1016/j.jhazmat.2020.122529M
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled mxene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- H. Shi, M. Yue, C.J. Zhang, Y. Dong, P. Lu et al., 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14(7), 8678–8688 (2020). https://doi.org/10.1021/acsnano.0c03042
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019)
- J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight mxene/polyimide aerogels. Small 14(45), e1802479 (2018). https://doi.org/10.1002/smll.201802479
- H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
- S. Liu, F. Hu, W. Shao, W. Zhang, T. Zhang et al., A novel strategy of in situ trimerization of cyano groups between the Ti3C2Tx (MXene) interlayers for high-energy and high-power sodium-ion capacitors. Nano-Micro Lett. 12(1), 135 (2020). https://doi.org/10.1007/s40820-020-00473-7
- J. Cao, J. Li, L. Li, Y. Zhang, D. Cai et al., Mn-doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain. Chem. Eng. 7(12), 10699–10707 (2019). https://doi.org/10.1021/acssuschemeng.9b01343
- J. Cao, L. Li, Y. Xi, J. Li, X. Pan et al., Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels 2(6), 1350–1355 (2018). https://doi.org/10.1039/C8SE00123E
- H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium ion and potassium ion batteries. Adv. Energy Mater. 9(20), 1900323 (2019). https://doi.org/10.1002/aenm.201900323
- M. Tao, G. Du, T. Yang, W. Gao, L. Zhang et al., MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanops as an anode material for solid-state sodium-ion batteries. J. Mater. Chem. A 8(6), 3018–3026 (2020). https://doi.org/10.1039/c9ta12834d
- M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang et al., A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv. Sci. 7(5), 1902907 (2020). https://doi.org/10.1002/advs.201902907
- W. Zhong, M. Tao, W. Tang, W. Gao, T. Yang et al., MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 378(122209), 1 (2019). https://doi.org/10.1016/j.cej.2019.122209
- Y. Dai, P. Xing, X. Cui, Z. Li, X. Zhang, Coexistence of Cu(ii) and Cu(i) in Cu ion-doped zeolitic imidazolate frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols. Dalton Trans. 48(44), 16562–16568 (2019). https://doi.org/10.1039/c9dt03181b
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- Y. Zhu, T. Gao, X. Fan, F. Han, C. Wang, Electrochemical techniques for intercalation electrode materials in rechargeable batteries. Acc. Chem. Res. 50(4), 1022–1031 (2017). https://doi.org/10.1021/acs.accounts.7b00031
- D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12(8), 2422–2432 (2019). https://doi.org/10.1039/c9ee00308h
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated mxene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
- Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
- J. Li, B. Rui, W. Wei, P. Nie, L. Chang et al., Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 449, 227481 (2020). https://doi.org/10.1016/j.jpowsour.2019.227481
- J. Gong, G. Zhao, J. Feng, Y. An, T. Li et al., Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 14(10), 14057–14069 (2020). https://doi.org/10.1021/acsnano.0c06690
- H. Li, A. Liu, X. Ren, Y. Yang, L. Gao et al., A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 11(42), 19862–19869 (2019). https://doi.org/10.1039/c9nr04790e
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- N. Li, Y. Li, X. Zhu, C. Huang, J. Kai, et al., Theoretical investigation of the structure–property correlation of mxenes as anode materials for alkali metal ion batteries. J. Phys. Chem. C 124(28), 14978–14986 (2020). https://doi.org/10.1021/acs.jpcc.0c02968
References
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, 969 (2019). https://doi.org/10.1126/science.aan8285
G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
M.K. Asla`m, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000681
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30(12), 1909486 (2020). https://doi.org/10.1002/adfm.201909486
T. Liu, Y. Zhang, Z. Jiang, X. Zeng, J. Ji et al., Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12(5), 1512–1533 (2019). https://doi.org/10.1039/c8ee03727b
J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5(3), 389–416 (2018). https://doi.org/10.1093/nsr/nwx077
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mat. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C mxene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
P. Liu, D. Mitlin, Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc. Chem. Res. 53(6), 1161–1175 (2020). https://doi.org/10.1021/acs.accounts.0c00099
