Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries
Corresponding Author: Daniel Mandler
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 141
Abstract
Lithium–sulfur batteries (LSBs) are considered as the next generation of advanced rechargeable batteries because of their high energy density. In this study, sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper (S/CoxS/BP) by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs. Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution (~ S62−). This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs. S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g−1 at 0.1 C, which is close to the theoretical capacity of sulfur. At current rate of 0.5 C, the S/CoxS/BP has a capacity of 1420 mAh g−1 at the first cycle and 715 mAh g−1 after 500 cycles with a fading rate of 0.099% per cycle. The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst. The sodium dodecyl sulfate (SDS) pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP. CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode, which suppresses the polysulfide diffusion to anode, i.e., the shuttle effect. The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP.
Highlights:
1 Nanosized sulfur and CoxS electrocatalyst are electrodeposited on carbon nanotube buckypaper (S/CoxS/BP) as a binder-free high-performance cathode for lithium–sulfur batteries (LSBs).
2 Both electrooxidation of a polysulfide solution (~S62−) to sulfur and the electrodeposition of highly active CoxS catalyst substantially increase the current and time efficiency of cathode preparation for LSBs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700260
- Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi, Q.H. Yang, Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
- H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 15(1), 798–802 (2015). https://doi.org/10.1021/nl504963e
- G. Zhang, Z.-W. Zhang, H.-J. Peng, J.-Q. Huang, Q. Zhang, A toolbox for lithium–sulfur battery research: methods and protocols. Small Methods 1(7), 1700134 (2017). https://doi.org/10.1002/smtd.201700134
- Y. Peng, Y. Zhang, Z. Wen, Y. Wang, Z. Chen, B.-J. Hwang, J. Zhao, Constructing fast electron and ion conductive framework for Li2S as advanced lithium sulfur battery. Chem. Eng. J. 346, 57–64 (2018). https://doi.org/10.1016/j.cej.2018.04.049
- G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601
- S. Moon, Y.H. Jung, W.K. Jung, D.S. Jung, J.W. Choi, D.K. Kim, Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 25(45), 6547–6553 (2013). https://doi.org/10.1002/adma.201303166
- R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H.M. Cheng, C. Liu, F. Li, 3d interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28(17), 3374–3382 (2016). https://doi.org/10.1002/adma.201506014
- B. He, W.C. Li, C. Yang, S.Q. Wang, A.H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach. ACS Nano 10(1), 1633–1639 (2016). https://doi.org/10.1021/acsnano.5b07340
- L. Zhang, H. Huang, H. Yin, Y. Xia, J. Luo et al., Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries. J. Mater. Chem. A 3(32), 16513–16519 (2015). https://doi.org/10.1039/C5TA04609B
- Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano Lett. 15(1), 721–726 (2015). https://doi.org/10.1021/nl504263m
- H. Yao, G. Zheng, P.C. Hsu, D. Kong, J.J. Cha et al., Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014). https://doi.org/10.1038/ncomms4943
- R.V. Bugga, S.C. Jones, J. Pasalic, C.S. Seu, J.-P. Jones, L. Torres, Metal sulfide-blended sulfur cathodes in high energy lithium-sulfur cells. J. Electrochem. Soc. 164(2), A265–A276 (2016). https://doi.org/10.1149/2.0941702jes
- Y. Deng, H. Xu, Z. Bai, B. Huang, J. Su, G. Chen, Durable polydopamine-coated porous sulfur core–shell cathode for high performance lithium–sulfur batteries. J. Power Sources 300, 386–394 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.091
- X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
- M. Liu, Q. Li, X. Qin, G. Liang, W. Han et al., Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5 -decorated carbon nanofiber interlayer. Small 13(12), 1602539 (2017). https://doi.org/10.1002/smll.201602539
- H.C. Wang, C.Y. Fan, Y.P. Zheng, X.H. Zhang, W.H. Li et al., Oxygen-deficient titanium dioxide nanosheets as more effective polysulfide reservoirs for lithium–sulfur batteries. Chemistry 23(40), 9666–9673 (2017). https://doi.org/10.1002/chem.201701580
- H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
- H.B. Lin, L.Q. Yang, X. Jiang, G.C. Li, T.R. Zhang, Q.F. Yao, G.W. Zheng, J.Y. Lee, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
- J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
- Z. Zhang, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, A high-efficiency sulfur/carbon composite based on 3d graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017). https://doi.org/10.1002/aenm.201602543
- G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. U.S.A. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- M. Chen, S. Jiang, S. Cai, X. Wang, K. Xiang, Z. Ma, P. Song, A.C. Fisher, Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium–sulfur batteries. Chem. Engin. J. 313, 404–414 (2017). https://doi.org/10.1016/j.cej.2016.12.081
- J. Yan, X. Liu, X. Wang, B. Li, Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. J. Mater. Chem. A 3(18), 10127–10133 (2015). https://doi.org/10.1039/C5TA00286A
- J. Kulisch, H. Sommer, T. Brezesinski, J. Janek, Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando x-ray diffraction. Phys. Chem. Chem. Phys. 16(35), 18765–18771 (2014). https://doi.org/10.1039/C4CP02220C
- S. Walus, C. Barchasz, J.F. Colin, J.F. Martin, E. Elkaim, J.C. Lepretre, F. Alloin, New insight into the working mechanism of lithium–sulfur batteries: in situ and operando x-ray diffraction characterization. Chem. Commun. 49(72), 7899–7901 (2013). https://doi.org/10.1039/c3cc43766c
- Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt–sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135(47), 17699–17702 (2013). https://doi.org/10.1021/ja4094764
