Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color
Corresponding Author: Quan Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 1
Abstract
In nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO2 nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices. The resulting soft actuators are found to exhibit brilliant, angle-independent structural color, as well as ultrafast actuation and recovery speeds (a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s, and a recovery time of ~ 0.24 s) in response to acetone vapor. As proof-of-concept illustrations, structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target, artificial green tendrils that can twine around tree branches, and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor. The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
Highlights:
1 Design and fabrication of MXene-based soft actuators with angle-independent structural color.
2 The nanostructured MXene can not only facilitate the formation of short-range ordered 3D amorphous photonic crystals, but also help significantly improve structural color saturation.
3 The soft actuators exhibit brilliant angle-independent structural color, ultrafast actuation and recovery speeds in response to vapor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Cunha, M.G. Debije, A. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49(18), 6568–6578 (2020). https://doi.org/10.1039/D0CS00363H
- H.K. Bisoyi, Q. Li, Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122(5), 4887–4926 (2022). https://doi.org/10.1021/acs.chemrev.1c00761
- J. Sol, H. Sentjens, L. Yang, N. Grossiord, M.G. Debije, Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Adv. Mater. 33(39), 2103309 (2021). https://doi.org/10.1002/adma.202103309
- L. Wang, A.M. Urbas, Q. Li, Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 32(41), 1801335 (2018). https://doi.org/10.1002/adma.201801335
- J. Ma, Y. Yang, C. Valenzuela, X. Zhang, W. Feng, Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
- J.J. Yang, X.F. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
- J. Teyssier, S.V. Saenko, D. Marel, M.C. Milinkovitch, Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015). https://doi.org/10.1038/ncomms7368
- R.O. Prum, R.H. Torres, S. Williamson, J. Dyck, Coherent light scattering by blue feather barbs. Nature 396, 28–29 (1998). https://doi.org/10.1038/23838
- V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. PNAS 118, e2015551118 (2021). https://doi.org/10.1073/pnas.2015551118
- F. Castles, S.M. Morris, J. Hung, M. Qasim, H.J. Coles, Stretchable liquid-crystal blue-phase gels. Nat. Mater. 13, 817–821 (2014). https://doi.org/10.1038/NMAT3993
- J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
- Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
- L. Tang, L. Wang, X. Yang, Y. Feng, W. Feng, Poly(n-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 115, 100702 (2021). https://doi.org/10.1016/j.pmatsci.2020.100702
- P. Lv, X. Lu, L. Wang, W. Feng, Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Adv. Funct. Mater. 31(45), 2104991 (2021). https://doi.org/10.1002/adfm.202104991
- F. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018). https://doi.org/10.1126/scirobotics.aar85
- S. Wei, W. Lu, X. Le, C. Ma, H. Lin et al., Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew. Chem. Int. Ed. 58(45), 16243–16251 (2019). https://doi.org/10.1002/anie.201908437
- Z.C. Liu, H.K. Bisoyi, Y.L. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61(8), e202115755 (2022). https://doi.org/10.1002/anie.202115755
- S. Huang, Y. Huang, Q. Li, Photodeformable liquid crystalline polymers containing functional additives: toward photomanipulatable intelligent soft systems. Small Struct. 2, 2100038 (2021). https://doi.org/10.1002/sstr.202100038
