Metal–Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries
Corresponding Author: Zhangxing He
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 218
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the promising energy storage systems, which consist of electrode materials, electrolyte, and separator. The first two have been significantly received ample development, while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention. In this work, a separator (UiO-66-GF) modified by Zr-based metal organic framework for robust AZIBs is proposed. UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of (002) crystal plane, which is favorable for corrosion resistance and dendrite-free zinc deposition. Consequently, Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm−2, and Zn|UiO-66-GF-2.2|MnO2 cells show excellent long-term stability with capacity retention of 85% after 1000 cycles. The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.
Highlights:
1 Metal-organic frameworks (UiO-66) functionalized glass fiber separator was constructed to accelerate the transport of charge carriers and provide a uniform electric field distribution on the surface of zinc anode.
2 Zinc anode demonstrates preferential orientation of (002) plane under the control of UiO-66-GF, which effectively inhibits dendrites.
3 Density functional theory calculation confirms that the adsorption effect of (002) plane on H is weaker, thus improving corrosion resistance and suppressing the hydrogen evolution reaction.
4 Symmetric cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h and full cells demonstrate excellent long-term stability (85%) for 1000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu et al., A review on 3D zinc anodes for zinc ion batteries. Small Methods 6(9), 2200597 (2022). https://doi.org/10.1002/smtd.202200597
- P. Ruan, X. Xu, D. Zheng, X. Chen, X. Yin et al., Promoting reversible dissolution/deposition of MnO2 for high-energy-density zinc batteries via enhancing cut-off voltage. Chemsuschem 15(18), 202201118 (2022). https://doi.org/10.1002/cssc.202201118
- X. Li, Z. Chen, Y. Yang, S. Liang, B. Lu et al., The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 9(16), 3986–3998 (2022). https://doi.org/10.1039/D2QI01083F
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance zinc metal anode. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou et al., pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), 177 (2022). https://doi.org/10.1093/nsr/nwab177
- Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
- C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
- P. Ruan, S. Liang, B. Lu, H. Fan, J. Zhou et al., Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
- Y. Zhang, G. Yang, M.L. Lehmann, C. Wu, L. Zhao et al., Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 21(24), 10446–10452 (2021). https://doi.org/10.1021/acs.nanolett.1c03792
- G.A. Elia, J.B. Ducros, D. Sotta, V. Delhorbe, A. Brun et al., Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl. Mater. Interfaces 9(44), 38381–38389 (2017). https://doi.org/10.1021/acsami.7b09378
- J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin et al., A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 8(18), 9331–9344 (2020). https://doi.org/10.1039/d0ta02486d
- C. Peng, Y. Zhang, S. Yang, L. Zhang, Z. Wang et al., Flexible zincophilic polypyrrole paper interlayers for stable Zn metal anodes: higher surface flatness promises better reversibility. Nano Energy 98, 107329 (2022). https://doi.org/10.1016/j.nanoen.2022.107329
- Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12, 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
- R. Yuksel, O. Buyukcakir, P.K. Panda, S.H. Lee, Y. Jiang et al., Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage. Adv. Funct. Mater. 30(10), 1909725 (2020). https://doi.org/10.1002/adfm.201909725
- T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- Y. Guo, W. Cai, Y. Lin, Y. Zhang, S. Luo et al., An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 50, 580–588 (2022). https://doi.org/10.1016/j.ensm.2022.06.001
- P. Cao, H. Zhou, X. Zhou, Q. Du, J. Tang et al., Stabilizing zinc anodes by a cotton towel separator for aqueous zinc-ion batteries. ACS Sustain. Chem. Eng. 10(26), 8350–8359 (2022). https://doi.org/10.1021/acssuschemeng.2c01133
- G. Gao, Y. Wang, S. Wang, R. Yang, Y. Chen et al., Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
- R. Rego, M. Kurkuri, M. Kigga, A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere 302, 134845 (2022). https://doi.org/10.1016/j.chemosphere.2022.134845
