Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions
Corresponding Author: Zhichuan J. Xu
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 75
Abstract
The hydrogen evolution reaction (HER) is a half-cell reaction in water electrolysis for producing hydrogen gas. In industrial water electrolysis, the HER is often conducted in alkaline media to achieve higher stability of the electrode materials. However, the kinetics of the HER in alkaline medium is slow relative to that in acid because of the low concentration of protons in the former. Under the latter conditions, the entire HER process will require additional effort to obtain protons by water dissociation near or on the catalyst surface. Heterostructured catalysts, with fascinating synergistic effects derived from their heterogeneous interfaces, can provide multiple functional sites for the overall reaction process. At present, the activity of the most active known heterostructured catalysts surpasses (platinum-based heterostructures) or approaches (noble-metal-free heterostructures) that of the commercial Pt/C catalyst under alkaline conditions, demonstrating an infusive potential to break through the bottlenecks. This review summarizes the most representative and recent heterostructured HER catalysts for alkaline medium. The basics and principles of the HER under alkaline conditions are first introduced, followed by a discussion of the latest advances in heterostructured catalysts with/without noble-metal-based heterostructures. Special focus is placed on approaches for enhancing the reaction rate by accelerating the Volmer step. This review aims to provide an overview of the current developments in alkaline HER catalysts, as well as the design principles for the future development of heterostructured nano- or micro-sized electrocatalysts.
Highlights:
1 Heterostructured catalysts offer improved HER activities in alkaline solutions due to their fascinating synergistic effects on the heterogeneous interfaces.
2 Representative heterostructured HER catalysts for alkaline media are summarized.
3 Acceleration of the Volmer step, crucial for alkali-active catalysts, is highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
- Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015). https://doi.org/10.1002/anie.201407031
- Y. Yan, T. He, B. Zhao, K. Qi, H. Liu, B.Y. Xia, Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6, 15905 (2018). https://doi.org/10.1039/C8TA05985C
- J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
- J. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue et al., Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57, 7649–7653 (2018). https://doi.org/10.1002/anie.201803543
- M. Miao, J. Pan, T. He, Y. Yan, B.Y. Xia, X. Wang, Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. Eur. J. 23, 10947–10961 (2017). https://doi.org/10.1002/chem.201701064
- L.M. Gandía, R. Oroz, A. Ursúa, P. Sanchis, P.M. Diéguez, Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 21, 1699–1706 (2007). https://doi.org/10.1021/ef060491u
- M. Zhou, Q. Weng, X. Zhang, X. Wang, Y. Xue, X. Zeng, Y. Bando, D. Golberg, In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 5, 4335–4342 (2017). https://doi.org/10.1039/C6TA09366C
- F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrogen Energy 40, 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
- F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13, 1701931 (2017). https://doi.org/10.1002/smll.201701931
- N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018). https://doi.org/10.1002/advs.201700464
- Z. Yao, J. Yan, V. Anthony, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
- M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2015). https://doi.org/10.1007/s12274-015-0965-x
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- H. Yang, C. Wang, F. Hu, Y. Zhang, H. Lu, Q. Wang, Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci. China Mater. 60, 1121–1128 (2017). https://doi.org/10.1007/s40843-017-9035-8
- J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad, S.J. Kim, N. Park, H.Y. Jeong, J.B. Baek, An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441 (2017). https://doi.org/10.1038/nnano.2016.304
- L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux et al., Platinum–nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 31, 456–461 (2017). https://doi.org/10.1016/j.nanoen.2016.11.048
- B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji et al., Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37, 74–80 (2017). https://doi.org/10.1016/j.nanoen.2017.05.011
- Z. Zeng, K.C. Chang, J. Kubal, N.M. Markovic, J. Greeley, Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2, 17070 (2017). https://doi.org/10.1038/nenergy.2017.70
- B.E. Conway, L. Bai, Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198, 149–175 (1986). https://doi.org/10.1016/0022-0728(86)90033-1
