From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts
Corresponding Author: Zhichuan J. Xu
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 8
Abstract
Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Nagy, H. You, Applications of surface X-ray scattering to electrochemistry problems. Electrochim. Acta 47(19), 3037–3055 (2002). doi:10.1016/S0013-4686(02)00223-2
- H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1), 9–35 (2005). doi:10.1016/j.apcatb.2004.06.021
- H.A. Gasteiger, N.M. Markovic, Just a dream-or future reality? Science 324(5923), 48–49 (2009). doi:10.1126/science.1172083
- C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala et al., Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ. Sci. 1(4), 454–466 (2008). doi:10.1039/b810734n
- Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010). doi:10.1021/ja1036572
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). doi:10.1038/nchem.1069
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). doi:10.1126/science.1212858
- C. Wei, L. Yu, C. Cui, J. Lin, W. Chen, N. Mathews, F. Huo, T. Sritharan, Z. Xu, Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chem. Commun. 50(58), 7885–7888 (2014). doi:10.1039/c4cc02781g
- C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn, Z.J. Xu, Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). doi:10.1002/adma.201606800
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). doi:10.1038/nmat3087
- S. Guo, S. Sun, FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134(5), 2492–2495 (2012). doi:10.1021/ja2104334
- Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082–9085 (2012). doi:10.1021/ja3030565
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2014). doi:10.1039/B917103G
- C. Wei, P.S. Lee, Z. Xu, A comparison of carbon supports in MnO2/C supercapacitors. RSC Adv. 4(59), 31416–31423 (2014). doi:10.1039/C4RA04914D
References
Z. Nagy, H. You, Applications of surface X-ray scattering to electrochemistry problems. Electrochim. Acta 47(19), 3037–3055 (2002). doi:10.1016/S0013-4686(02)00223-2
H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1), 9–35 (2005). doi:10.1016/j.apcatb.2004.06.021
H.A. Gasteiger, N.M. Markovic, Just a dream-or future reality? Science 324(5923), 48–49 (2009). doi:10.1126/science.1172083
C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala et al., Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ. Sci. 1(4), 454–466 (2008). doi:10.1039/b810734n
Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010). doi:10.1021/ja1036572
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). doi:10.1038/nchem.1069
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). doi:10.1126/science.1212858
C. Wei, L. Yu, C. Cui, J. Lin, W. Chen, N. Mathews, F. Huo, T. Sritharan, Z. Xu, Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chem. Commun. 50(58), 7885–7888 (2014). doi:10.1039/c4cc02781g
C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn, Z.J. Xu, Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). doi:10.1002/adma.201606800
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). doi:10.1038/nmat3087
S. Guo, S. Sun, FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134(5), 2492–2495 (2012). doi:10.1021/ja2104334
Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 134(22), 9082–9085 (2012). doi:10.1021/ja3030565
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2014). doi:10.1039/B917103G
C. Wei, P.S. Lee, Z. Xu, A comparison of carbon supports in MnO2/C supercapacitors. RSC Adv. 4(59), 31416–31423 (2014). doi:10.1039/C4RA04914D