- M. Sun, J. Li, H. Yuan, X. Zeng, J. Lan et al., Fast Li+ transport pathways of quasi-solid-state electrolyte constructed by 3D MOF composite nanofibrous network for dendrite-free lithium metal battery. Mater. Today Energy 29, 101117 (2022). https://doi.org/10.1016/j.mtener.2022.101117
- X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
- L. Wang, Y. Zhu, C. Du, X. Ma, C. Cao, Advances and challenges in metal-organic framework derived porous materials for batteries and electrocatalysis. J. Mater. Chem. A 8(47), 24895–24919 (2020). https://doi.org/10.1039/d0ta08311a
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- S. Wang, W. Morris, Y. Liu, C.M. McGuirk, Y. Zhou et al., Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem. Int. Ed. 54(49), 14738–14742 (2015). https://doi.org/10.1002/anie.201506888
- F. Ahmadijokani, R. Mohammadkhani, S. Ahmadipouya, A. Shokrgozar, M. Rezakazemi et al., Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 399, 125346 (2020). https://doi.org/10.1016/j.cej.2020.125346
- Y. Jiang, G. Cheng, Y. Li, Z. He, J. Zhu et al., Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chem. Eng. J. 415, 129014 (2021). https://doi.org/10.1016/j.cej.2021.129014
- W. Li, J. Liu, C. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 49(11), 3463–3470 (2011). https://doi.org/10.1016/j.carbon.2011.04.045
- H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-nanop-modified graphite felt: bifunctional effects on vanadium flow batteries. ACS Appl. Mater. Interfaces 8(24), 15369–15378 (2016). https://doi.org/10.1021/acsami.6b03761
- C. Chen, D. Chen, S. Xie, H. Quan, X. Luo et al., Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl. Mater. Interfaces 9(46), 41043–41054 (2017). https://doi.org/10.1021/acsami.7b13443
- X. Min, X. Wu, P. Shao, Z. Ren, L. Ding et al., Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number. Chem. Eng. J. 358, 321–330 (2019). https://doi.org/10.1016/j.cej.2018.10.043
- Q. Li, F. Zeng, Y. Guan, Z. Jin, Y. Huang et al., Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater. 13, 151–159 (2018). https://doi.org/10.1016/j.ensm.2018.01.002
- Z. Man, Y. Meng, X. Lin, X. Dai, L. Wang et al., Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide. Chem. Eng. J. 431, 133952 (2022). https://doi.org/10.1016/j.cej.2021.133952
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.21203/rs.3.rs-400312/v1
- W. Deng, N. Zhang, X. Wang, Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem. Eng. J. 432, 134378 (2022). https://doi.org/10.1016/j.cej.2021.134378
- J. Yan, M. Ye, Y. Zhang, Y. Tang, C. Li, Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chem. Eng. J. 432, 134227 (2022). https://doi.org/10.1016/j.cej.2021.134227
- Y. Wang, Y. Liu, H. Wang, S. Dou, W. Gan et al., MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 10(8), 4366–4375 (2022). https://doi.org/10.1039/d1ta10245a
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
- Z. Miao, Q. Liu, W. Wei, X. Zhao, M. Du et al., Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97, 107145 (2022). https://doi.org/10.1016/j.nanoen.2022.107145
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
- C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- B.S. Lee, S. Cui, X. Xing, H. Liu, X. Yue et al., Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10(45), 38928–38935 (2018). https://doi.org/10.1021/acsami.8b14022
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
- Y. Zeng, P. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022). https://doi.org/10.1002/adma.202200342
- W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- L. Hong, X. Wu, L. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- T. Wang, Q. Xi, Y. Li, H. Fu, Y. Hua et al., Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv. Sci. 9(18), 2200155 (2022). https://doi.org/10.1002/advs.202200155
- X. Chen, P. Ruan, X. Wu, S. Liang, J. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys. Chim. Sin. 38(12), 2111003 (2022). https://doi.org/10.3866/pku.Whxb202111003
- H. Yu, Y. Chen, H. Wang, X. Ni, W. Wei et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries. Nano Energy 99, 107426 (2022). https://doi.org/10.1016/j.nanoen.2022.107426
- D. Zuo, S. Song, C. An, L. Tang, Z. He et al., Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062
- H. Moon, K.H. Ha, Y. Park, J. Lee, M.S. Kwon et al., Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn-MnO2 batteries with porous carbon interlayers. Adv. Sci. 8(6), 2003714 (2021). https://doi.org/10.1002/advs.202003714
