Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries
Corresponding Author: Jiang Zhou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 237
Abstract
Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices, raising higher requirements on the battery biocompatibility, high safety, low cost, and excellent electrochemical performance, which become the evaluation criteria toward developing feasible biocompatible batteries. Herein, through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits, zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries (ZIBs). Furthermore, in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability, Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential. Finally, a long lifetime of 1500 h for the symmetrical cell, the specific capacity of 150 mAh g−1 under 0.5 A g−1 for the Zn–MnO2 battery and 212 mAh g−1 under 5 A g−1 for the Zn—NH4V4O10 battery are obtained. This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components.
Highlights:
1 Animal models are applied to evaluate the biosecurity and biocompatibility of the zinc-ion batteries with the electrolytes of different zinc salts.
2 Leakage scene simulations and histological analysis are employed in investigating the tissue response after battery implantations, in which ZnSO4 exhibits higher biosecurity.
3 Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020). https://doi.org/10.1039/c9ee03046h
- Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34, 2106409 (2022). https://doi.org/10.1002/adma.202106409
- S. Lei, Z. Liu, C. Liu, J. Li, B. Lu et al., Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911–4927 (2022). https://doi.org/10.1039/d2ee02267b
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- J. Zhao, Y. Lin, J. Wu, H.Y.Y. Nyein, M. Bariya et al., A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 4, 1925–1933 (2019). https://doi.org/10.1021/acssensors.9b00891
- D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
- C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
- A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, 1602051 (2017). https://doi.org/10.1126/sciadv.1602051
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16, 1902827 (2020). https://doi.org/10.1002/smll.201902827
- X. Huang, D. Wang, Z. Yuan, W. Xie, Y. Wu et al., A fully biodegradable battery for self-powered transient implants. Small 14, 1800994 (2018). https://doi.org/10.1002/smll.201800994
- T. Ye, J. Wang, Y. Jiao, L. Li, E. He et al., A tissue-like soft all-hydrogel battery. Adv. Mater. 34, 2105120 (2022). https://doi.org/10.1002/adma.202105120
- J. Li, P. Ruan, X. Chen, S. Lei, B. Lu et al., Aqueous batteries for human body electronic devices. ACS Energy Lett. 8, 2904–2918 (2023). https://doi.org/10.1021/acsenergylett.3c00678
- M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33, 2209777 (2022). https://doi.org/10.1002/adfm.202209777
- R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
- C. Chen, H. Zhu, M. Shi, L. Hu, Z. Xue et al., Oxygen vacancies-modulated tungsten oxide anode for ultra-stable and fast aqueous aluminum-ion storage. Energy Storge Mater. 49, 370–379 (2022). https://doi.org/10.1016/j.ensm.2022.04.013
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020). https://doi.org/10.1002/eem2.12067
- Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, 202215324 (2023). https://doi.org/10.1002/anie.202215324
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 202215552 (2023). https://doi.org/10.1002/anie.202215552
- Y. Yang, S. Guo, Y. Pan, B. Lu, S. Liang et al., Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ. Sci. 16, 2358–2367 (2023). https://doi.org/10.1039/D3EE00501A
- R. Xu, J. Zhou, H. Gong, L. Qiao, Y. Li et al., Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomater. Sci. 10, 1476–1485 (2022). https://doi.org/10.1039/D1BM01747K
- J. Zhou, Y. Li, L. Xie, R. Xu, R. Zhang et al., Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy 21, 100712 (2021). https://doi.org/10.1016/j.mtener.2021.100712
- H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33, 2007548 (2021). https://doi.org/10.1002/adma.202007548
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineeringstrategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- R. Yi, X. Shi, Y. Tang, Y. Yang, P. Zhou et al., Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage. Small Struct. (2023). https://doi.org/10.1002/sstr.202300020
- Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
- Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021). https://doi.org/10.1039/d0ee03623d
- X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
- X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023). https://doi.org/10.1093/nsr/nwac281
- P. Li, M. Liao, J. Li, L. Ye, X. Cheng et al., Rechargeable micro-batteries for wearable and implantable applications. Small Struct. 3, 2200058 (2022). https://doi.org/10.1002/sstr.202200058
- J. Zhou, R. Zhang, R. Xu, Y. Li, W. Tian et al., Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc-ion battery. Adv. Funct. Mater. 32, 2111406 (2022). https://doi.org/10.1002/adfm.202111406
- J.S. Chae, S.K. Park, K.C. Roh, H.S. Park, Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storge Mater. 24, 113–128 (2020). https://doi.org/10.1016/j.ensm.2019.04.032
- Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022). https://doi.org/10.1002/adma.202206970
- X. Chen, X. Shi, P. Ruan, Y. Tang, Y. Sun et al., Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Sci. 3, 2300007 (2023). https://doi.org/10.1002/smsc.202300007
- P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, 2300577 (2023). https://doi.org/10.1002/adma.202300577
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12, 706–715 (2019). https://doi.org/10.1039/c8ee02892c
- Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan et al., Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem. Int. Ed. 61, 202202780 (2022). https://doi.org/10.1002/anie.202202780
- X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12, 2102393 (2021). https://doi.org/10.1002/aenm.202102393
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 12, 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022). https://doi.org/10.1016/j.chempr.2022.03.019
- Z. Liu, Y. Yang, B. Lu, S. Liang, H.J. Fan et al., Insights into complexing effects in acetate-based Zn–MnO2 batteries and performance enhancement by all-round strategies. Energy Storge Mater. 52, 104–110 (2022). https://doi.org/10.1016/j.ensm.2022.07.043
References
S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020). https://doi.org/10.1039/c9ee03046h
Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34, 2106409 (2022). https://doi.org/10.1002/adma.202106409
S. Lei, Z. Liu, C. Liu, J. Li, B. Lu et al., Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911–4927 (2022). https://doi.org/10.1039/d2ee02267b
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
J. Zhao, Y. Lin, J. Wu, H.Y.Y. Nyein, M. Bariya et al., A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 4, 1925–1933 (2019). https://doi.org/10.1021/acssensors.9b00891
D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, 1602051 (2017). https://doi.org/10.1126/sciadv.1602051
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16, 1902827 (2020). https://doi.org/10.1002/smll.201902827
X. Huang, D. Wang, Z. Yuan, W. Xie, Y. Wu et al., A fully biodegradable battery for self-powered transient implants. Small 14, 1800994 (2018). https://doi.org/10.1002/smll.201800994
T. Ye, J. Wang, Y. Jiao, L. Li, E. He et al., A tissue-like soft all-hydrogel battery. Adv. Mater. 34, 2105120 (2022). https://doi.org/10.1002/adma.202105120
J. Li, P. Ruan, X. Chen, S. Lei, B. Lu et al., Aqueous batteries for human body electronic devices. ACS Energy Lett. 8, 2904–2918 (2023). https://doi.org/10.1021/acsenergylett.3c00678
M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33, 2209777 (2022). https://doi.org/10.1002/adfm.202209777
R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
C. Chen, H. Zhu, M. Shi, L. Hu, Z. Xue et al., Oxygen vacancies-modulated tungsten oxide anode for ultra-stable and fast aqueous aluminum-ion storage. Energy Storge Mater. 49, 370–379 (2022). https://doi.org/10.1016/j.ensm.2022.04.013
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020). https://doi.org/10.1002/eem2.12067
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, 202215324 (2023). https://doi.org/10.1002/anie.202215324
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 202215552 (2023). https://doi.org/10.1002/anie.202215552
Y. Yang, S. Guo, Y. Pan, B. Lu, S. Liang et al., Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ. Sci. 16, 2358–2367 (2023). https://doi.org/10.1039/D3EE00501A
R. Xu, J. Zhou, H. Gong, L. Qiao, Y. Li et al., Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomater. Sci. 10, 1476–1485 (2022). https://doi.org/10.1039/D1BM01747K
J. Zhou, Y. Li, L. Xie, R. Xu, R. Zhang et al., Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy 21, 100712 (2021). https://doi.org/10.1016/j.mtener.2021.100712
H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33, 2007548 (2021). https://doi.org/10.1002/adma.202007548
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineeringstrategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
R. Yi, X. Shi, Y. Tang, Y. Yang, P. Zhou et al., Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage. Small Struct. (2023). https://doi.org/10.1002/sstr.202300020
Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021). https://doi.org/10.1016/j.cej.2020.127955
Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021). https://doi.org/10.1039/d0ee03623d
X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 56, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.057
X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023). https://doi.org/10.1093/nsr/nwac281
P. Li, M. Liao, J. Li, L. Ye, X. Cheng et al., Rechargeable micro-batteries for wearable and implantable applications. Small Struct. 3, 2200058 (2022). https://doi.org/10.1002/sstr.202200058
J. Zhou, R. Zhang, R. Xu, Y. Li, W. Tian et al., Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc-ion battery. Adv. Funct. Mater. 32, 2111406 (2022). https://doi.org/10.1002/adfm.202111406
J.S. Chae, S.K. Park, K.C. Roh, H.S. Park, Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storge Mater. 24, 113–128 (2020). https://doi.org/10.1016/j.ensm.2019.04.032
Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022). https://doi.org/10.1002/adma.202206970
X. Chen, X. Shi, P. Ruan, Y. Tang, Y. Sun et al., Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Sci. 3, 2300007 (2023). https://doi.org/10.1002/smsc.202300007
P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, 2300577 (2023). https://doi.org/10.1002/adma.202300577
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12, 706–715 (2019). https://doi.org/10.1039/c8ee02892c
Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan et al., Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem. Int. Ed. 61, 202202780 (2022). https://doi.org/10.1002/anie.202202780
X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12, 2102393 (2021). https://doi.org/10.1002/aenm.202102393
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 12, 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022). https://doi.org/10.1016/j.chempr.2022.03.019
Z. Liu, Y. Yang, B. Lu, S. Liang, H.J. Fan et al., Insights into complexing effects in acetate-based Zn–MnO2 batteries and performance enhancement by all-round strategies. Energy Storge Mater. 52, 104–110 (2022). https://doi.org/10.1016/j.ensm.2022.07.043