- Y. Huang, H. Bisoyi, S. Huang, M. Wang, X.M. Chen et al., Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew. Chem. Int. Ed. 60(20), 11247–11251 (2021). https://doi.org/10.1002/anie.202101881
- B. Datta, E.F. Spero, F.J. Martin-Martinez, C. Ortiz, Socially-directed development of materials for structural color. Adv. Mater. 34(20), 2100939 (2022). https://doi.org/10.1002/adma.202100939
- F.T. Meng, B.Z. Ju, Z.Z. Wang, R.H. Han, Y. Zhang et al., Bioinspired polypeptide photonic films with tunable structural color. J. Am. Chem. Soc. 144(17), 7610–7615 (2022). https://doi.org/10.1021/jacs.2c02894
- S.S. Miao, Y. Wang, L.Y. Sun, Y.J. Zhao, Freeze-derived heterogeneous structural color films. Nat. Commun. 13, 4044 (2022). https://doi.org/10.1038/s41467-022-31717-2
- Q.S. Zhang, Q.H. Jin, A. Mertens, C. Rainer, R. Huber et al., Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 34(33), 2201348 (2022). https://doi.org/10.1002/adma.202201348
- X.K. Li, J. Liu, D.D. Li, S.Q. Huang, K. Huang et al., Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv. Sci. 8(16), 2101295 (2021). https://doi.org/10.1002/advs.202101295
- X.K. Li, J. Liu, Q.Q. Guo, X.X. Zhang, M. Tian, Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18(19), 2201012 (2022). https://doi.org/10.1002/smll.202201012
- A.G. Dumanli, T. Savin, Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 45, 6698–6724 (2016). https://doi.org/10.1039/c6cs00129g
- Y. Ohtsuka, T. Seki, Y. Takeoka, Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem. Int. Ed. 54(51), 15368–15373 (2015). https://doi.org/10.1002/anie.201507503
- J. Zhou, H. Peng, M. Liu, H. Zhou, Y. Xi, Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56(35), 10462–10466 (2017). https://doi.org/10.1002/anie.201705462
- Y. Zhang, P. Han, H. Zhou, N. Wu, Y. Wei et al., Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots. Adv. Funct. Mater. 28(29), 1802585 (2018). https://doi.org/10.1002/adfm.201802585
- Y. Zhang, B. Dong, A. Chen, X. Liu, L. Shi et al., Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv. Mater. 27(32), 4719–4724 (2015). https://doi.org/10.1002/adma.201501936
- M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. Adv. Mater. 29(26), 1605050 (2017). https://doi.org/10.1002/adma.201605050
- A. Vahidmohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1165 (2021). https://doi.org/10.1126/science.abf1581
- B. Anasori, M.R. Luhatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- D. Pang, M. Alhabeb, X. Mu, Y. Dall’Agnese, Y. Gao, Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 19(10), 7443–7448 (2019). https://doi.org/10.1021/acs.nanolett.9b03147
- S. Umrao, R. Tabassian, J. Kim, V. Nguyen, Q.T. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4, eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
- J. Wang, Y. Liu, Z. Cheng, Z. Xie, Z. Fan, Highly conductive MXene film actuator based on moisture gradients. Angew. Chem. Int. Ed. 59(33), 14029–14033 (2020). https://doi.org/10.1002/anie.202003737
- J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly ofhybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
- Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 15(3), 5294–5306 (2021). https://doi.org/10.1021/acsnano.0c10797
- G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15(3), 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- G. Cai, J.H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). https://doi.org/10.1126/sciadv.aaw7956
- M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32(26), 202201884 (2022). https://doi.org/10.1002/adfm.202201884
- L. Wang, Q. Li, Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev. 47(3), 1044–1097 (2018). https://doi.org/10.1039/c7cs00630f
- J. Zhang, N. Kong, S. Uzun, A. Levitt, J.M. Razal, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
- J.Z. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
