Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties
Corresponding Author: Yizao Wan
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 42
Abstract
Uniform dispersion of two-dimensional (2D) graphene materials in polymer matrices remains challenging. In this work, a novel layer-by-layer assembly strategy was developed to prepare a sophisticated nanostructure with highly dispersed 2D graphene oxide in a three-dimensional matrix consisting of one-dimensional bacterial cellulose (BC) nanofibers. This method is a breakthrough, with respect to the conventional static culture method for BC that involves multiple in situ layer-by-layer assembly steps at the interface between previously grown BC and the culture medium. In the as-prepared BC/GO nanocomposites, the GO nanosheets are mechanically bundled and chemically bonded with BC nanofibers via hydrogen bonding, forming an intriguing nanostructure. The sophisticated nanostructure of the BC/GO leads to greatly enhanced mechanical properties compared to those of bare BC. This strategy is versatile, facile, scalable, and can be promising for the development of high-performance BC-based nanocomposite hydrogels.
Highlights:
1 A modified in situ static culture method (layer-by-layer assembly, LBLA) was developed.
2 The LBLA method ensures uniform distribution of graphene oxide (GO) in bacterial cellulose (BC) and makes very thick BC/GO hydrogels with homogeneous structures.
3 The BC/GO hydrogels show greatly enhanced mechanical properties over bare BC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Dubey, R. Bentini, I. Islam, T. Cao, A.H.C. Neto, V. Rosa, Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015, 804213 (2015). https://doi.org/10.1155/2015/804213
- S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017
- M. Gu, Y.S. Liu, T. Chen, F. Du, X.H. Zhao, C.Y. Xiong, Y.S. Zhou, Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng. Part B 20(5), 477–491 (2014). https://doi.org/10.1089/ten.teb.2013.0638
- G. Lalwani, A. Gopalan, M. D’Agati, J.S. Sankaran, S. Judex, Y.X. Qin, B. Sitharaman, Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J. Biomed. Mater. Res. Part A 103(10), 3212–3225 (2015). https://doi.org/10.1002/jbm.a.35449
- P. Newman, Z. Lu, S.I. Roohani-Esfahani, T.L. Church, M. Biro et al., Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. J. Mater. Chem. B 3(42), 8337–8347 (2015). https://doi.org/10.1039/c5tb01052g
- D.A. Stout, Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering. Curr. Pharm. Des. 21(15), 2037–2044 (2015). https://doi.org/10.2174/1381612821666150302153406
- O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/c6tb00152a
- H. Wen, C. Yin, A. Du, L. Deng, Y. He, L. He, Folate conjugated PEG-chitosan/graphene oxide nanocomplexes as potential carriers for pH-triggered drug release. J. Control. Release 213, e44–e45 (2015). https://doi.org/10.1016/j.jconrel.2015.05.072
- H. Yang, D.H. Bremner, L. Tao, H. Li, J. Hu, L. Zhu, Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr. Polym. 135, 72–78 (2016). https://doi.org/10.1016/j.carbpol.2015.08.058
- T.H. Tran, H.T. Nguyen, T.T. Pham, J.Y. Choi, H.-G. Choi, C.S. Yong, J.O. Kim, Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces 7(51), 28647–28655 (2015). https://doi.org/10.1021/acsami.5b10426
- Y. Jin, J. Wang, H. Ke, S. Wang, Z. Dai, Graphene oxide modified PLA microcapsules containing gold nanops for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34(20), 4794–4802 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.027
- C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
- H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene. Adv. Mater. 23(9), 1089–1115 (2011). https://doi.org/10.1002/adma.201003753
- X. Shi, H. Chang, S. Chen, C. Lai, A. Khademhosseini, H. Wu, regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv. Funct. Mater. 22(4), 751–759 (2012). https://doi.org/10.1002/adfm.201102305
- Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4(13), 3833–3842 (2012). https://doi.org/10.1039/C2NR31040F
- X.T. Zheng, X.Q. Ma, C.M. Li, Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. J. Colloid Interface Sci. 467, 35–42 (2016). https://doi.org/10.1016/j.jcis.2015.12.052
- Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87(1), 644–649 (2012). https://doi.org/10.1016/j.carbpol.2011.08.039
- Y. Liu, J. Zhou, E. Zhu, J. Tang, X. Liu, W. Tang, Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. J. Mater. Chem. C 3(5), 1011–1017 (2015). https://doi.org/10.1039/C4TC01822B
- C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, J. Wang, Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J. Porous Mater. 18(2), 139–145 (2011). https://doi.org/10.1007/s10934-010-9364-6
- S.H. Yoon, H.J. Jin, M.C. Kook, Y.R. Pyun, Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4), 1280–1284 (2006). https://doi.org/10.1021/bm050597g
- H. Si, H. Luo, G. Xiong, Z. Yang, S.R. Raman, R. Guo, Y. Wan, One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol. Rapid Commun. 35(19), 1706–1711 (2014). https://doi.org/10.1002/marc.201400239
- Y.Z. Wan, Y. Huang, C.D. Yuan, S. Raman, Y. Zhu, H.J. Jiang, F. He, C. Gao, Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 27(4), 855–864 (2007). https://doi.org/10.1016/j.msec.2006.10.002
- L. Hong, Y.L. Wang, S.R. Jia, Y. Huang, C. Gao, Y.Z. Wan, Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater. Lett. 60(13–14), 1710–1713 (2006). https://doi.org/10.1016/j.matlet.2005.12.004
- L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959). https://doi.org/10.1177/004051755902901003
- H. Luo, G. Xiong, Z. Yang, S.R. Raman, H. Si, Y. Wan, A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv. 4(28), 14369–14372 (2014). https://doi.org/10.1039/C4RA00318G
- S. Taokaew, S. Seetabhawang, P. Siripong, M. Phisalaphong, Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6(3), 782–794 (2013). https://doi.org/10.3390/ma6030782
- C.H. Haigler, A.R. White Jr., K.M. Cooper, Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J. Cell Biol. 94(1), 64–69 (1982). https://doi.org/10.1083/jcb.94.1.64
- H.-P. Cong, P. Wang, S.-H. Yu, Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem. Mater. 25(16), 3357–3362 (2013). https://doi.org/10.1021/cm401919c
- W. Ouyang, J. Sun, J. Memon, C. Wang, J. Geng, Y. Huang, Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62, 501–509 (2013). https://doi.org/10.1016/j.carbon.2013.06.049
- W. Shao, H. Liu, X. Liu, S. Wang, R. Zhang, Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv. 5(7), 4795–4803 (2014). https://doi.org/10.1039/C4RA13057J
- Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009). https://doi.org/10.1016/j.carbon.2009.08.022
- R. Liu, L. Ma, S. Huang, J. Mei, J. Xu, G. Yuan, Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Adv. 6(109), 107426–107432 (2016). https://doi.org/10.1039/C6RA21920A
- H. Luo, J. Dong, Y. Zhang, G. Li, R. Guo et al., Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chem. Eng. J. 334, 1148–1158 (2018). https://doi.org/10.1016/j.cej.2017.11.065
- N.F. Vasconcelos, J.P. Feitosa, G.F. Da, J.P. Morais, F.K. Andrade, D.S.F. Ms, M.F. Rosa, Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017). https://doi.org/10.1016/j.carbpol.2016.08.090
- S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.B.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
- N. Song, D. Jiao, P. Ding, S. Cui, S. Tang, L.Y. Shi, Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 4(2), 305–314 (2015). https://doi.org/10.1039/C5TC02194D
- N. Song, X. Hou, L. Chen, S. Cui, L. Shi, P. Ding, A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 9(21), 17914–17922 (2017). https://doi.org/10.1021/acsami.7b02675
- D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009). https://doi.org/10.1016/j.carbon.2008.09.045
