Deciphering Water Oxidation Catalysts: The Dominant Role of Surface Chemistry over Reconstruction Degree in Activity Promotion
Corresponding Author: Zhichuan J. Xu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 70
Abstract
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction. The surface reconstruction has been widely observed in perovskite catalysts, and the reconstruction degree has been often correlated with the activity enhancement. Here, a systematic study on the roles of Fe substitution in activation of perovskite LaNiO3 is reported. The substituting Fe content influences both current change tendency and surface reconstruction degree. LaNi0.9Fe0.1O3 is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi1-xFexO3 (x = 0.00, 0.10, 0.25, 0.50, 0.75, 1.00) series. The reconstructed LaNi0.9Fe0.1O3 shows a higher intrinsic activity than most reported NiFe-based catalysts. Besides, density functional theory calculations reveal that Fe substitution can lower the O 2p level, which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability. Furthermore, it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree. The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction. This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
Highlights:
1 Demonstrate that the key factor to determine the activity of reconstructed surfaces is the surface chemistry, instead of reconstruction degree using the popular perovskite LaNi1-xFexO3 oxides as model materials.
2 Fe content can influence both the surface reconstruction degree, the activation degree, and the activity of reconstructed surfaces.
3 The oxygen evolution reaction activity of reconstructed catalysts is primarily governed by the chemistry of the reconstructed surface species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Li, S. Kong, K. Adachi, H. Ooka, K. Fushimi et al., Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis. Science 384, 666 (2024). https://doi.org/10.1126/science.adg5193
- M. Liu, J. Zhang, H. Su, Y. Jiang, W. Jiang et al., In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 15, 1675 (2024). https://doi.org/10.1038/s41467-024-45990-w
- Z. Zhang, C. Jia, P. Ma, C. Feng, J. Yang et al., Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat. Commun. 15, 1767 (2024). https://doi.org/10.1038/s41467-024-46176-0
- Z. Weng, L. Guo, Y. Wei, L. Liu, P. Xi et al., Progress of synthesis of rare-earth perovskite oxides and their application in energy conversion and storage. J. Chin. Rare Earth Soc. (2021). https://doi.org/10.11785/S1000-4343.20210101
- T. Wu, X. Ren, Y. Sun, S. Sun, G. Xian et al., Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 12, 3634 (2021). https://doi.org/10.1038/s41467-021-23896-1
- X. Ren, T. Wu, Y. Sun, Y. Li, G. X, et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
- J. Chang, Y. Shi, H. Wu, J. Yu, W. Jing et al., Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958 (2024). https://doi.org/10.1021/jacs.3c13248
- A. Fungerlings, M. Wohlgemuth, D. Antipin, E. Var der Mine, E. Kiens et al., Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate. Nat. Commun. 14, 8284 (2023). https://doi.org/10.1038/s41467-023-43901-z
- S. Tiwari, J. Koenig, G. Poillerat, R. Singh, Electrocatalysis of oxygen evolution/reductionon LaNiO3 prepared by a novel malic acid-aided method. J. Appl. Electrochem. 28, 114 (1998). https://doi.org/10.1023/A:1003214321780
- C. Baeumer, J. Li, Q. Lu, Y.-L. Liang, L. Jin et al., Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 20, 674 (2021). https://doi.org/10.1038/s41563-020-00877-1
- J. Petrie, V. Cooper, J. Freeland, T. Meyer, Z. Zhang et al., Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138, 2488 (2016). https://doi.org/10.1021/jacs.5b11713
- J. Liu, E. Jia, K.A. Stoerzinger, L. Wang, Y. Wang et al., Dynamic lattice oxygen participation on perovskite LaNiO3 during oxygen evolution reaction. J. Phys. Chem. C 124, 15386 (2022). https://doi.org/10.1021/acs.jpcc.0c04808
- L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23, 252 (2024). https://doi.org/10.1038/s41563-023-01744-5