- B.E. Conway, G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45, 4075–4083 (2000). https://doi.org/10.1016/S0013-4686(00)00523-5
- W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509 (2013). https://doi.org/10.1039/c3ee00045a
- I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J.M. Feliu, M.T.M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017). https://doi.org/10.1038/nenergy.2017.31
- R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550 (2012). https://doi.org/10.1038/nmat3313
- T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004). https://doi.org/10.1016/j.jcat.2004.02.034
- G.S. Karlberg, Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 74, 153414 (2006). https://doi.org/10.1103/PhysRevB.74.153414
- D.E. Brown, M.N. Mahmood, M.C.M. Man, A.K. Turner, Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 29, 1551–1556 (1984). https://doi.org/10.1016/0013-4686(84)85008-2
- I.A. Raj, K.I. Vasu, Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 32–38 (1990). https://doi.org/10.1007/BF01012468
- Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29, 1703311 (2017). https://doi.org/10.1002/adma.201703311
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- P.M. Csernica, J.R. McKone, C.R. Mulzer, W.R. Dichtel, H.D. Abruña, F.J. DiSalvo, Electrochemical hydrogen evolution at ordered Mo7Ni7. ACS Catal. 7, 3375–3383 (2017). https://doi.org/10.1021/acscatal.7b00344
- P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 55, 12859–12863 (2016). https://doi.org/10.1002/anie.201606290
- P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Precise tuning in platinum–nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017). https://doi.org/10.1038/ncomms14580
- H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
- L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi, J. Jin, Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal. 5, 3801–3806 (2015). https://doi.org/10.1021/cs501835c
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594 (2015). https://doi.org/10.1039/C5EE00751H
- Y. Wang, L. Chen, X. Yu, Y. Wang, G. Zheng, Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 7, 1601390 (2017). https://doi.org/10.1002/aenm.201601390
- H. Liao, C. Wei, J. Wang, A. Fisher, T. Sritharan, Z. Feng, Z.J. Xu, A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 7, 1701129 (2017). https://doi.org/10.1002/aenm.201701129
- J. Xu, T. Liu, J. Li, B. Li, Y. Liu et al., Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 11, 1819–1827 (2018). https://doi.org/10.1039/C7EE03603E
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
- T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
- J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K.H. Leung, S. Yang, Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1, 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011
- Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.M. Cheng, B. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018). https://doi.org/10.1021/acsnano.8b00942
- X. Zhang, Y. Liang, Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 5, 1700644 (2018). https://doi.org/10.1002/advs.201700644
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55, 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
- P. Kuang, T. Tong, K. Fan, J. Yu, In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 7, 6179–6187 (2017). https://doi.org/10.1021/acscatal.7b02225
- K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, Regulating water-reduction kinetics in cobalt phosphide for enhancing her catalytic activity in alkaline solution. Adv. Mater. 29, 1606980 (2017). https://doi.org/10.1002/adma.201606980
- J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 9, 2789–2793 (2016). https://doi.org/10.1039/C6EE01786J
- Z. Weng, W. Liu, L.C. Yin, R. Fang, M. Li et al., Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 15, 7704–7710 (2015). https://doi.org/10.1021/acs.nanolett.5b03709
- Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu et al., Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801171
- X. Yu, J. Zhao, L.R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 3, 237–244 (2018). https://doi.org/10.1021/acsenergylett.7b01103
- M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg, Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12, 4148–4155 (2018). https://doi.org/10.1021/acsnano.7b08724
- Y. Liu, Q. Li, R. Si, G.D. Li, W. Li et al., Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29, 1606200 (2017). https://doi.org/10.1002/adma.201606200
- J.X. Feng, J.Q. Wu, Y.X. Tong, G.R. Li, Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 140, 610–617 (2018). https://doi.org/10.1021/jacs.7b08521
- C. Wei, Z.J. Xu, The Comprehensive understanding of 10 mA cm −2geo as an evaluation parameter for electrochemical water splitting. Small Methods (2018). https://doi.org/10.1002/smtd.201800168