- N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.-S. Johansson, J.-D. Nam, J. Seppälä, Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J. Mater. Chem. 21(36), 13991–13998 (2011). https://doi.org/10.1039/C1JM12134K
- Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). https://doi.org/10.1016/j.carbon.2009.12.063
- X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). https://doi.org/10.1002/adma.200801306
- K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.carbon.2012.10.013
- O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81(1), 158–166 (2015). https://doi.org/10.1016/j.carbon.2014.09.044
- J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009). https://doi.org/10.1002/adfm.200801776
- L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 21(28), 10399–10406 (2011). https://doi.org/10.1039/C0JM04043F
References
N. Dubey, R. Bentini, I. Islam, T. Cao, A.H.C. Neto, V. Rosa, Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. 2015, 804213 (2015). https://doi.org/10.1155/2015/804213
S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017
M. Gu, Y.S. Liu, T. Chen, F. Du, X.H. Zhao, C.Y. Xiong, Y.S. Zhou, Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng. Part B 20(5), 477–491 (2014). https://doi.org/10.1089/ten.teb.2013.0638
G. Lalwani, A. Gopalan, M. D’Agati, J.S. Sankaran, S. Judex, Y.X. Qin, B. Sitharaman, Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J. Biomed. Mater. Res. Part A 103(10), 3212–3225 (2015). https://doi.org/10.1002/jbm.a.35449
P. Newman, Z. Lu, S.I. Roohani-Esfahani, T.L. Church, M. Biro et al., Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. J. Mater. Chem. B 3(42), 8337–8347 (2015). https://doi.org/10.1039/c5tb01052g
D.A. Stout, Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering. Curr. Pharm. Des. 21(15), 2037–2044 (2015). https://doi.org/10.2174/1381612821666150302153406
O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/c6tb00152a
H. Wen, C. Yin, A. Du, L. Deng, Y. He, L. He, Folate conjugated PEG-chitosan/graphene oxide nanocomplexes as potential carriers for pH-triggered drug release. J. Control. Release 213, e44–e45 (2015). https://doi.org/10.1016/j.jconrel.2015.05.072
H. Yang, D.H. Bremner, L. Tao, H. Li, J. Hu, L. Zhu, Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr. Polym. 135, 72–78 (2016). https://doi.org/10.1016/j.carbpol.2015.08.058
T.H. Tran, H.T. Nguyen, T.T. Pham, J.Y. Choi, H.-G. Choi, C.S. Yong, J.O. Kim, Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces 7(51), 28647–28655 (2015). https://doi.org/10.1021/acsami.5b10426
Y. Jin, J. Wang, H. Ke, S. Wang, Z. Dai, Graphene oxide modified PLA microcapsules containing gold nanops for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34(20), 4794–4802 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.027
C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene. Adv. Mater. 23(9), 1089–1115 (2011). https://doi.org/10.1002/adma.201003753
X. Shi, H. Chang, S. Chen, C. Lai, A. Khademhosseini, H. Wu, regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv. Funct. Mater. 22(4), 751–759 (2012). https://doi.org/10.1002/adfm.201102305
Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4(13), 3833–3842 (2012). https://doi.org/10.1039/C2NR31040F
X.T. Zheng, X.Q. Ma, C.M. Li, Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. J. Colloid Interface Sci. 467, 35–42 (2016). https://doi.org/10.1016/j.jcis.2015.12.052
Y. Feng, X. Zhang, Y. Shen, K. Yoshino, W. Feng, A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87(1), 644–649 (2012). https://doi.org/10.1016/j.carbpol.2011.08.039
Y. Liu, J. Zhou, E. Zhu, J. Tang, X. Liu, W. Tang, Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. J. Mater. Chem. C 3(5), 1011–1017 (2015). https://doi.org/10.1039/C4TC01822B
C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, J. Wang, Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J. Porous Mater. 18(2), 139–145 (2011). https://doi.org/10.1007/s10934-010-9364-6