- Y.-H. Wu, M. Janák, P.M. Abdala, C.N. Borca, A. Wach et al., Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction. J. Am. Chem. Soc. 146, 11887 (2024). https://doi.org/10.1021/jacs.4c00863
- M. Stevens, C. Trang, L. Enman, J. Deng, S. Boettcher, Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361 (2019). https://doi.org/10.1021/jacs.7b07117
- L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014). https://doi.org/10.1021/ja502379c
- C. Kuai, C. Xi, A. Hu, Y. Zhang, Z.J. Xu et al., Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 143, 18519 (2021). https://doi.org/10.1021/jacs.1c07975
- T. Wu, S. Sun, J. Song, S. Xi, Y. Du, Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763 (2019). https://doi.org/10.1038/s41929-019-0325-4
- W. Wan, Y. Zhao, S. Wei, C. Triana, J. Li et al., Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 (2021). https://doi.org/10.1038/s41467-021-25811-0
- Y. Sun, S. Sun, H. Yang, S. Xi, J. Gracia et al., Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 32, 2003297 (2020). https://doi.org/10.1002/adma.202003297
- H. Li, Y. Chen, J. Liu, A. Fisher, J. Ager et al., Surface reconstruction of perovskites for water oxidation: the role of initial oxides’ bulk chemistry. Small Sci. 2, 2100048 (2021). https://doi.org/10.1002/smsc.202100048
- Y. Duan, S. Sen, S. Xi, X. Ren, Y. Zhou, Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 29, 10534 (2017). https://doi.org/10.1021/acs.chemmater.7b04534
- H. Wang, J. Wang, Y. Pi, Q. Shao, Y. Tan et al., Double perovskite LaFexNi1−xO3 nanorods enable efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 2316 (2019). https://doi.org/10.1002/anie.201812545
- X. Liang, L. Shi, Y. Liu, H. Chen, R. Si et al., Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem. Int. Ed. 58, 7631 (2022). https://doi.org/10.1002/anie.201900796
- Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30, 1802912 (2018). https://doi.org/10.1002/adma.201802912
- G. Chen, Y. Zhu, H. Ming, Z. Hu, S.-F. Hung et al., An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 31, 1900883 (2019). https://doi.org/10.1002/adma.201900883
- H. Wang, J. Qi, N. Yang, W. Cui, J. Wang et al., Dual-defects adjusted crystal-field splitting of LaCo1−xNixO3−δ hollow multi-shelled structures for efficient oxygen evolution. Angew. Chem. Int. Ed. 59, 1969 (2020). https://doi.org/10.1002/anie.202007077
- C. Hu, X. Wang, T. Yao, T. Gao, J. Han et al., Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-site metal cation in NdNiO3. Adv. Funct. Mater. 29, 1902449 (2019). https://doi.org/10.1002/adfm.201902449
- L. Wang, P. Adiga, J. Zhao, W.S. Samarakoon, K.A. Stoerzinger et al., Understanding the electronic structure evolution of epitaxial LaNi1–xFexO3 thin films for water oxidation. Nano Lett. 21, 8324 (2021). https://doi.org/10.1021/acs.nanolett.1c02901
- X. Wang, Z. Pan, X. Chu, K. Huang, Y. Cong et al., Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem. Int. Ed. 58, 11720 (2019). https://doi.org/10.1002/anie.201905543
- J. Huang, H. Sheng, R.D. Ross, J. Han, X. Wang et al., Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12, 3036 (2021). https://doi.org/10.1038/s41467-021-23390-8
- Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329 (2019). https://doi.org/10.1038/s41560-019-0355-9
- Y. Wei, Y. Hu, P. Da, Z. Weng, P. Xi et al., Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation. Proc. Natl. Acad. Sci. U.S.A. (2023). https://doi.org/10.1073/pnas.23122241
- T.E. Westre, P. Kenepohl, J.G. Dewitt, B. Hedman, K.O. Hodgson et al., A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297 (1997). https://doi.org/10.1021/ja964352a
- J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212 (2021). https://doi.org/10.1038/s41929-021-00578-1
- S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu et al., Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7, 11510 (2016). https://doi.org/10.1038/ncomms11510
- P.P. Lopes, D.Y. Chung, X. Rui, H. Zheng, H. He et al., Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 143, 2741 (2021). https://doi.org/10.1021/jacs.0c08959
