Trimming the Degrees of Freedom via a K+ Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries
Corresponding Author: Bingan Lu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 200
Abstract
High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion’s DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.
Highlights:
1 High Coulombic efficiency of over 99% for dendrite-free K||Cu cell after 820 cycles.
2 Year-scale-cycling performance of organic PTCDI cathode over 2,100 cycles.
3 Flexible device demonstration such as fibre cell still could operate when cut into three fibre cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Mauler, F. Duffner, W.G. Zeier, J. Leker, Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ. Sci. 14, 4712–4739 (2021). https://doi.org/10.1039/d1ee01530c
- X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14, 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
- N. Xiao, W.D. McCulloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
- L. Fan, H. Xie, Y. Hu, Z. Caixiang, A.M. Rao et al., A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023). https://doi.org/10.1039/d2ee03294e
- S.M. Ahmed, G. Suo, W.A. Wang, K. Xi, S.B. Iqbal, Improvement in potassium ion batteries electrodes: recent developments and efficient approaches. J. Energy Chem. 62, 307–337 (2021). https://doi.org/10.1016/j.jechem.2021.03.032
- Y. Feng, Y. Lv, H. Fu, M. Parekh, A.M. Rao et al., Co-activation for enhanced K-ion storage in battery anodes. Sci. Rev Natl (2023). https://doi.org/10.1093/nsr/nwad118
- X. Yi, J. Ge, J. Zhou, J. Zhou, B. Lu, SbVO4 based high capacity potassium anode: a combination of conversion and alloying reactions. Sci. China Chem. 64, 238–244 (2021). https://doi.org/10.1007/s11426-020-9858-3
- J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
- J. Peng, X. Yi, L. Fan, J. Zhou, B. Lu, Molecular extension engineering constructing long-chain organic elastomeric interphase towards stable potassium storage. Energy Lab 1, 220014 (2023). https://doi.org/10.54227/elab.20220014
- X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13, 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
- C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022). https://doi.org/10.1016/j.joule.2022.10.011
- M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang et al., How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021). https://doi.org/10.1016/j.nanoen.2021.106142
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
- Z. Jiang, Z. Zeng, H. Zhang, L. Yang, W. Hu et al., Low concentration electrolyte with non-solvating cosolvent enabling high-voltage lithium metal batteries. iScience 25, 103490 (2022). https://doi.org/10.1016/j.isci.2021.103490
- X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
- M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023). https://doi.org/10.1021/acsnano.2c12470
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lihium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102
- N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
- Z. Li, P. Liu, K. Zhu, Z. Zhang, Y. Si et al., Solid-state electrolytes for sodium metal batteries. Energy Fuel. 35, 9063–9079 (2021). https://doi.org/10.1021/acs.energyfuels.1c00347
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu et al., Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 8, 129–137 (2023). https://doi.org/10.1038/s41560-022-01176-6
- Y. Wang, C.J. Zanelotti, X. Wang, R. Kerr, L. Jin et al., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021). https://doi.org/10.1038/s41563-021-00995-4
- S. Xu, Z. Sun, C. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30, 2007172 (2020). https://doi.org/10.1002/adfm.202007172
- K. Chihara, A. Katogi, K. Kubota, S. Komaba, KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017). https://doi.org/10.1039/c6cc10280h
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
- S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
- K. Tanaka, Y. Tago, M. Kondo, Y. Watanabe, K. Nishio et al., High Li-ion conductivity in Li{N(SO2F)2}(NCCH2CH2CN)2 molecular crystal. Nano Lett. 20, 8200–8204 (2020). https://doi.org/10.1021/acs.nanolett.0c03313