- J. Hao, J. Long, B. Li, X. Li, S. Zhang et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 29(34), 1903605 (2019). https://doi.org/10.1002/adfm.201903605
- P. Ruan, X. Xu, X. Gao, J. Feng, L. Yu et al., Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks. Sustain. Mater. Technol. 28, 00254 (2021). https://doi.org/10.1016/j.susmat.2021.e00254
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- Y. Liu, X. Zhou, X. Wang, G. Chen, R. Liu et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries. Chem. Eng. J. 420, 129629 (2021). https://doi.org/10.1016/j.cej.2021.129629
- Z. Huang, T. Wang, H. Song, X. Li, G. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60(2), 1011–1021 (2021). https://doi.org/10.1002/anie.202012202
- D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
- Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220
References
N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu et al., A review on 3D zinc anodes for zinc ion batteries. Small Methods 6(9), 2200597 (2022). https://doi.org/10.1002/smtd.202200597
P. Ruan, X. Xu, D. Zheng, X. Chen, X. Yin et al., Promoting reversible dissolution/deposition of MnO2 for high-energy-density zinc batteries via enhancing cut-off voltage. Chemsuschem 15(18), 202201118 (2022). https://doi.org/10.1002/cssc.202201118
X. Li, Z. Chen, Y. Yang, S. Liang, B. Lu et al., The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 9(16), 3986–3998 (2022). https://doi.org/10.1039/D2QI01083F
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance zinc metal anode. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou et al., pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), 177 (2022). https://doi.org/10.1093/nsr/nwab177
Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 51, 733–755 (2022). https://doi.org/10.1016/j.ensm.2022.07.017
C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
P. Ruan, S. Liang, B. Lu, H. Fan, J. Zhou et al., Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
Y. Zhang, G. Yang, M.L. Lehmann, C. Wu, L. Zhao et al., Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 21(24), 10446–10452 (2021). https://doi.org/10.1021/acs.nanolett.1c03792
G.A. Elia, J.B. Ducros, D. Sotta, V. Delhorbe, A. Brun et al., Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl. Mater. Interfaces 9(44), 38381–38389 (2017). https://doi.org/10.1021/acsami.7b09378
J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin et al., A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 8(18), 9331–9344 (2020). https://doi.org/10.1039/d0ta02486d
C. Peng, Y. Zhang, S. Yang, L. Zhang, Z. Wang et al., Flexible zincophilic polypyrrole paper interlayers for stable Zn metal anodes: higher surface flatness promises better reversibility. Nano Energy 98, 107329 (2022). https://doi.org/10.1016/j.nanoen.2022.107329
Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12, 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
R. Yuksel, O. Buyukcakir, P.K. Panda, S.H. Lee, Y. Jiang et al., Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage. Adv. Funct. Mater. 30(10), 1909725 (2020). https://doi.org/10.1002/adfm.201909725
T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
Y. Guo, W. Cai, Y. Lin, Y. Zhang, S. Luo et al., An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 50, 580–588 (2022). https://doi.org/10.1016/j.ensm.2022.06.001
P. Cao, H. Zhou, X. Zhou, Q. Du, J. Tang et al., Stabilizing zinc anodes by a cotton towel separator for aqueous zinc-ion batteries. ACS Sustain. Chem. Eng. 10(26), 8350–8359 (2022). https://doi.org/10.1021/acssuschemeng.2c01133
G. Gao, Y. Wang, S. Wang, R. Yang, Y. Chen et al., Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem. Int. Ed. 60(18), 10147–10154 (2021). https://doi.org/10.1002/anie.202016608
R. Rego, M. Kurkuri, M. Kigga, A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere 302, 134845 (2022). https://doi.org/10.1016/j.chemosphere.2022.134845
M. Sun, J. Li, H. Yuan, X. Zeng, J. Lan et al., Fast Li+ transport pathways of quasi-solid-state electrolyte constructed by 3D MOF composite nanofibrous network for dendrite-free lithium metal battery. Mater. Today Energy 29, 101117 (2022). https://doi.org/10.1016/j.mtener.2022.101117
X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
L. Wang, Y. Zhu, C. Du, X. Ma, C. Cao, Advances and challenges in metal-organic framework derived porous materials for batteries and electrocatalysis. J. Mater. Chem. A 8(47), 24895–24919 (2020). https://doi.org/10.1039/d0ta08311a
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8(26), 1801445 (2018). https://doi.org/10.1002/aenm.201801445
