Cu-Based Materials for Enhanced C2+ Product Selectivity in Photo-/Electro-Catalytic CO2 Reduction: Challenges and Prospects
Corresponding Author: Zhifeng Jiang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 64
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Highlights:
1 The latest advancements in Cu-based catalysts for photocatalytic and electrocatalytic CO2 reduction into C2+ products are reported.
2 The relationship between the Cu surfaces and their efficiency in photocatalytic and electrocatalytic CO2 reduction is emphasized.
3 The opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan et al., Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018). https://doi.org/10.1038/s41929-018-0170-x
- S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu et al., Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017). https://doi.org/10.1126/science.aah4321
- E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
- S.I. Seneviratne, M.G. Donat, A.J. Pitman, R. Knutti, R.L. Wilby, Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). https://doi.org/10.1038/nature16542
- M. Forkel, N. Carvalhais, C. Rödenbeck, R. Keeling, M. Heimann et al., Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016). https://doi.org/10.1126/science.aac4971
- Z.-J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed. 59, 8016–8035 (2020). https://doi.org/10.1002/anie.201907443
- G.H. Han, J. Bang, G. Park, S. Choe, Y.J. Jang et al., Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small 19, 2205765 (2023). https://doi.org/10.1002/smll.202205765
- X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
- C. Wang, Z. Sun, Y. Zheng, Y.H. Hu, Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A 7, 865–887 (2019). https://doi.org/10.1039/C8TA09865D
- Y. Gao, K. Qian, B. Xu, Z. Li, J. Zheng et al., Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals. Carbon Resour. Convers. 3, 46–59 (2020). https://doi.org/10.1016/j.crcon.2020.02.003
- J. Albero, Y. Peng, H. García, Photocatalytic CO2 reduction to C2+ products. ACS Catal. 10, 5734–5749 (2020). https://doi.org/10.1021/acscatal.0c00478
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- M. Jouny, W. Luc, F. Jiao, General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514
- Q. Lu, F. Jiao, Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016). https://doi.org/10.1016/j.nanoen.2016.04.009
- E. Vahidzadeh, S. Zeng, A.P. Manuel, S. Riddell, P. Kumar et al., Asymmetric multipole plasmon-mediated catalysis shifts the product selectivity of CO2 photoreduction toward C2+ products. ACS Appl. Mater. Interfaces 13, 7248–7258 (2021). https://doi.org/10.1021/acsami.0c21067
- X. Wu, Y. Li, G. Zhang, H. Chen, J. Li et al., Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 141, 5267–5274 (2019). https://doi.org/10.1021/jacs.8b12928
- X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nanomicro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
- V.S.S. Mosali, X. Zhang, Y. Liang, L. Li, G. Puxty et al., CdS-enhanced ethanol selectivity in electrocatalytic CO2 reduction at sulfide-derived Cu–Cd. Chemsuschem 14, 2924–2934 (2021). https://doi.org/10.1002/cssc.202100903
- D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang et al., Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 281, 119426 (2021). https://doi.org/10.1016/j.apcatb.2020.119426
- M.G. Méndez-Medrano, E. Kowalska, B. Ohtani, D. Bahena Uribe, C. Colbeau-Justin et al., Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. J. Chem. Phys. 153, 034705 (2020). https://doi.org/10.1063/5.0015277
- Y. Song, M. Ichimura, H2O2 treatment of electrochemically deposited Cu2O thin films for enhancing optical absorption. Int. J. Photoenergy 2013, 738063 (2013). https://doi.org/10.1155/2013/738063
- C.-F. Li, R.-T. Guo, Z.-R. Zhang, T. Wu, W.-G. Pan, Converting CO2 into value-added products by Cu2O-based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis. Small 19, 2207875 (2023). https://doi.org/10.1002/smll.202207875
- W. Wang, L. Wang, W. Su, Y. Xing, Photocatalytic CO2 reduction over copper-based materials: a review. J. CO2 Util. 61, 102056 (2022). https://doi.org/10.1016/j.jcou.2022.102056
- D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
- Y. Lum, T. Cheng, W.A. Goddard 3rd., J.W. Ager, Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018). https://doi.org/10.1021/jacs.8b03986
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang et al., Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 143, 2984–2993 (2021). https://doi.org/10.1021/jacs.1c00206
- F. Chang, M. Xiao, R. Miao, Y. Liu, M. Ren et al., Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem. Energy Rev. 5, 4 (2022). https://doi.org/10.1007/s41918-022-00139-5
