Reversible Oxygen-Rich Functional Groups Grafted 3D Honeycomb-Like Carbon Anode for Super-Long Potassium Ion Batteries
Corresponding Author: Zhigang Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 146
Abstract
Studies have found that oxygen-rich-containing functional groups in carbon-based materials can be used as active sites for the storage performance of K+, but the basic storage mechanism is still unclear. Herein, we construct and optimize 3D honeycomb-like carbon grafted with plentiful COOH/C = O functional groups (OFGC) as anodes for potassium ion batteries. The OFGC electrode with steady structure and rich functional groups can effectively contribute to the capacity enhancement and the formation of stable solid electrolyte interphase (SEI) film, achieving a high reversible capacity of 230 mAh g−1 at 3000 mA g−1 after 10,000 cycles (almost no capacity decay) and an ultra-long cycle time over 18 months at 100 mA g−1. The study results revealed the reversible storage mechanism between K+ and COOH/C = O functional groups by forming C-O-K compounds. Meanwhile, the in situ electrochemical impedance spectroscopy proved the highly reversible and rapid de/intercalation kinetics of K+ in the OFGC electrode, and the growth process of SEI films. In particular, the full cells assembled by Prussian blue cathode exhibit a high energy density of 113 Wh kg−1 after 800 cycles (calculated by the total mass of anode and cathode), and get the light-emitting diodes lamp and ear thermometer running.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Liu, Y. Xing, J. Wang, D. Wang, L. Huang et al., Besides the capacitive and diffusion control: inner-surface controlled bismuth based electrode facilitating potassium-ion energy storage. Adv. Funct. Mater. 31(27), 2101868 (2021). https://doi.org/10.1002/adfm.202101868
- Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic n-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
- H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
- N. Cheng, P. Xu, B. Lu, Z. Liu, Covalent sulfur as stable anode for potassium ion battery. J. Energy Chem. 62, 645–652 (2021). https://doi.org/10.1016/j.jechem.2021.04.051
- Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
- X. Ma, N. Xiao, J. Xiao, X. Song, H. Guo et al., Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 179, 33–41 (2021). https://doi.org/10.1016/j.carbon.2021.03.067
- W. Zhang, J. Lu, Z. Guo, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 50, 400–417 (2021). https://doi.org/10.1016/j.mattod.2021.03.015
- R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/c9ee03250a
- J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
- S.H. Yang, Y.J. Lee, H. Kang, S.K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14, 17 (2021). https://doi.org/10.1007/s40820-021-00741-0
- Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
- R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
- S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du et al., Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 33(1), 2006313 (2021). https://doi.org/10.1002/adma.202006313
- L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
- H. Ding, J. Zhou, A.M. Rao, B. Lu, Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 8(9), nwaa276 (2021). https://doi.org/10.1093/nsr/nwaa276
- X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2020). https://doi.org/10.1007/s40820-020-00534-x
- B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
- X. Lu, X. Pan, Z. Fang, D. Zhang, S. Xu et al., High-performance potassium-ion batteries with robust stability based on N/S-codoped hollow carbon nanocubes. ACS Appl. Mater. Interfaces 13(35), 41619–41627 (2021). https://doi.org/10.1021/acsami.1c10655
- J. Chen, Y. Cheng, Q. Zhang, C. Luo, H.Y. Li et al., Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 31(1), 2007158 (2020). https://doi.org/10.1002/adfm.202007158
- C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen et al., 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao et al., Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J. Mater. Chem. A 7(19), 12317–12324 (2019). https://doi.org/10.1039/c8ta12504j
- Y. Peng, Z. Chen, R. Zhang, W. Zhou, P. Gao et al., Oxygen-containing functional groups regulating the carbon/electrolyte interfacial properties toward enhanced K+ storage. Nano-Micro Lett. 13, 192 (2021). https://doi.org/10.1007/s40820-021-00722-3
- L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021). https://doi.org/10.1016/j.cej.2020.127028
- H. Deng, L. Wang, S. Li, M. Zhang, T. Wang et al., Radial pores in nitrogen/oxygen dual-doped carbon nanospheres anode boost high-power and ultrastable potassium-ion batteries. Adv. Funct. Mater. 31(51), 2107246 (2021). https://doi.org/10.1002/adfm.202107246
- Y. Sun, Q. Wu, Y. Wang, C. Li, X. Liang et al., Protein-derived 3D amorphous carbon with N, O doping as high rate and long lifespan anode for potassium ion batteries. J. Power Sources 512, 230530 (2021). https://doi.org/10.1016/j.jpowsour.2021.230530
- C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong et al., Potassium prussian blue nanops: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27(4), 1604307 (2017). https://doi.org/10.1002/adfm.201604307
- Y. Zhu, M. Wang, Y. Zhang, R. Wang, Y. Zhang et al., Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochim. Acta 377, 138093 (2021). https://doi.org/10.1016/j.electacta.2021.138093
- N. Cheng, X. Chen, L. Zhang, Z. Liu, Reduced graphene oxide doping flower-like Fe7S8 nanosheets for high performance potassium ion storage. J. Energy Chem. 54, 604–611 (2021). https://doi.org/10.1016/j.jechem.2020.06.043
- Y. Liu, Y.X. Lu, Y.S. Xu, Q.S. Meng, J.C. Gao et al., Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 32(17), 2000505 (2020). https://doi.org/10.1002/adma.202000505
- J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10(4), 1903277 (2019). https://doi.org/10.1002/aenm.201903277
- J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu et al., MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8(29), 1801477 (2018). https://doi.org/10.1002/aenm.201801477