- S.I. Rich, R.J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112 (2018). https://doi.org/10.1038/s41467-022-28038-9
- J. Liu, L. Sheng, Z.Z. He, Liquid Metal Soft Machines: Principles and Applications. (Springer, 2019). https://doi.org/10.1007/978-981-13-2709-4
- Y. Zhao, C.Y. Lo, L. Ruan, C.H. Pi, X. He, Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 6, eabd5483 (2021).https://doi.org/10.1126/scirobotics.abd5483
- P.F. Lv, X. Yang, H.K. Bisoyi, H. Zeng, X. Zhang et al., Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 8, 2475 (2021). https://doi.org/10.1039/d1mh00623a
- X. Yang, Y.H. Chen, X. Zhang, P. Xue, P.F. Lv et al., Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 43, 101419 (2022). https://doi.org/10.1016/j.nantod.2022.101419
- W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409 (2018). https://doi.org/10.1038/s41586-018-0109-z
- Y. Meng, F.F. Liu, M.M. Umair, B.Z. Ju, S.F. Zhang et al., Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv. Opt. Mater. 6(8), 1701351 (2018). https://doi.org/10.1002/adom.201701351
- Z. Zhu, J. Zhang, Y. Tong, G. Peng, T. Cui et al., Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photon. 6(1), 116–122 (2019). https://doi.org/10.1021/acsphotonics.8b00952
- Q. Zhao, J. Dunlop, X. Qiu, F. Huang, Z. Zhang et al., An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 5, 4293 (2014). https://doi.org/10.1038/ncomms5293
- L. Zhang, P. Naumov, X. Du, Z. Hu, J. Wang, Vapomechanically responsive motion of microchannel-programmed actuators. Adv. Mater. 29(39), 1702231 (2017). https://doi.org/10.1002/adma.201702231
- H. Zhang, K.C. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. PNAS 117, 14657–14666 (2020). https://doi.org/10.1073/pnas.200180211
- X. Zhang, Y.Y. Xu, C. Valenzuela, X.F. Zhang, L. Wang et al., Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 11, 223 (2022). https://doi.org/10.1038/s41377-022-00913-6
- H. Zhou, J. Xu, X. Liu, H. Zhang, D. Wang et al., Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 28(24), 1705309 (2018). https://doi.org/10.1002/adfm.201705309
- X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
- X. Zhang, Y.Z. Yang, P. Xue, C. Valenzuela, Y.H. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
- Z.Y. Wang, C. Valenzuela, J.H. Wu, Y.H. Chen, L. Wang et al., Bioinspired freeze-tolerant soft materials: design, properties, and applications. Small 18(37), 202201597 (2022). https://doi.org/10.1002/smll.202201597
References
M. Cunha, M.G. Debije, A. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49(18), 6568–6578 (2020). https://doi.org/10.1039/D0CS00363H
H.K. Bisoyi, Q. Li, Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122(5), 4887–4926 (2022). https://doi.org/10.1021/acs.chemrev.1c00761
J. Sol, H. Sentjens, L. Yang, N. Grossiord, M.G. Debije, Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer. Adv. Mater. 33(39), 2103309 (2021). https://doi.org/10.1002/adma.202103309
L. Wang, A.M. Urbas, Q. Li, Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 32(41), 1801335 (2018). https://doi.org/10.1002/adma.201801335
J. Ma, Y. Yang, C. Valenzuela, X. Zhang, W. Feng, Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
J.J. Yang, X.F. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
J. Teyssier, S.V. Saenko, D. Marel, M.C. Milinkovitch, Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015). https://doi.org/10.1038/ncomms7368
R.O. Prum, R.H. Torres, S. Williamson, J. Dyck, Coherent light scattering by blue feather barbs. Nature 396, 28–29 (1998). https://doi.org/10.1038/23838
V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. PNAS 118, e2015551118 (2021). https://doi.org/10.1073/pnas.2015551118
F. Castles, S.M. Morris, J. Hung, M. Qasim, H.J. Coles, Stretchable liquid-crystal blue-phase gels. Nat. Mater. 13, 817–821 (2014). https://doi.org/10.1038/NMAT3993