- T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A.M. Asiri, Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 60, 92–96 (2015). https://doi.org/10.1016/j.elecom.2015.08.011
- J.-Y. Lin, J.-H. Liao, Mesoporous electrodeposited-cos film as a counter electrode catalyst in dye-sensitized solar cells. J. Electrochem. Soc. 159(2), D65–D71 (2011). https://doi.org/10.1149/2.036202jes
- Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu, Z. Liu, J.Y. Lee, Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 7(23), 12930–12936 (2015). https://doi.org/10.1021/acsami.5b02670
- X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, X. Han, Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10), 4816–4824 (2018). https://doi.org/10.1039/C7NR09424H
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
References
H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700260
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi, Q.H. Yang, Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5(1), 1700270 (2018). https://doi.org/10.1002/advs.201700270
H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 15(1), 798–802 (2015). https://doi.org/10.1021/nl504963e
G. Zhang, Z.-W. Zhang, H.-J. Peng, J.-Q. Huang, Q. Zhang, A toolbox for lithium–sulfur battery research: methods and protocols. Small Methods 1(7), 1700134 (2017). https://doi.org/10.1002/smtd.201700134
Y. Peng, Y. Zhang, Z. Wen, Y. Wang, Z. Chen, B.-J. Hwang, J. Zhao, Constructing fast electron and ion conductive framework for Li2S as advanced lithium sulfur battery. Chem. Eng. J. 346, 57–64 (2018). https://doi.org/10.1016/j.cej.2018.04.049
G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601
S. Moon, Y.H. Jung, W.K. Jung, D.S. Jung, J.W. Choi, D.K. Kim, Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 25(45), 6547–6553 (2013). https://doi.org/10.1002/adma.201303166
R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H.M. Cheng, C. Liu, F. Li, 3d interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28(17), 3374–3382 (2016). https://doi.org/10.1002/adma.201506014
B. He, W.C. Li, C. Yang, S.Q. Wang, A.H. Lu, Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach. ACS Nano 10(1), 1633–1639 (2016). https://doi.org/10.1021/acsnano.5b07340
L. Zhang, H. Huang, H. Yin, Y. Xia, J. Luo et al., Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries. J. Mater. Chem. A 3(32), 16513–16519 (2015). https://doi.org/10.1039/C5TA04609B
Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano Lett. 15(1), 721–726 (2015). https://doi.org/10.1021/nl504263m
H. Yao, G. Zheng, P.C. Hsu, D. Kong, J.J. Cha et al., Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014). https://doi.org/10.1038/ncomms4943
R.V. Bugga, S.C. Jones, J. Pasalic, C.S. Seu, J.-P. Jones, L. Torres, Metal sulfide-blended sulfur cathodes in high energy lithium-sulfur cells. J. Electrochem. Soc. 164(2), A265–A276 (2016). https://doi.org/10.1149/2.0941702jes
Y. Deng, H. Xu, Z. Bai, B. Huang, J. Su, G. Chen, Durable polydopamine-coated porous sulfur core–shell cathode for high performance lithium–sulfur batteries. J. Power Sources 300, 386–394 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.091
X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater. 6(6), 1501636 (2016). https://doi.org/10.1002/aenm.201501636
M. Liu, Q. Li, X. Qin, G. Liang, W. Han et al., Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5 -decorated carbon nanofiber interlayer. Small 13(12), 1602539 (2017). https://doi.org/10.1002/smll.201602539
H.C. Wang, C.Y. Fan, Y.P. Zheng, X.H. Zhang, W.H. Li et al., Oxygen-deficient titanium dioxide nanosheets as more effective polysulfide reservoirs for lithium–sulfur batteries. Chemistry 23(40), 9666–9673 (2017). https://doi.org/10.1002/chem.201701580
H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
H.B. Lin, L.Q. Yang, X. Jiang, G.C. Li, T.R. Zhang, Q.F. Yao, G.W. Zheng, J.Y. Lee, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
Z. Zhang, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, A high-efficiency sulfur/carbon composite based on 3d graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017). https://doi.org/10.1002/aenm.201602543
G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. U.S.A. 114(5), 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
M. Chen, S. Jiang, S. Cai, X. Wang, K. Xiang, Z. Ma, P. Song, A.C. Fisher, Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium–sulfur batteries. Chem. Engin. J. 313, 404–414 (2017). https://doi.org/10.1016/j.cej.2016.12.081
J. Yan, X. Liu, X. Wang, B. Li, Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. J. Mater. Chem. A 3(18), 10127–10133 (2015). https://doi.org/10.1039/C5TA00286A
J. Kulisch, H. Sommer, T. Brezesinski, J. Janek, Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando x-ray diffraction. Phys. Chem. Chem. Phys. 16(35), 18765–18771 (2014). https://doi.org/10.1039/C4CP02220C
S. Walus, C. Barchasz, J.F. Colin, J.F. Martin, E. Elkaim, J.C. Lepretre, F. Alloin, New insight into the working mechanism of lithium–sulfur batteries: in situ and operando x-ray diffraction characterization. Chem. Commun. 49(72), 7899–7901 (2013). https://doi.org/10.1039/c3cc43766c
Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited cobalt–sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 135(47), 17699–17702 (2013). https://doi.org/10.1021/ja4094764
T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A.M. Asiri, Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 60, 92–96 (2015). https://doi.org/10.1016/j.elecom.2015.08.011
J.-Y. Lin, J.-H. Liao, Mesoporous electrodeposited-cos film as a counter electrode catalyst in dye-sensitized solar cells. J. Electrochem. Soc. 159(2), D65–D71 (2011). https://doi.org/10.1149/2.036202jes
Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu, Z. Liu, J.Y. Lee, Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 7(23), 12930–12936 (2015). https://doi.org/10.1021/acsami.5b02670
X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, X. Han, Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10), 4816–4824 (2018). https://doi.org/10.1039/C7NR09424H
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682