- M.K. Birhanu, M.-C. Tsai, A.W. Kahsay, C.-T. Chen, T.S. Zeleke et al., Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction. Adv. Mater. Interfaces 5, 1800919 (2018). https://doi.org/10.1002/admi.201800919
- A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017). https://doi.org/10.1002/cphc.201700736
- O. Zoubir, L. Atourki, H. Ait Ahsaine, A. BaQais, Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review. RSC Adv. 12, 30056–30075 (2022). https://doi.org/10.1039/D2RA05385C
- W. Fu, Z. Liu, T. Wang, J. Liang, S. Duan et al., Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets. ACS Sustain. Chem. Eng. 8, 15223–15229 (2020). https://doi.org/10.1021/acssuschemeng.0c04873
- B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang et al., Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols. ACS Appl. Mater. Interfaces 13, 39165–39177 (2021). https://doi.org/10.1021/acsami.1c03850
- X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. Engl. 60, 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
- K. Yang, Z. Yang, C. Zhang, Y. Gu, J. Wei et al., Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem. Eng. J. 418, 129344 (2021). https://doi.org/10.1016/j.cej.2021.129344
- M.Q. Yang, M. Gao, M. Hong, G.W. Ho, Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 30, e1802894 (2018). https://doi.org/10.1002/adma.201802894
- X. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine et al., Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012). https://doi.org/10.1002/anie.201205619
- S. Yan, J. Wang, H. Gao, N. Wang, H. Yu et al., An ion-exchange phase transformation to ZnGa2O4 nanocube towards efficient solar fuel synthesis. Adv. Funct. Mater. 23, 758–763 (2013). https://doi.org/10.1002/adfm.201202042
- L. Chen, M. Sun, J. Meng, B. Chu, X. Xie et al., Control of charge transfer direction by spatial engineering of redox active centers for boosting photocatalytic CO2 reduction. Appl. Surf. Sci. 637, 157948 (2023). https://doi.org/10.1016/j.apsusc.2023.157948
- S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016). https://doi.org/10.1039/c5cp05665a
- C.M. Gabardo, A. Seifitokaldani, J.P. Edwards, C.-T. Dinh, T. Burdyny et al., Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018). https://doi.org/10.1039/C8EE01684D
- J. Wicks, M.L. Jue, V.A. Beck, J.S. Oakdale, N.A. Dudukovic et al., 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 33, e2003855 (2021). https://doi.org/10.1002/adma.202003855
- F.P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm–2. Science 367, 661–666 (2020). https://doi.org/10.1126/science.aay4217
- G. Díaz-Sainz, M. Alvarez-Guerra, A. Irabien, Continuous electroreduction of CO2 towards formate in gas-phase operation at high current densities with an anion exchange membrane. J. CO2 Util. 56, 101822 (2022). https://doi.org/10.1016/j.jcou.2021.101822
- W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 57, 6883–6887 (2018). https://doi.org/10.1002/anie.201803501
- H.-K. Lim, H. Shin, W.A. Goddard 3rd., Y.J. Hwang, B.K. Min et al., Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. J. Am. Chem. Soc. 136, 11355–11361 (2014). https://doi.org/10.1021/ja503782w
- K.A. Adegoke, R.O. Adegoke, A.O. Ibrahim, S.A. Adegoke, O.S. Bello, Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: realities and prospects of Cu-based materials. Sustain. Mater. Technol. 25, e00200 (2020). https://doi.org/10.1016/j.susmat.2020.e00200
- U.J. Etim, C. Zhang, Z. Zhong, Impacts of the catalyst structures on CO2 activation on catalyst surfaces. Nanomaterials 11, 3265 (2021). https://doi.org/10.3390/nano11123265
- X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
- Megha, K. Mondal, A. Banerjee, T.K. Ghanty, Adsorption and activation of CO2 on Zrn (n = 2–7) clusters. Phys. Chem. Chem. Phys. 22, 16877–16886 (2020). https://doi.org/10.1039/d0cp02505d
- S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
- J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020). https://doi.org/10.1016/j.mattod.2019.06.009
- S. Samanta, R. Srivastava, Catalytic conversion of CO2 to chemicals and fuels. Mater. Adv. 1, 1506–1545 (2020). https://doi.org/10.1039/D0MA00293C
- Megha, A. Banerjee, T.K. Ghanty, Role of metcar on the adsorption and activation of carbon dioxide: a DFT study. Phys. Chem. Chem. Phys. 23, 5559–5570 (2021). https://doi.org/10.1039/d0cp05756h
- J. Jia, C. Qian, Y. Dong, Y.F. Li, H. Wang et al., Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering–perfecting imperfection. Chem. Soc. Rev. 46, 4631–4644 (2017). https://doi.org/10.1039/C7CS00026J
- A.K. Mishra, A. Roldan, N.H. de Leeuw, CuO surfaces and CO2 activation: a dispersion-corrected DFT+U study. J. Phys. Chem. C 120, 2198–2214 (2016). https://doi.org/10.1021/acs.jpcc.5b10431
- J. Lee, D.C. Sorescu, X. Deng, Electron-induced dissociation of CO2 on TiO2(110). J. Am. Chem. Soc. 133, 10066–10069 (2011). https://doi.org/10.1021/ja204077e