S.H. Yoon, H.J. Jin, M.C. Kook, Y.R. Pyun, Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4), 1280–1284 (2006). https://doi.org/10.1021/bm050597g
H. Si, H. Luo, G. Xiong, Z. Yang, S.R. Raman, R. Guo, Y. Wan, One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol. Rapid Commun. 35(19), 1706–1711 (2014). https://doi.org/10.1002/marc.201400239
Y.Z. Wan, Y. Huang, C.D. Yuan, S. Raman, Y. Zhu, H.J. Jiang, F. He, C. Gao, Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 27(4), 855–864 (2007). https://doi.org/10.1016/j.msec.2006.10.002
L. Hong, Y.L. Wang, S.R. Jia, Y. Huang, C. Gao, Y.Z. Wan, Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater. Lett. 60(13–14), 1710–1713 (2006). https://doi.org/10.1016/j.matlet.2005.12.004
L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959). https://doi.org/10.1177/004051755902901003
H. Luo, G. Xiong, Z. Yang, S.R. Raman, H. Si, Y. Wan, A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv. 4(28), 14369–14372 (2014). https://doi.org/10.1039/C4RA00318G
S. Taokaew, S. Seetabhawang, P. Siripong, M. Phisalaphong, Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6(3), 782–794 (2013). https://doi.org/10.3390/ma6030782
C.H. Haigler, A.R. White Jr., K.M. Cooper, Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J. Cell Biol. 94(1), 64–69 (1982). https://doi.org/10.1083/jcb.94.1.64
H.-P. Cong, P. Wang, S.-H. Yu, Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem. Mater. 25(16), 3357–3362 (2013). https://doi.org/10.1021/cm401919c
W. Ouyang, J. Sun, J. Memon, C. Wang, J. Geng, Y. Huang, Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62, 501–509 (2013). https://doi.org/10.1016/j.carbon.2013.06.049
W. Shao, H. Liu, X. Liu, S. Wang, R. Zhang, Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv. 5(7), 4795–4803 (2014). https://doi.org/10.1039/C4RA13057J
Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009). https://doi.org/10.1016/j.carbon.2009.08.022
R. Liu, L. Ma, S. Huang, J. Mei, J. Xu, G. Yuan, Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Adv. 6(109), 107426–107432 (2016). https://doi.org/10.1039/C6RA21920A
H. Luo, J. Dong, Y. Zhang, G. Li, R. Guo et al., Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chem. Eng. J. 334, 1148–1158 (2018). https://doi.org/10.1016/j.cej.2017.11.065
N.F. Vasconcelos, J.P. Feitosa, G.F. Da, J.P. Morais, F.K. Andrade, D.S.F. Ms, M.F. Rosa, Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017). https://doi.org/10.1016/j.carbpol.2016.08.090
S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.B.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
N. Song, D. Jiao, P. Ding, S. Cui, S. Tang, L.Y. Shi, Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 4(2), 305–314 (2015). https://doi.org/10.1039/C5TC02194D
N. Song, X. Hou, L. Chen, S. Cui, L. Shi, P. Ding, A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl. Mater. Interfaces 9(21), 17914–17922 (2017). https://doi.org/10.1021/acsami.7b02675
D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47(1), 145–152 (2009). https://doi.org/10.1016/j.carbon.2008.09.045
N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.-S. Johansson, J.-D. Nam, J. Seppälä, Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J. Mater. Chem. 21(36), 13991–13998 (2011). https://doi.org/10.1039/C1JM12134K
Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). https://doi.org/10.1016/j.carbon.2009.12.063
X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). https://doi.org/10.1002/adma.200801306
K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.carbon.2012.10.013
O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81(1), 158–166 (2015). https://doi.org/10.1016/j.carbon.2014.09.044
J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009). https://doi.org/10.1002/adfm.200801776
L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 21(28), 10399–10406 (2011). https://doi.org/10.1039/C0JM04043F