Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage
Corresponding Author: Nan Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 37
Abstract
Low-temperature assembly of MXene nanosheets into three-dimensional (3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process, which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications. Herein, suitable cross-linking agents (amino-propyltriethoxysilane, Mn2+, Fe2+, Zn2+, and Co2+) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide (GO)-assisted assembly of Ti3C2Tx MXene aerogel at room temperature. This elaborate aerogel construction not only suppresses the oxidation degradation of Ti3C2Tx but also generates porous aerogels with a high Ti3C2Tx content (87 wt%) and robustness, thereby guaranteeing the functional accessibility of Ti3C2Tx nanosheets and operational reliability as integrated functional materials. In combination with a further sulfur modification, the Ti3C2Tx aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage. Even at an ultrahigh loading mass of 12.3 mg cm−2, a pronounced areal capacity of 1.26 mAh cm−2 at a current density of 0.1 A g−1 has been achieved, which is of practical significance. This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.
Highlights:
1 Room temperature graphene oxide-assisted assembly of 3D Ti3C2Tx MXene aerogels have been realized by introducing interfacial mediators (amino-propyltriethoxysilane, Mn2+, Fe2+, Zn2+, and Co2+).
2 The methodology not only suppresses the oxidation degradation of Ti3C2Tx, but also generates porous aerogels with a high Ti3C2Tx content (87 wt%) and robustness.
3 As freestanding electrode of the as-prepared Ti3C2Tx-based aerogel with a practical-level mass loading of 12.3 mg cm-2 still delivers an areal capacity of 1.26 mAh cm-2 at a current density of 0.1 A g-1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13(1), 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
- J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/ Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D Porous MXene foam for high-performance lithium-ion batteries. Small 15(51), 1904293 (2019). https://doi.org/10.1002/smll.201904293
- M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
- B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng et al., Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 31(32), 2102126 (2021). https://doi.org/10.1002/adfm.202102126
- N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu et al., MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29(51), 1906282 (2019). https://doi.org/10.1002/adfm.201906282
- P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater (2020). https://doi.org/10.1016/j.ensm.2020.04.016
- J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly Coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
- J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5(10), 3735–3764 (2021). https://doi.org/10.1039/D1QM00179E
- J. Xiao, X. Li, K. Tang, M. Long, J. Chen et al., Enhanced electrochemical performance of Li-rich cathode material for lithium-ion batteries. Surf. Innov. (2021). https://doi.org/10.1680/jsuin.21.00010
- G. Li, B.C. Wyatt, F. Song, C. Yu, Z. Wu et al., 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31(46), 2105043 (2021). https://doi.org/10.1002/adfm.202105043
- P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
- Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
- J. Kong, H. Yang, X. Guo, S. Yang, Z. Huang et al., High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5(7), 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.-H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7(7), 1903077 (2020). https://doi.org/10.1002/advs.201903077
- F. Song, G. Li, Y. Zhu, Z. Wu, X. Xie et al., Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. J. Mater. Chem. A 8(36), 18538–18559 (2020). https://doi.org/10.1039/D0TA06222G
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
- S. Zhang, X.-Y. Li, W. Yang, H. Tian, Z. Han et al., Novel synthesis of red phosphorus nanodot/T3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 11(45), 42086–42093 (2019). https://doi.org/10.1021/acsami.9b13308
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57(46), 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
- J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- X. Yang, Q. Wang, K. Zhu, K. Ye, G. Wang et al., 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 31(20), 2101087 (2021). https://doi.org/10.1002/adfm.202101087
- C. Zhang, Interfacial assembly of two-dimensional MXenes. J. Energ. Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
- S. Abdolhosseinzadeh, J. Heier, C. Zhang, Printing and coating MXenes for electrochemical energy storage devices. J. High Energy Phys. 2(3), 031004 (2020). https://doi.org/10.1088/2515-7655/aba47d
- S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today (2021). https://doi.org/10.1016/j.mattod.2021.02.010
- N. Li, J. Peng, W.-J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4(2), 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
- J. Zhu, A. Chroneos, J. Eppinger, U. Schwingenschlögl, S-functionalized MXenes as electrode materials for Li-ion batteries. Appl. Mater. Today 5, 19–24 (2016). https://doi.org/10.1016/j.apmt.2016.07.005
- Q. Meng, J. Ma, Y. Zhang, Z. Li, C. Zhi et al., The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale 10(7), 3385–3392 (2018). https://doi.org/10.1039/C7NR07649E
- G. Li, S. Lian, F. Song, S. Chen, Z. Wu et al., Surface chemistry and mesopore dual regulation by sulfur-promised high volumetric capacity of Ti3C2Tx films for sodium-ion storage. Small (2021). https://doi.org/10.1002/smll.202103626
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (T3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
- H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
- P. Zhang, Q. Zhu, R.A. Soomro, S. He, N. Sun et al., In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 30(47), 2000922 (2020). https://doi.org/10.1002/adfm.202000922
- J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang et al., Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