- X. Ren, C. Wei, Y. Sun, X. Liu, F. Meng et al., Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 32, 2001292 (2020). https://doi.org/10.1002/adma.202001292
- C. Kuai, Z. Xu, C. Xi, A. Hu, Z. Yang et al., Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743 (2020). https://doi.org/10.1038/s41929-020-0496-z
- J. Scachez, M. Stevens, A. Young, A. Gallo, M. Zhao et al., Isolating the electrocatalytic activity of a confined NiFe motif within zirconium phosphate. Adv. Energy Mater. 11, 2003545 (2021). https://doi.org/10.1002/aenm.202003545
- Y. Lee, J. Suntivich, K. May, E. Perry, S.-H. Yang, Synthesis and activities of rutile IrO2 and RuO2 nanops for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399 (2012). https://doi.org/10.1021/jz2016507
- G. Chen, Z. Hu, Y. Zhu, B. Gu, Y. Zhong et al., A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv. Mater. 30, 1804333 (2018). https://doi.org/10.1002/adma.201804333
- P. Chakthranont, J. Kibsgaard, A. Gallo, J. Park, M. Mitani et al., Effects of gold Substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts. ACS Catal. 7, 5399 (2017). https://doi.org/10.1021/acscatal.7b01070
- F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
- Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi et al., Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv. Mater. 31, 1807898 (2019). https://doi.org/10.1002/adma.201807898
- F. Dionigi, Z. Zeng, L. Sinev, T. Merzdorf, S. Deshpande et al., In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020). https://doi.org/10.1038/s41467-020-16237-1
- Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006351
- M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3, 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
- A.S. Kelsey, R. Marcel, H.B. Hong, S.-H. Yang, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636 (2014). https://doi.org/10.1021/jz500610u
- S. Lee, A. Moysiadou, Y.-C. Chu, H. Chen, X. Hu, Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxide. Energy Environ. Sci. 15, 206 (2021). https://doi.org/10.1039/D1EE02999A
- Q. Ji, Y. Kong, C. Wang, H. Tan, H. Duan et al., Lattice strain induced by linker scission in metal–organic framework nanosheets for oxygen evolution reaction. ACS Catal. 10, 5691 (2020). https://doi.org/10.1021/acscatal.0c00989
- M. Louie, T. Alexis, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329 (2013). https://doi.org/10.1021/ja405351s
- N. Zhang, Y. Hu, L. An, Q.Y. Li, J. Yin et al., Surface activation and Ni–S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202207217
- Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304 (2019). https://doi.org/10.1038/s41929-019-0246-2
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- N. Shuichi, Constant temperature molecular dynamics methods. Prog. Theory Phys. Supp. 103, 1 (1991). https://doi.org/10.1143/PTPS.103.1
References
A. Li, S. Kong, K. Adachi, H. Ooka, K. Fushimi et al., Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis. Science 384, 666 (2024). https://doi.org/10.1126/science.adg5193
M. Liu, J. Zhang, H. Su, Y. Jiang, W. Jiang et al., In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 15, 1675 (2024). https://doi.org/10.1038/s41467-024-45990-w
Z. Zhang, C. Jia, P. Ma, C. Feng, J. Yang et al., Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat. Commun. 15, 1767 (2024). https://doi.org/10.1038/s41467-024-46176-0
Z. Weng, L. Guo, Y. Wei, L. Liu, P. Xi et al., Progress of synthesis of rare-earth perovskite oxides and their application in energy conversion and storage. J. Chin. Rare Earth Soc. (2021). https://doi.org/10.11785/S1000-4343.20210101
T. Wu, X. Ren, Y. Sun, S. Sun, G. Xian et al., Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 12, 3634 (2021). https://doi.org/10.1038/s41467-021-23896-1
X. Ren, T. Wu, Y. Sun, Y. Li, G. X, et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
J. Chang, Y. Shi, H. Wu, J. Yu, W. Jing et al., Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958 (2024). https://doi.org/10.1021/jacs.3c13248