- S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59, 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
- X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, 1602396 (2017). https://doi.org/10.1126/sciadv.1602396
- W. Wahyudi, V. Ladelta, L. Tsetseris, M.M. Alsabban, X. Guo et al., Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 31, 2101593 (2021). https://doi.org/10.1002/adfm.202101593
- M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
- S. Bi, H. Banda, M. Chen, L. Niu, M. Chen et al., Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020). https://doi.org/10.1038/s41563-019-0598-7
- A.A. Kornyshev, R. Qiao, Three-dimensional double layers. J. Phys. Chem. C 118, 18285–18290 (2014). https://doi.org/10.1021/jp5047062
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- M.A.T. Marple, B.G. Aitken, S. Kim, S. Sen, Fast Li-ion dynamics in stoichiometric Li2S–Ga2Se3–GeSe2 glasses. Chem. Mater. 29, 8704–8710 (2017). https://doi.org/10.1021/acs.chemmater.7b02858
- H.J. Kim, N. Voronina, H. Yashiro, S.-T. Myung, High-voltage stability in KFSI nonaqueous carbonate solutions for potassium-ion batteries: crrent collectors and coin-cell components. ACS Appl. Mater. Interfaces 12, 42723–42733 (2020). https://doi.org/10.1021/acsami.0c10471
- X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020). https://doi.org/10.1002/adma.201906739
- Y. Feng, A.M. Rao, J. Zhou, B. Lu, Selective potassium deposition enables dendrite-resistant anodes for ultra-stable potassium metal batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300886
- H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14, 2305 (2023). https://doi.org/10.1038/s41467-023-38065-9
- J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26, 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
- Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat–zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34, 2203485 (2022). https://doi.org/10.1002/adma.202203485
- C. Han, H. Wang, Z. Wang, X. Ou, Y. Tang, Solvation structure modulation of high-voltage electrolyte for high-performance K-based dual-graphite battery. Adv. Mater. 35, 2300917 (2023). https://doi.org/10.1002/adma.202300917
- Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
- J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
- D.-H. Seo, H. Kim, H. Kim, W.A. Goddard, K. Kang, The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods. Energy Environ. Sci. 4, 4938–4941 (2011). https://doi.org/10.1039/c1ee02410h
- Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
- N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017). https://doi.org/10.1002/adma.201703373
- Q. Pan, Y. Zheng, Z. Tong, L. Shi, Y. Tang, Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem. Int. Ed. 60, 11835–11840 (2021). https://doi.org/10.1002/anie.202103052
- G.-Z. Yang, Y.-F. Chen, B.-Q. Feng, C.-X. Ye, X.-B. Ye et al., Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ. Sci. 16, 1540–1547 (2023). https://doi.org/10.1039/d3ee00073g
- H. Kim, Y. Tian, G. Ceder, Origin of capacity degradation of high-voltage KVPO4F cathode. J. Electrochem. Soc. 167, 110555 (2020). https://doi.org/10.1149/1945-7111/aba54e
- J. Touja, P.N. Le Pham, N. Louvain, L. Monconduit, L. Stievano, Effect of the electrolyte on K-metal batteries. Chem. Commun. 56, 14673–14676 (2020). https://doi.org/10.1039/d0cc05024e
- J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
- M. Gu, A.M. Rao, J. Zhou, B. Lu, In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 16, 1166–1175 (2023). https://doi.org/10.1039/d2ee04148k
- X. Yi, Y. Feng, A.M. Rao, J. Zhou, C. Wang et al., Quasi-solid aqueous electrolytes for low-cost sustainable alkali metal batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302280
- W.M. Seong, K.-Y. Park, M.H. Lee, S. Moon, K. Oh et al., Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 11, 970–978 (2018). https://doi.org/10.1039/c8ee00186c
References