J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
L. Tang, L. Wang, X. Yang, Y. Feng, W. Feng, Poly(n-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 115, 100702 (2021). https://doi.org/10.1016/j.pmatsci.2020.100702
P. Lv, X. Lu, L. Wang, W. Feng, Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Adv. Funct. Mater. 31(45), 2104991 (2021). https://doi.org/10.1002/adfm.202104991
F. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018). https://doi.org/10.1126/scirobotics.aar85
S. Wei, W. Lu, X. Le, C. Ma, H. Lin et al., Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew. Chem. Int. Ed. 58(45), 16243–16251 (2019). https://doi.org/10.1002/anie.201908437
Z.C. Liu, H.K. Bisoyi, Y.L. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61(8), e202115755 (2022). https://doi.org/10.1002/anie.202115755
S. Huang, Y. Huang, Q. Li, Photodeformable liquid crystalline polymers containing functional additives: toward photomanipulatable intelligent soft systems. Small Struct. 2, 2100038 (2021). https://doi.org/10.1002/sstr.202100038
Y. Huang, H. Bisoyi, S. Huang, M. Wang, X.M. Chen et al., Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew. Chem. Int. Ed. 60(20), 11247–11251 (2021). https://doi.org/10.1002/anie.202101881
B. Datta, E.F. Spero, F.J. Martin-Martinez, C. Ortiz, Socially-directed development of materials for structural color. Adv. Mater. 34(20), 2100939 (2022). https://doi.org/10.1002/adma.202100939
F.T. Meng, B.Z. Ju, Z.Z. Wang, R.H. Han, Y. Zhang et al., Bioinspired polypeptide photonic films with tunable structural color. J. Am. Chem. Soc. 144(17), 7610–7615 (2022). https://doi.org/10.1021/jacs.2c02894
S.S. Miao, Y. Wang, L.Y. Sun, Y.J. Zhao, Freeze-derived heterogeneous structural color films. Nat. Commun. 13, 4044 (2022). https://doi.org/10.1038/s41467-022-31717-2
Q.S. Zhang, Q.H. Jin, A. Mertens, C. Rainer, R. Huber et al., Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 34(33), 2201348 (2022). https://doi.org/10.1002/adma.202201348
X.K. Li, J. Liu, D.D. Li, S.Q. Huang, K. Huang et al., Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv. Sci. 8(16), 2101295 (2021). https://doi.org/10.1002/advs.202101295
X.K. Li, J. Liu, Q.Q. Guo, X.X. Zhang, M. Tian, Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 18(19), 2201012 (2022). https://doi.org/10.1002/smll.202201012
A.G. Dumanli, T. Savin, Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 45, 6698–6724 (2016). https://doi.org/10.1039/c6cs00129g
Y. Ohtsuka, T. Seki, Y. Takeoka, Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem. Int. Ed. 54(51), 15368–15373 (2015). https://doi.org/10.1002/anie.201507503
J. Zhou, H. Peng, M. Liu, H. Zhou, Y. Xi, Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56(35), 10462–10466 (2017). https://doi.org/10.1002/anie.201705462
Y. Zhang, P. Han, H. Zhou, N. Wu, Y. Wei et al., Highly brilliant noniridescent structural colors enabled by graphene nanosheets containing graphene quantum dots. Adv. Funct. Mater. 28(29), 1802585 (2018). https://doi.org/10.1002/adfm.201802585
Y. Zhang, B. Dong, A. Chen, X. Liu, L. Shi et al., Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv. Mater. 27(32), 4719–4724 (2015). https://doi.org/10.1002/adma.201501936
M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. Adv. Mater. 29(26), 1605050 (2017). https://doi.org/10.1002/adma.201605050
A. Vahidmohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1165 (2021). https://doi.org/10.1126/science.abf1581
B. Anasori, M.R. Luhatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
D. Pang, M. Alhabeb, X. Mu, Y. Dall’Agnese, Y. Gao, Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett. 19(10), 7443–7448 (2019). https://doi.org/10.1021/acs.nanolett.9b03147
S. Umrao, R. Tabassian, J. Kim, V. Nguyen, Q.T. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4, eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797