A. Fungerlings, M. Wohlgemuth, D. Antipin, E. Var der Mine, E. Kiens et al., Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate. Nat. Commun. 14, 8284 (2023). https://doi.org/10.1038/s41467-023-43901-z
S. Tiwari, J. Koenig, G. Poillerat, R. Singh, Electrocatalysis of oxygen evolution/reductionon LaNiO3 prepared by a novel malic acid-aided method. J. Appl. Electrochem. 28, 114 (1998). https://doi.org/10.1023/A:1003214321780
C. Baeumer, J. Li, Q. Lu, Y.-L. Liang, L. Jin et al., Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 20, 674 (2021). https://doi.org/10.1038/s41563-020-00877-1
J. Petrie, V. Cooper, J. Freeland, T. Meyer, Z. Zhang et al., Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. J. Am. Chem. Soc. 138, 2488 (2016). https://doi.org/10.1021/jacs.5b11713
J. Liu, E. Jia, K.A. Stoerzinger, L. Wang, Y. Wang et al., Dynamic lattice oxygen participation on perovskite LaNiO3 during oxygen evolution reaction. J. Phys. Chem. C 124, 15386 (2022). https://doi.org/10.1021/acs.jpcc.0c04808
L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23, 252 (2024). https://doi.org/10.1038/s41563-023-01744-5
Y.-H. Wu, M. Janák, P.M. Abdala, C.N. Borca, A. Wach et al., Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction. J. Am. Chem. Soc. 146, 11887 (2024). https://doi.org/10.1021/jacs.4c00863
M. Stevens, C. Trang, L. Enman, J. Deng, S. Boettcher, Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361 (2019). https://doi.org/10.1021/jacs.7b07117
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014). https://doi.org/10.1021/ja502379c
C. Kuai, C. Xi, A. Hu, Y. Zhang, Z.J. Xu et al., Revealing the dynamics and roles of iron incorporation in nickel hydroxide water oxidation catalysts. J. Am. Chem. Soc. 143, 18519 (2021). https://doi.org/10.1021/jacs.1c07975
T. Wu, S. Sun, J. Song, S. Xi, Y. Du, Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763 (2019). https://doi.org/10.1038/s41929-019-0325-4
W. Wan, Y. Zhao, S. Wei, C. Triana, J. Li et al., Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 (2021). https://doi.org/10.1038/s41467-021-25811-0
Y. Sun, S. Sun, H. Yang, S. Xi, J. Gracia et al., Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 32, 2003297 (2020). https://doi.org/10.1002/adma.202003297
H. Li, Y. Chen, J. Liu, A. Fisher, J. Ager et al., Surface reconstruction of perovskites for water oxidation: the role of initial oxides’ bulk chemistry. Small Sci. 2, 2100048 (2021). https://doi.org/10.1002/smsc.202100048
Y. Duan, S. Sen, S. Xi, X. Ren, Y. Zhou, Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 29, 10534 (2017). https://doi.org/10.1021/acs.chemmater.7b04534
H. Wang, J. Wang, Y. Pi, Q. Shao, Y. Tan et al., Double perovskite LaFexNi1−xO3 nanorods enable efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58, 2316 (2019). https://doi.org/10.1002/anie.201812545
X. Liang, L. Shi, Y. Liu, H. Chen, R. Si et al., Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem. Int. Ed. 58, 7631 (2022). https://doi.org/10.1002/anie.201900796
Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30, 1802912 (2018). https://doi.org/10.1002/adma.201802912
G. Chen, Y. Zhu, H. Ming, Z. Hu, S.-F. Hung et al., An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 31, 1900883 (2019). https://doi.org/10.1002/adma.201900883
H. Wang, J. Qi, N. Yang, W. Cui, J. Wang et al., Dual-defects adjusted crystal-field splitting of LaCo1−xNixO3−δ hollow multi-shelled structures for efficient oxygen evolution. Angew. Chem. Int. Ed. 59, 1969 (2020). https://doi.org/10.1002/anie.202007077
C. Hu, X. Wang, T. Yao, T. Gao, J. Han et al., Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B-site metal cation in NdNiO3. Adv. Funct. Mater. 29, 1902449 (2019). https://doi.org/10.1002/adfm.201902449
L. Wang, P. Adiga, J. Zhao, W.S. Samarakoon, K.A. Stoerzinger et al., Understanding the electronic structure evolution of epitaxial LaNi1–xFexO3 thin films for water oxidation. Nano Lett. 21, 8324 (2021). https://doi.org/10.1021/acs.nanolett.1c02901
X. Wang, Z. Pan, X. Chu, K. Huang, Y. Cong et al., Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem. Int. Ed. 58, 11720 (2019). https://doi.org/10.1002/anie.201905543