L. Mauler, F. Duffner, W.G. Zeier, J. Leker, Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ. Sci. 14, 4712–4739 (2021). https://doi.org/10.1039/d1ee01530c
X. Min, J. Xiao, M. Fang, W. Wang, Y. Zhao et al., Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14, 2186–2243 (2021). https://doi.org/10.1039/d0ee02917c
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri et al., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3
N. Xiao, W.D. McCulloch, Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 139, 9475–9478 (2017). https://doi.org/10.1021/jacs.7b04945
L. Fan, H. Xie, Y. Hu, Z. Caixiang, A.M. Rao et al., A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023). https://doi.org/10.1039/d2ee03294e
S.M. Ahmed, G. Suo, W.A. Wang, K. Xi, S.B. Iqbal, Improvement in potassium ion batteries electrodes: recent developments and efficient approaches. J. Energy Chem. 62, 307–337 (2021). https://doi.org/10.1016/j.jechem.2021.03.032
Y. Feng, Y. Lv, H. Fu, M. Parekh, A.M. Rao et al., Co-activation for enhanced K-ion storage in battery anodes. Sci. Rev Natl (2023). https://doi.org/10.1093/nsr/nwad118
X. Yi, J. Ge, J. Zhou, J. Zhou, B. Lu, SbVO4 based high capacity potassium anode: a combination of conversion and alloying reactions. Sci. China Chem. 64, 238–244 (2021). https://doi.org/10.1007/s11426-020-9858-3
J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
J. Peng, X. Yi, L. Fan, J. Zhou, B. Lu, Molecular extension engineering constructing long-chain organic elastomeric interphase towards stable potassium storage. Energy Lab 1, 220014 (2023). https://doi.org/10.54227/elab.20220014
X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13, 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
C.D. Fincher, C.E. Athanasiou, C. Gilgenbach, M. Wang, B.W. Sheldon et al., Controlling dendrite propagation in solid-state batteries with engineered stress. Joule 6, 2794–2809 (2022). https://doi.org/10.1016/j.joule.2022.10.011
M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang et al., How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021). https://doi.org/10.1016/j.nanoen.2021.106142
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 (2023). https://doi.org/10.1007/s40820-023-01113-6
Z. Jiang, Z. Zeng, H. Zhang, L. Yang, W. Hu et al., Low concentration electrolyte with non-solvating cosolvent enabling high-voltage lithium metal batteries. iScience 25, 103490 (2022). https://doi.org/10.1016/j.isci.2021.103490
X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
M.S. Kim, Z. Zhang, J. Wang, S.T. Oyakhire, S.C. Kim et al., Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023). https://doi.org/10.1021/acsnano.2c12470
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lihium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 (2022). https://doi.org/10.1007/s40820-022-00892-8
Z. Li, P. Liu, K. Zhu, Z. Zhang, Y. Si et al., Solid-state electrolytes for sodium metal batteries. Energy Fuel. 35, 9063–9079 (2021). https://doi.org/10.1021/acs.energyfuels.1c00347
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu et al., Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 8, 129–137 (2023). https://doi.org/10.1038/s41560-022-01176-6
Y. Wang, C.J. Zanelotti, X. Wang, R. Kerr, L. Jin et al., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021). https://doi.org/10.1038/s41563-021-00995-4
S. Xu, Z. Sun, C. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30, 2007172 (2020). https://doi.org/10.1002/adfm.202007172
K. Chihara, A. Katogi, K. Kubota, S. Komaba, KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017). https://doi.org/10.1039/c6cc10280h
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
S. Bai, B. Kim, C. Kim, O. Tamwattana, H. Park et al., Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x
K. Tanaka, Y. Tago, M. Kondo, Y. Watanabe, K. Nishio et al., High Li-ion conductivity in Li{N(SO2F)2}(NCCH2CH2CN)2 molecular crystal. Nano Lett. 20, 8200–8204 (2020). https://doi.org/10.1021/acs.nanolett.0c03313
S. Liu, J. Mao, Q. Zhang, Z. Wang, W.K. Pang et al., An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59, 3638–3644 (2020). https://doi.org/10.1002/anie.201913174