F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: Synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803A
Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
J. Chu, Q. Yu, K. Han, L. Xing, Y. Bao et al., A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon 161, 834–841 (2020). https://doi.org/10.1016/j.carbon.2020.02.020
Z. Wu, L. Li, T. Liao, X. Chen, W. Jiang et al., Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 22, 62–82 (2018). https://doi.org/10.1016/j.nantod.2018.08.009
Y. Zhang, J. Xu, J. Mei, S. Sarina, Z. Wu et al., Strongly interfacial-coupled 2D–2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 394, 122529 (2020). https://doi.org/10.1016/j.jhazmat.2020.122529M
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled mxene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
H. Shi, M. Yue, C.J. Zhang, Y. Dong, P. Lu et al., 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14(7), 8678–8688 (2020). https://doi.org/10.1021/acsnano.0c03042
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019)
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight mxene/polyimide aerogels. Small 14(45), e1802479 (2018). https://doi.org/10.1002/smll.201802479
H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
S. Liu, F. Hu, W. Shao, W. Zhang, T. Zhang et al., A novel strategy of in situ trimerization of cyano groups between the Ti3C2Tx (MXene) interlayers for high-energy and high-power sodium-ion capacitors. Nano-Micro Lett. 12(1), 135 (2020). https://doi.org/10.1007/s40820-020-00473-7
J. Cao, J. Li, L. Li, Y. Zhang, D. Cai et al., Mn-doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain. Chem. Eng. 7(12), 10699–10707 (2019). https://doi.org/10.1021/acssuschemeng.9b01343
J. Cao, L. Li, Y. Xi, J. Li, X. Pan et al., Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels 2(6), 1350–1355 (2018). https://doi.org/10.1039/C8SE00123E
H. Lin, M. Li, X. Yang, D. Yu, Y. Zeng et al., Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium ion and potassium ion batteries. Adv. Energy Mater. 9(20), 1900323 (2019). https://doi.org/10.1002/aenm.201900323
M. Tao, G. Du, T. Yang, W. Gao, L. Zhang et al., MXene-derived three-dimensional carbon nanotube network encapsulate CoS2 nanops as an anode material for solid-state sodium-ion batteries. J. Mater. Chem. A 8(6), 3018–3026 (2020). https://doi.org/10.1039/c9ta12834d
M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang et al., A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv. Sci. 7(5), 1902907 (2020). https://doi.org/10.1002/advs.201902907
W. Zhong, M. Tao, W. Tang, W. Gao, T. Yang et al., MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 378(122209), 1 (2019). https://doi.org/10.1016/j.cej.2019.122209
Y. Dai, P. Xing, X. Cui, Z. Li, X. Zhang, Coexistence of Cu(ii) and Cu(i) in Cu ion-doped zeolitic imidazolate frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols. Dalton Trans. 48(44), 16562–16568 (2019). https://doi.org/10.1039/c9dt03181b
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
Y. Zhu, T. Gao, X. Fan, F. Han, C. Wang, Electrochemical techniques for intercalation electrode materials in rechargeable batteries. Acc. Chem. Res. 50(4), 1022–1031 (2017). https://doi.org/10.1021/acs.accounts.7b00031
D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12(8), 2422–2432 (2019). https://doi.org/10.1039/c9ee00308h
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated mxene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 29, 163–171 (2020). https://doi.org/10.1016/j.ensm.2020.04.016
R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
Z. Xia, X. Chen, H. Ci, Z. Fan, Y. Yi et al., Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 53, 155–162 (2021). https://doi.org/10.1016/j.jechem.2020.04.071
J. Li, B. Rui, W. Wei, P. Nie, L. Chang et al., Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 449, 227481 (2020). https://doi.org/10.1016/j.jpowsour.2019.227481
J. Gong, G. Zhao, J. Feng, Y. An, T. Li et al., Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 14(10), 14057–14069 (2020). https://doi.org/10.1021/acsnano.0c06690
H. Li, A. Liu, X. Ren, Y. Yang, L. Gao et al., A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale 11(42), 19862–19869 (2019). https://doi.org/10.1039/c9nr04790e
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
N. Li, Y. Li, X. Zhu, C. Huang, J. Kai, et al., Theoretical investigation of the structure–property correlation of mxenes as anode materials for alkali metal ion batteries. J. Phys. Chem. C 124(28), 14978–14986 (2020). https://doi.org/10.1021/acs.jpcc.0c02968