- M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano 10(12), 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- W. Bao, C.E. Shuck, W. Zhang, X. Guo, Y. Gogotsi et al., Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13(10), 11500–11509 (2019). https://doi.org/10.1021/acsnano.9b04977
- J. Li, D. Yan, S. Hou, Y. Li, T. Lu et al., Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 6(3), 1234–1243 (2018). https://doi.org/10.1039/C7TA08261D
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXeneframeworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv. Energy Mater. 9(25), 1900747 (2019). https://doi.org/10.1002/aenm.201900747
- Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
- Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332
References
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13(1), 295–304 (2019). https://doi.org/10.1021/acsnano.8b06136
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
J. Cao, Z. Sun, J. Li, Y. Zhu, Z. Yuan et al., Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 15(2), 3423–3433 (2021). https://doi.org/10.1021/acsnano.0c10491
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/ Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14(3), 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan et al., Flexible 3D Porous MXene foam for high-performance lithium-ion batteries. Small 15(51), 1904293 (2019). https://doi.org/10.1002/smll.201904293
M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a charge storage host. Acc Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng et al., Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 31(32), 2102126 (2021). https://doi.org/10.1002/adfm.202102126
N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu et al., MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29(51), 1906282 (2019). https://doi.org/10.1002/adfm.201906282
P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater (2020). https://doi.org/10.1016/j.ensm.2020.04.016
J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly Coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
J. Xiao, X. Li, K. Tang, D. Wang, M. Long et al., Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front. 5(10), 3735–3764 (2021). https://doi.org/10.1039/D1QM00179E
J. Xiao, X. Li, K. Tang, M. Long, J. Chen et al., Enhanced electrochemical performance of Li-rich cathode material for lithium-ion batteries. Surf. Innov. (2021). https://doi.org/10.1680/jsuin.21.00010
G. Li, B.C. Wyatt, F. Song, C. Yu, Z. Wu et al., 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31(46), 2105043 (2021). https://doi.org/10.1002/adfm.202105043
P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017). https://doi.org/10.1016/j.nanoen.2017.08.002
Y. Ding, Y. Chen, N. Xu, X. Lian, L. Li et al., Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 12(1), 54 (2020). https://doi.org/10.1007/s40820-020-0381-y
J. Kong, H. Yang, X. Guo, S. Yang, Z. Huang et al., High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5(7), 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
Z. Wu, T. Shang, Y. Deng, Y. Tao, Q.-H. Yang, The assembly of MXenes from 2D to 3D. Adv. Sci. 7(7), 1903077 (2020). https://doi.org/10.1002/advs.201903077
F. Song, G. Li, Y. Zhu, Z. Wu, X. Xie et al., Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. J. Mater. Chem. A 8(36), 18538–18559 (2020). https://doi.org/10.1039/D0TA06222G
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
S. Zhang, X.-Y. Li, W. Yang, H. Tian, Z. Han et al., Novel synthesis of red phosphorus nanodot/T3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 11(45), 42086–42093 (2019). https://doi.org/10.1021/acsami.9b13308
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57(46), 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
X. Yang, Q. Wang, K. Zhu, K. Ye, G. Wang et al., 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 31(20), 2101087 (2021). https://doi.org/10.1002/adfm.202101087
C. Zhang, Interfacial assembly of two-dimensional MXenes. J. Energ. Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
S. Abdolhosseinzadeh, J. Heier, C. Zhang, Printing and coating MXenes for electrochemical energy storage devices. J. High Energy Phys. 2(3), 031004 (2020). https://doi.org/10.1088/2515-7655/aba47d
S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today (2021). https://doi.org/10.1016/j.mattod.2021.02.010
N. Li, J. Peng, W.-J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4(2), 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
J. Zhu, A. Chroneos, J. Eppinger, U. Schwingenschlögl, S-functionalized MXenes as electrode materials for Li-ion batteries. Appl. Mater. Today 5, 19–24 (2016). https://doi.org/10.1016/j.apmt.2016.07.005
Q. Meng, J. Ma, Y. Zhang, Z. Li, C. Zhi et al., The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale 10(7), 3385–3392 (2018). https://doi.org/10.1039/C7NR07649E
G. Li, S. Lian, F. Song, S. Chen, Z. Wu et al., Surface chemistry and mesopore dual regulation by sulfur-promised high volumetric capacity of Ti3C2Tx films for sodium-ion storage. Small (2021). https://doi.org/10.1002/smll.202103626
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (T3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958). https://doi.org/10.1021/ja01539a017
H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
P. Zhang, Q. Zhu, R.A. Soomro, S. He, N. Sun et al., In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 30(47), 2000922 (2020). https://doi.org/10.1002/adfm.202000922
J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang et al., Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano 10(12), 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
W. Bao, C.E. Shuck, W. Zhang, X. Guo, Y. Gogotsi et al., Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13(10), 11500–11509 (2019). https://doi.org/10.1021/acsnano.9b04977
J. Li, D. Yan, S. Hou, Y. Li, T. Lu et al., Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 6(3), 1234–1243 (2018). https://doi.org/10.1039/C7TA08261D
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXeneframeworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv. Energy Mater. 9(25), 1900747 (2019). https://doi.org/10.1002/aenm.201900747
Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
Z. Le, F. Liu, P. Nie, X. Li, X. Liu et al., Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3), 2952–2960 (2017). https://doi.org/10.1021/acsnano.6b08332