J. Wang, Y. Liu, Z. Cheng, Z. Xie, Z. Fan, Highly conductive MXene film actuator based on moisture gradients. Angew. Chem. Int. Ed. 59(33), 14029–14033 (2020). https://doi.org/10.1002/anie.202003737
J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly ofhybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 15(3), 5294–5306 (2021). https://doi.org/10.1021/acsnano.0c10797
G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15(3), 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
G. Cai, J.H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). https://doi.org/10.1126/sciadv.aaw7956
M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32(26), 202201884 (2022). https://doi.org/10.1002/adfm.202201884
L. Wang, Q. Li, Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev. 47(3), 1044–1097 (2018). https://doi.org/10.1039/c7cs00630f
J. Zhang, N. Kong, S. Uzun, A. Levitt, J.M. Razal, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32(23), 2001093 (2020). https://doi.org/10.1002/adma.202001093
J.Z. Zhang, S. Uzun, S. Seyedin, P.A. Lynch, B. Akuzum et al., Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 6(2), 254–265 (2020). https://doi.org/10.1021/acscentsci.9b01217
S.I. Rich, R.J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112 (2018). https://doi.org/10.1038/s41467-022-28038-9
J. Liu, L. Sheng, Z.Z. He, Liquid Metal Soft Machines: Principles and Applications. (Springer, 2019). https://doi.org/10.1007/978-981-13-2709-4
Y. Zhao, C.Y. Lo, L. Ruan, C.H. Pi, X. He, Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 6, eabd5483 (2021).https://doi.org/10.1126/scirobotics.abd5483
P.F. Lv, X. Yang, H.K. Bisoyi, H. Zeng, X. Zhang et al., Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 8, 2475 (2021). https://doi.org/10.1039/d1mh00623a
X. Yang, Y.H. Chen, X. Zhang, P. Xue, P.F. Lv et al., Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 43, 101419 (2022). https://doi.org/10.1016/j.nantod.2022.101419
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409 (2018). https://doi.org/10.1038/s41586-018-0109-z
Y. Meng, F.F. Liu, M.M. Umair, B.Z. Ju, S.F. Zhang et al., Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv. Opt. Mater. 6(8), 1701351 (2018). https://doi.org/10.1002/adom.201701351
Z. Zhu, J. Zhang, Y. Tong, G. Peng, T. Cui et al., Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photon. 6(1), 116–122 (2019). https://doi.org/10.1021/acsphotonics.8b00952
Q. Zhao, J. Dunlop, X. Qiu, F. Huang, Z. Zhang et al., An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 5, 4293 (2014). https://doi.org/10.1038/ncomms5293
L. Zhang, P. Naumov, X. Du, Z. Hu, J. Wang, Vapomechanically responsive motion of microchannel-programmed actuators. Adv. Mater. 29(39), 1702231 (2017). https://doi.org/10.1002/adma.201702231
H. Zhang, K.C. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. PNAS 117, 14657–14666 (2020). https://doi.org/10.1073/pnas.200180211
X. Zhang, Y.Y. Xu, C. Valenzuela, X.F. Zhang, L. Wang et al., Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light Sci. Appl. 11, 223 (2022). https://doi.org/10.1038/s41377-022-00913-6
H. Zhou, J. Xu, X. Liu, H. Zhang, D. Wang et al., Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 28(24), 1705309 (2018). https://doi.org/10.1002/adfm.201705309
X. Liu, C. Xiao, P. Wang, M. Yan, H. Wang et al., Biomimetic photonic multiform composite for high-performance radiative cooling. Adv. Opt. Mater. 9(22), 2101151 (2021). https://doi.org/10.1002/adom.202101151
X. Zhang, Y.Z. Yang, P. Xue, C. Valenzuela, Y.H. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
Z.Y. Wang, C. Valenzuela, J.H. Wu, Y.H. Chen, L. Wang et al., Bioinspired freeze-tolerant soft materials: design, properties, and applications. Small 18(37), 202201597 (2022). https://doi.org/10.1002/smll.202201597