- S. Sun, H. Li, Z.J. Xu, Impact of surface area in evaluation of catalyst activity. Joule 2, 1019–1027 (2018). https://doi.org/10.1016/j.joule.2018.05.003
- Z. Li, D. Wang, Y. Wu, Y. Li, Recent advances in the precise control of isolated single site catalysts by chemical methods. Natl. Sci. Rev. 5(5), 673–689 (2018). https://doi.org/10.1093/nsr/nwy056
- Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
- Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 7, 7131–7135 (2017). https://doi.org/10.1021/acscatal.7b01994
- Z. Wang, Z. Liu, G. Du, A.M. Asiri, L. Wang et al., Ultrafine PtO2 nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chem. Commun. 54, 810–813 (2018). https://doi.org/10.1039/C7CC08870A
- Z. Wang, X. Ren, X. Shi, A. Asiri, L. Wang, X. Li, X. Sun, Q. Zhang, H. Wang, A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. J. Mater. Chem. A 6, 3864–3868 (2018). https://doi.org/10.1039/C8TA00241J
- C. Wang, P. Zhang, J. Lei, W. Dong, J. Wang, Integrated 3d MoSe2@Ni0.85Se nanowire network with synergistic cooperation as highly efficient electrocatalysts for hydrogen evolution reaction in alkaline medium. Electrochim. Acta 246, 712–719 (2017). https://doi.org/10.1016/j.electacta.2017.06.028
References
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015). https://doi.org/10.1002/anie.201407031
Y. Yan, T. He, B. Zhao, K. Qi, H. Liu, B.Y. Xia, Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6, 15905 (2018). https://doi.org/10.1039/C8TA05985C
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
J. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue et al., Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57, 7649–7653 (2018). https://doi.org/10.1002/anie.201803543
M. Miao, J. Pan, T. He, Y. Yan, B.Y. Xia, X. Wang, Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. Eur. J. 23, 10947–10961 (2017). https://doi.org/10.1002/chem.201701064
L.M. Gandía, R. Oroz, A. Ursúa, P. Sanchis, P.M. Diéguez, Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 21, 1699–1706 (2007). https://doi.org/10.1021/ef060491u
M. Zhou, Q. Weng, X. Zhang, X. Wang, Y. Xue, X. Zeng, Y. Bando, D. Golberg, In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 5, 4335–4342 (2017). https://doi.org/10.1039/C6TA09366C
F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrogen Energy 40, 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13, 1701931 (2017). https://doi.org/10.1002/smll.201701931
N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018). https://doi.org/10.1002/advs.201700464
Z. Yao, J. Yan, V. Anthony, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018). https://doi.org/10.1002/anie.201710556
M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2015). https://doi.org/10.1007/s12274-015-0965-x
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934
H. Yang, C. Wang, F. Hu, Y. Zhang, H. Lu, Q. Wang, Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci. China Mater. 60, 1121–1128 (2017). https://doi.org/10.1007/s40843-017-9035-8
J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad, S.J. Kim, N. Park, H.Y. Jeong, J.B. Baek, An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441 (2017). https://doi.org/10.1038/nnano.2016.304
L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux et al., Platinum–nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 31, 456–461 (2017). https://doi.org/10.1016/j.nanoen.2016.11.048
B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji et al., Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37, 74–80 (2017). https://doi.org/10.1016/j.nanoen.2017.05.011
Z. Zeng, K.C. Chang, J. Kubal, N.M. Markovic, J. Greeley, Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2, 17070 (2017). https://doi.org/10.1038/nenergy.2017.70
B.E. Conway, L. Bai, Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198, 149–175 (1986). https://doi.org/10.1016/0022-0728(86)90033-1
B.E. Conway, G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45, 4075–4083 (2000). https://doi.org/10.1016/S0013-4686(00)00523-5
W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509 (2013). https://doi.org/10.1039/c3ee00045a
I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J.M. Feliu, M.T.M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017). https://doi.org/10.1038/nenergy.2017.31
R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550 (2012). https://doi.org/10.1038/nmat3313
T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004). https://doi.org/10.1016/j.jcat.2004.02.034
G.S. Karlberg, Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 74, 153414 (2006). https://doi.org/10.1103/PhysRevB.74.153414
D.E. Brown, M.N. Mahmood, M.C.M. Man, A.K. Turner, Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim. Acta 29, 1551–1556 (1984). https://doi.org/10.1016/0013-4686(84)85008-2
I.A. Raj, K.I. Vasu, Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 32–38 (1990). https://doi.org/10.1007/BF01012468
Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29, 1703311 (2017). https://doi.org/10.1002/adma.201703311
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
P.M. Csernica, J.R. McKone, C.R. Mulzer, W.R. Dichtel, H.D. Abruña, F.J. DiSalvo, Electrochemical hydrogen evolution at ordered Mo7Ni7. ACS Catal. 7, 3375–3383 (2017). https://doi.org/10.1021/acscatal.7b00344
P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 55, 12859–12863 (2016). https://doi.org/10.1002/anie.201606290
P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Precise tuning in platinum–nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017). https://doi.org/10.1038/ncomms14580
H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi, J. Jin, Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal. 5, 3801–3806 (2015). https://doi.org/10.1021/cs501835c
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594 (2015). https://doi.org/10.1039/C5EE00751H
Y. Wang, L. Chen, X. Yu, Y. Wang, G. Zheng, Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 7, 1601390 (2017). https://doi.org/10.1002/aenm.201601390
H. Liao, C. Wei, J. Wang, A. Fisher, T. Sritharan, Z. Feng, Z.J. Xu, A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 7, 1701129 (2017). https://doi.org/10.1002/aenm.201701129
J. Xu, T. Liu, J. Li, B. Li, Y. Liu et al., Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 11, 1819–1827 (2018). https://doi.org/10.1039/C7EE03603E
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K.H. Leung, S. Yang, Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1, 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011
Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.M. Cheng, B. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018). https://doi.org/10.1021/acsnano.8b00942
X. Zhang, Y. Liang, Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: a synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 5, 1700644 (2018). https://doi.org/10.1002/advs.201700644
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55, 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
P. Kuang, T. Tong, K. Fan, J. Yu, In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 7, 6179–6187 (2017). https://doi.org/10.1021/acscatal.7b02225
K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, Regulating water-reduction kinetics in cobalt phosphide for enhancing her catalytic activity in alkaline solution. Adv. Mater. 29, 1606980 (2017). https://doi.org/10.1002/adma.201606980
J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 9, 2789–2793 (2016). https://doi.org/10.1039/C6EE01786J
Z. Weng, W. Liu, L.C. Yin, R. Fang, M. Li et al., Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 15, 7704–7710 (2015). https://doi.org/10.1021/acs.nanolett.5b03709
Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu et al., Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801171
X. Yu, J. Zhao, L.R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 3, 237–244 (2018). https://doi.org/10.1021/acsenergylett.7b01103
M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Y. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg, Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions. ACS Nano 12, 4148–4155 (2018). https://doi.org/10.1021/acsnano.7b08724
Y. Liu, Q. Li, R. Si, G.D. Li, W. Li et al., Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29, 1606200 (2017). https://doi.org/10.1002/adma.201606200
J.X. Feng, J.Q. Wu, Y.X. Tong, G.R. Li, Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 140, 610–617 (2018). https://doi.org/10.1021/jacs.7b08521
C. Wei, Z.J. Xu, The Comprehensive understanding of 10 mA cm −2geo as an evaluation parameter for electrochemical water splitting. Small Methods (2018). https://doi.org/10.1002/smtd.201800168
S. Sun, H. Li, Z.J. Xu, Impact of surface area in evaluation of catalyst activity. Joule 2, 1019–1027 (2018). https://doi.org/10.1016/j.joule.2018.05.003
Z. Li, D. Wang, Y. Wu, Y. Li, Recent advances in the precise control of isolated single site catalysts by chemical methods. Natl. Sci. Rev. 5(5), 673–689 (2018). https://doi.org/10.1093/nsr/nwy056
Y.P. Zhu, C. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 7, 7131–7135 (2017). https://doi.org/10.1021/acscatal.7b01994
Z. Wang, Z. Liu, G. Du, A.M. Asiri, L. Wang et al., Ultrafine PtO2 nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chem. Commun. 54, 810–813 (2018). https://doi.org/10.1039/C7CC08870A
Z. Wang, X. Ren, X. Shi, A. Asiri, L. Wang, X. Li, X. Sun, Q. Zhang, H. Wang, A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. J. Mater. Chem. A 6, 3864–3868 (2018). https://doi.org/10.1039/C8TA00241J
C. Wang, P. Zhang, J. Lei, W. Dong, J. Wang, Integrated 3d MoSe2@Ni0.85Se nanowire network with synergistic cooperation as highly efficient electrocatalysts for hydrogen evolution reaction in alkaline medium. Electrochim. Acta 246, 712–719 (2017). https://doi.org/10.1016/j.electacta.2017.06.028