J. Huang, H. Sheng, R.D. Ross, J. Han, X. Wang et al., Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12, 3036 (2021). https://doi.org/10.1038/s41467-021-23390-8
Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329 (2019). https://doi.org/10.1038/s41560-019-0355-9
Y. Wei, Y. Hu, P. Da, Z. Weng, P. Xi et al., Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation. Proc. Natl. Acad. Sci. U.S.A. (2023). https://doi.org/10.1073/pnas.23122241
T.E. Westre, P. Kenepohl, J.G. Dewitt, B. Hedman, K.O. Hodgson et al., A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297 (1997). https://doi.org/10.1021/ja964352a
J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212 (2021). https://doi.org/10.1038/s41929-021-00578-1
S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu et al., Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7, 11510 (2016). https://doi.org/10.1038/ncomms11510
P.P. Lopes, D.Y. Chung, X. Rui, H. Zheng, H. He et al., Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 143, 2741 (2021). https://doi.org/10.1021/jacs.0c08959
X. Ren, C. Wei, Y. Sun, X. Liu, F. Meng et al., Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 32, 2001292 (2020). https://doi.org/10.1002/adma.202001292
C. Kuai, Z. Xu, C. Xi, A. Hu, Z. Yang et al., Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743 (2020). https://doi.org/10.1038/s41929-020-0496-z
J. Scachez, M. Stevens, A. Young, A. Gallo, M. Zhao et al., Isolating the electrocatalytic activity of a confined NiFe motif within zirconium phosphate. Adv. Energy Mater. 11, 2003545 (2021). https://doi.org/10.1002/aenm.202003545
Y. Lee, J. Suntivich, K. May, E. Perry, S.-H. Yang, Synthesis and activities of rutile IrO2 and RuO2 nanops for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399 (2012). https://doi.org/10.1021/jz2016507
G. Chen, Z. Hu, Y. Zhu, B. Gu, Y. Zhong et al., A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv. Mater. 30, 1804333 (2018). https://doi.org/10.1002/adma.201804333
P. Chakthranont, J. Kibsgaard, A. Gallo, J. Park, M. Mitani et al., Effects of gold Substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts. ACS Catal. 7, 5399 (2017). https://doi.org/10.1021/acscatal.7b01070
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477
Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi et al., Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv. Mater. 31, 1807898 (2019). https://doi.org/10.1002/adma.201807898
F. Dionigi, Z. Zeng, L. Sinev, T. Merzdorf, S. Deshpande et al., In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020). https://doi.org/10.1038/s41467-020-16237-1
Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao et al., Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. (2021). https://doi.org/10.1002/adma.202006351
M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3, 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
A.S. Kelsey, R. Marcel, H.B. Hong, S.-H. Yang, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636 (2014). https://doi.org/10.1021/jz500610u
S. Lee, A. Moysiadou, Y.-C. Chu, H. Chen, X. Hu, Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxide. Energy Environ. Sci. 15, 206 (2021). https://doi.org/10.1039/D1EE02999A
Q. Ji, Y. Kong, C. Wang, H. Tan, H. Duan et al., Lattice strain induced by linker scission in metal–organic framework nanosheets for oxygen evolution reaction. ACS Catal. 10, 5691 (2020). https://doi.org/10.1021/acscatal.0c00989
M. Louie, T. Alexis, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329 (2013). https://doi.org/10.1021/ja405351s
N. Zhang, Y. Hu, L. An, Q.Y. Li, J. Yin et al., Surface activation and Ni–S stabilization in NiO/NiS2 for efficient oxygen evolution reaction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202207217
Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304 (2019). https://doi.org/10.1038/s41929-019-0246-2
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
N. Shuichi, Constant temperature molecular dynamics methods. Prog. Theory Phys. Supp. 103, 1 (1991). https://doi.org/10.1143/PTPS.103.1