X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, 1602396 (2017). https://doi.org/10.1126/sciadv.1602396
W. Wahyudi, V. Ladelta, L. Tsetseris, M.M. Alsabban, X. Guo et al., Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Funct. Mater. 31, 2101593 (2021). https://doi.org/10.1002/adfm.202101593
M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
S. Bi, H. Banda, M. Chen, L. Niu, M. Chen et al., Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020). https://doi.org/10.1038/s41563-019-0598-7
A.A. Kornyshev, R. Qiao, Three-dimensional double layers. J. Phys. Chem. C 118, 18285–18290 (2014). https://doi.org/10.1021/jp5047062
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
M.A.T. Marple, B.G. Aitken, S. Kim, S. Sen, Fast Li-ion dynamics in stoichiometric Li2S–Ga2Se3–GeSe2 glasses. Chem. Mater. 29, 8704–8710 (2017). https://doi.org/10.1021/acs.chemmater.7b02858
H.J. Kim, N. Voronina, H. Yashiro, S.-T. Myung, High-voltage stability in KFSI nonaqueous carbonate solutions for potassium-ion batteries: crrent collectors and coin-cell components. ACS Appl. Mater. Interfaces 12, 42723–42733 (2020). https://doi.org/10.1021/acsami.0c10471
X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020). https://doi.org/10.1002/adma.201906739
Y. Feng, A.M. Rao, J. Zhou, B. Lu, Selective potassium deposition enables dendrite-resistant anodes for ultra-stable potassium metal batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300886
H. Ding, J. Wang, J. Zhou, C. Wang, B. Lu, Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14, 2305 (2023). https://doi.org/10.1038/s41467-023-38065-9
J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26, 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
Q. Pan, Z. Tong, Y. Su, Y. Zheng, L. Shang et al., Flat–zigzag interface design of chalcogenide heterostructure toward ultralow volume expansion for high-performance potassium storage. Adv. Mater. 34, 2203485 (2022). https://doi.org/10.1002/adma.202203485
C. Han, H. Wang, Z. Wang, X. Ou, Y. Tang, Solvation structure modulation of high-voltage electrolyte for high-performance K-based dual-graphite battery. Adv. Mater. 35, 2300917 (2023). https://doi.org/10.1002/adma.202300917
Q. Xiong, H. He, M. Zhang, Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage. Nano-Micro Lett. 14, 47 (2022). https://doi.org/10.1007/s40820-022-00791-y
J. Zheng, Y. Wu, Y. Sun, J. Rong, H. Li et al., Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett. 13, 12 (2020). https://doi.org/10.1007/s40820-020-00541-y
D.-H. Seo, H. Kim, H. Kim, W.A. Goddard, K. Kang, The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods. Energy Environ. Sci. 4, 4938–4941 (2011). https://doi.org/10.1039/c1ee02410h
Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017). https://doi.org/10.1002/adma.201703373
Q. Pan, Y. Zheng, Z. Tong, L. Shi, Y. Tang, Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem. Int. Ed. 60, 11835–11840 (2021). https://doi.org/10.1002/anie.202103052
G.-Z. Yang, Y.-F. Chen, B.-Q. Feng, C.-X. Ye, X.-B. Ye et al., Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ. Sci. 16, 1540–1547 (2023). https://doi.org/10.1039/d3ee00073g
H. Kim, Y. Tian, G. Ceder, Origin of capacity degradation of high-voltage KVPO4F cathode. J. Electrochem. Soc. 167, 110555 (2020). https://doi.org/10.1149/1945-7111/aba54e
J. Touja, P.N. Le Pham, N. Louvain, L. Monconduit, L. Stievano, Effect of the electrolyte on K-metal batteries. Chem. Commun. 56, 14673–14676 (2020). https://doi.org/10.1039/d0cc05024e
J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
M. Gu, A.M. Rao, J. Zhou, B. Lu, In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 16, 1166–1175 (2023). https://doi.org/10.1039/d2ee04148k
X. Yi, Y. Feng, A.M. Rao, J. Zhou, C. Wang et al., Quasi-solid aqueous electrolytes for low-cost sustainable alkali metal batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302280
W.M. Seong, K.-Y. Park, M.H. Lee, S. Moon, K. Oh et al., Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 11, 970–978 (2018). https://doi.org/10.1039/c8ee00186c