S. Wang, W. Morris, Y. Liu, C.M. McGuirk, Y. Zhou et al., Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem. Int. Ed. 54(49), 14738–14742 (2015). https://doi.org/10.1002/anie.201506888
F. Ahmadijokani, R. Mohammadkhani, S. Ahmadipouya, A. Shokrgozar, M. Rezakazemi et al., Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 399, 125346 (2020). https://doi.org/10.1016/j.cej.2020.125346
Y. Jiang, G. Cheng, Y. Li, Z. He, J. Zhu et al., Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chem. Eng. J. 415, 129014 (2021). https://doi.org/10.1016/j.cej.2021.129014
W. Li, J. Liu, C. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 49(11), 3463–3470 (2011). https://doi.org/10.1016/j.carbon.2011.04.045
H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-nanop-modified graphite felt: bifunctional effects on vanadium flow batteries. ACS Appl. Mater. Interfaces 8(24), 15369–15378 (2016). https://doi.org/10.1021/acsami.6b03761
C. Chen, D. Chen, S. Xie, H. Quan, X. Luo et al., Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl. Mater. Interfaces 9(46), 41043–41054 (2017). https://doi.org/10.1021/acsami.7b13443
X. Min, X. Wu, P. Shao, Z. Ren, L. Ding et al., Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number. Chem. Eng. J. 358, 321–330 (2019). https://doi.org/10.1016/j.cej.2018.10.043
Q. Li, F. Zeng, Y. Guan, Z. Jin, Y. Huang et al., Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater. 13, 151–159 (2018). https://doi.org/10.1016/j.ensm.2018.01.002
Z. Man, Y. Meng, X. Lin, X. Dai, L. Wang et al., Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide. Chem. Eng. J. 431, 133952 (2022). https://doi.org/10.1016/j.cej.2021.133952
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.21203/rs.3.rs-400312/v1
W. Deng, N. Zhang, X. Wang, Hybrid interlayer enables dendrite-free and deposition-modulated zinc anodes. Chem. Eng. J. 432, 134378 (2022). https://doi.org/10.1016/j.cej.2021.134378
J. Yan, M. Ye, Y. Zhang, Y. Tang, C. Li, Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chem. Eng. J. 432, 134227 (2022). https://doi.org/10.1016/j.cej.2021.134227
Y. Wang, Y. Liu, H. Wang, S. Dou, W. Gan et al., MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A 10(8), 4366–4375 (2022). https://doi.org/10.1039/d1ta10245a
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
Z. Miao, Q. Liu, W. Wei, X. Zhao, M. Du et al., Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97, 107145 (2022). https://doi.org/10.1016/j.nanoen.2022.107145
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
B.S. Lee, S. Cui, X. Xing, H. Liu, X. Yue et al., Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10(45), 38928–38935 (2018). https://doi.org/10.1021/acsami.8b14022
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
Y. Zeng, P. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022). https://doi.org/10.1002/adma.202200342
W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
L. Hong, X. Wu, L. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
T. Wang, Q. Xi, Y. Li, H. Fu, Y. Hua et al., Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv. Sci. 9(18), 2200155 (2022). https://doi.org/10.1002/advs.202200155
X. Chen, P. Ruan, X. Wu, S. Liang, J. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys. Chim. Sin. 38(12), 2111003 (2022). https://doi.org/10.3866/pku.Whxb202111003
H. Yu, Y. Chen, H. Wang, X. Ni, W. Wei et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries. Nano Energy 99, 107426 (2022). https://doi.org/10.1016/j.nanoen.2022.107426
D. Zuo, S. Song, C. An, L. Tang, Z. He et al., Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062
H. Moon, K.H. Ha, Y. Park, J. Lee, M.S. Kwon et al., Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn-MnO2 batteries with porous carbon interlayers. Adv. Sci. 8(6), 2003714 (2021). https://doi.org/10.1002/advs.202003714
J. Hao, J. Long, B. Li, X. Li, S. Zhang et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 29(34), 1903605 (2019). https://doi.org/10.1002/adfm.201903605
P. Ruan, X. Xu, X. Gao, J. Feng, L. Yu et al., Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks. Sustain. Mater. Technol. 28, 00254 (2021). https://doi.org/10.1016/j.susmat.2021.e00254
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
Y. Liu, X. Zhou, X. Wang, G. Chen, R. Liu et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries. Chem. Eng. J. 420, 129629 (2021). https://doi.org/10.1016/j.cej.2021.129629
Z. Huang, T. Wang, H. Song, X. Li, G. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60(2), 1011–1021 (2021). https://doi.org/10.1002/anie.202012202
D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220