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
- Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1802684 (2018). https://doi.org/10.1002/adfm.201802684
- Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 293, 626–634 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.116
- Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai et al., 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6(19), 1502197 (2016). https://doi.org/10.1002/aenm.201502197
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
References
M. Liu, Y. Xing, J. Wang, D. Wang, L. Huang et al., Besides the capacitive and diffusion control: inner-surface controlled bismuth based electrode facilitating potassium-ion energy storage. Adv. Funct. Mater. 31(27), 2101868 (2021). https://doi.org/10.1002/adfm.202101868
Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan et al., Ultra-high pyridinic n-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29(35), 1702268 (2017). https://doi.org/10.1002/adma.201702268
H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32(8), 1904320 (2020). https://doi.org/10.1002/adma.201904320
N. Cheng, P. Xu, B. Lu, Z. Liu, Covalent sulfur as stable anode for potassium ion battery. J. Energy Chem. 62, 645–652 (2021). https://doi.org/10.1016/j.jechem.2021.04.051
Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
X. Ma, N. Xiao, J. Xiao, X. Song, H. Guo et al., Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 179, 33–41 (2021). https://doi.org/10.1016/j.carbon.2021.03.067
W. Zhang, J. Lu, Z. Guo, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 50, 400–417 (2021). https://doi.org/10.1016/j.mattod.2021.03.015
R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/c9ee03250a
J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13, 174 (2021). https://doi.org/10.1007/s40820-021-00706-3
S.H. Yang, Y.J. Lee, H. Kang, S.K. Park, Y.C. Kang, Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries. Nano-Micro Lett. 14, 17 (2021). https://doi.org/10.1007/s40820-021-00741-0
Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanops in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938–13951 (2020). https://doi.org/10.1021/acsnano.0c06360
S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du et al., Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 33(1), 2006313 (2021). https://doi.org/10.1002/adma.202006313
L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
H. Ding, J. Zhou, A.M. Rao, B. Lu, Cell-like-carbon-micro-spheres for robust potassium anode. Natl. Sci. Rev. 8(9), nwaa276 (2021). https://doi.org/10.1093/nsr/nwaa276
X. Shi, Z. Xu, C. Han, R. Shi, X. Wu et al., Highly dispersed cobalt nanops embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 13, 21 (2020). https://doi.org/10.1007/s40820-020-00534-x
B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018). https://doi.org/10.1002/aenm.201801149
X. Lu, X. Pan, Z. Fang, D. Zhang, S. Xu et al., High-performance potassium-ion batteries with robust stability based on N/S-codoped hollow carbon nanocubes. ACS Appl. Mater. Interfaces 13(35), 41619–41627 (2021). https://doi.org/10.1021/acsami.1c10655
J. Chen, Y. Cheng, Q. Zhang, C. Luo, H.Y. Li et al., Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 31(1), 2007158 (2020). https://doi.org/10.1002/adfm.202007158
C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen et al., 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao et al., Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J. Mater. Chem. A 7(19), 12317–12324 (2019). https://doi.org/10.1039/c8ta12504j
Y. Peng, Z. Chen, R. Zhang, W. Zhou, P. Gao et al., Oxygen-containing functional groups regulating the carbon/electrolyte interfacial properties toward enhanced K+ storage. Nano-Micro Lett. 13, 192 (2021). https://doi.org/10.1007/s40820-021-00722-3
L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021). https://doi.org/10.1016/j.cej.2020.127028
H. Deng, L. Wang, S. Li, M. Zhang, T. Wang et al., Radial pores in nitrogen/oxygen dual-doped carbon nanospheres anode boost high-power and ultrastable potassium-ion batteries. Adv. Funct. Mater. 31(51), 2107246 (2021). https://doi.org/10.1002/adfm.202107246
Y. Sun, Q. Wu, Y. Wang, C. Li, X. Liang et al., Protein-derived 3D amorphous carbon with N, O doping as high rate and long lifespan anode for potassium ion batteries. J. Power Sources 512, 230530 (2021). https://doi.org/10.1016/j.jpowsour.2021.230530
C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong et al., Potassium prussian blue nanops: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27(4), 1604307 (2017). https://doi.org/10.1002/adfm.201604307
Y. Zhu, M. Wang, Y. Zhang, R. Wang, Y. Zhang et al., Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochim. Acta 377, 138093 (2021). https://doi.org/10.1016/j.electacta.2021.138093
N. Cheng, X. Chen, L. Zhang, Z. Liu, Reduced graphene oxide doping flower-like Fe7S8 nanosheets for high performance potassium ion storage. J. Energy Chem. 54, 604–611 (2021). https://doi.org/10.1016/j.jechem.2020.06.043
Y. Liu, Y.X. Lu, Y.S. Xu, Q.S. Meng, J.C. Gao et al., Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 32(17), 2000505 (2020). https://doi.org/10.1002/adma.202000505
J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10(4), 1903277 (2019). https://doi.org/10.1002/aenm.201903277
J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu et al., MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8(29), 1801477 (2018). https://doi.org/10.1002/aenm.201801477
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28(36), 1802684 (2018). https://doi.org/10.1002/adfm.201802684
Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 293, 626–634 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.116
Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai et al., 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6(19), 1502197 (2016). https://doi.org/10.1002/aenm.201502197
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332