- W. Chu, Q. Zheng, O.V. Prezhdo, J. Zhao, CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: Ab initio quantum dynamics simulation. J. Am. Chem. Soc. 142, 3214–3221 (2020). https://doi.org/10.1021/jacs.9b13280
- S. Huygh, A. Bogaerts, E.C. Neyts, How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). J. Phys. Chem. C 120, 21659–21669 (2016). https://doi.org/10.1021/acs.jpcc.6b07459
- Z. Cheng, B.J. Sherman, C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. J. Chem. Phys. 138, 014702 (2013). https://doi.org/10.1063/1.4773248
- P. Gao, S. Li, X. Bu, S. Dang, Z. Liu et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017). https://doi.org/10.1038/nchem.2794
- L. Liu, W. Fan, X. Zhao, H. Sun, P. Li et al., Surface dependence of CO2 adsorption on Zn2GeO4. Langmuir 28, 10415–10424 (2012). https://doi.org/10.1021/la301679h
- H. Chen, T. Fan, Y. Ji, CO2 reduction mechanism on the Cu2O(110) surface: a first-principles study. ChemPhysChem 24, e202300047 (2023). https://doi.org/10.1002/cphc.202300047
- L.I. Bendavid, E.A. Carter, CO2 adsorption on Cu2O(111): a DFT+U and DFT-D study. J. Phys. Chem. C 117, 26048–26059 (2013). https://doi.org/10.1021/jp407468t
- Z. Gu, N. Yang, P. Han, M. Kuang, B. Mei et al., Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3, 1800449 (2019). https://doi.org/10.1002/smtd.201800449
- C. Hiragond, S. Ali, S. Sorcar, Su-Il In, Hierarchical nanostructured photocatalysts for CO2 photoreduction. Catalysts 9, 370 (2019). https://doi.org/10.3390/catal9040370
- H. Molavi, A. Eskandari, A. Shojaei, S.A. Mousavi, Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous Mesoporous Mater. 257, 193–201 (2018). https://doi.org/10.1016/j.micromeso.2017.08.043
- X. Ma, L. Li, R. Chen, C. Wang, H. Li et al., Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Appl. Surf. Sci. 435, 494–502 (2018). https://doi.org/10.1016/j.apsusc.2017.11.069
- R. Zhao, P. Ding, P. Wei, L. Zhang, Q. Liu et al., Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 31, 2009449 (2021). https://doi.org/10.1002/adfm.202009449
- J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- J. Santatiwongchai, K. Faungnawakij, P. Hirunsit, Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: the solvent effect from explicit water–Cu(100) interface models. ACS Catal. 11, 9688–9701 (2021). https://doi.org/10.1021/acscatal.1c01486
- A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- S. Pablo-García, F.L.P. Veenstra, L.R.L. Ting, R. García-Muelas, F. Dattila et al., Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022). https://doi.org/10.1039/d1cy01423d
- G.M. Tomboc, S. Choi, T. Kwon, Y.J. Hwang, K. Lee, Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 32, e1908398 (2020). https://doi.org/10.1002/adma.201908398
- N.J. Azhari, N. Nurdini, S. Mardiana, T. Ilmi, A.T.N. Fajar et al., Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: a review. J. CO2 Util. 59, 101969 (2022). https://doi.org/10.1016/j.jcou.2022.101969
- L. Liao, G. Xie, X. Xie, N. Zhang, Advances in modulating the activity and selectivity of photocatalytic CO2 reduction to multicarbon products. J. Phys. Chem. C 127, 2766–2781 (2023). https://doi.org/10.1021/acs.jpcc.2c08963
- M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 217, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2017.05.058
- S. Rej, M. Bisetto, A. Naldoni, P. Fornasiero, Well-defined Cu2O photocatalysts for solar fuels and chemicals. J. Mater. Chem. A 9, 5915–5951 (2021). https://doi.org/10.1039/D0TA10181H
- L. Yu, G. Li, X. Zhang, X. Ba, G. Shi et al., Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal. 6, 6444–6454 (2016). https://doi.org/10.1021/acscatal.6b01455
- H. Huo, D. Liu, H. Feng, Z. Tian, X. Liu et al., Double-shelled Cu2O/MnOx mesoporous hollow structure for CO2 photoreduction with enhanced stability and activity. Nanoscale 12, 13912–13917 (2020). https://doi.org/10.1039/D0NR02944K
- L. Cui, L. Hu, Q. Shen, X. Liu, H. Jia et al., Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light. Appl. Surf. Sci. 581, 152343 (2022). https://doi.org/10.1016/j.apsusc.2021.152343
- S. Wang, X. Bai, Q. Li, Y. Ouyang, L. Shi et al., Selective visible-light driven highly efficient photocatalytic reduction of CO2 to C2H5OH by two-dimensional Cu2S monolayers. Nanoscale Horiz. 6, 661–668 (2021). https://doi.org/10.1039/d1nh00196e
- H. Park, H.-H. Ou, A.J. Colussi, M.R. Hoffmann, Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanop elemental copper and CdS quantum dots. J. Phys. Chem. A 119, 4658–4666 (2015). https://doi.org/10.1021/jp511329d
- P. Li, L. Liu, W. An, H. Wang, H. Guo et al., Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanops and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B Environ. 266, 118618 (2020). https://doi.org/10.1016/j.apcatb.2020.118618
- Y. Yu, X.-A. Dong, P. Chen, Q. Geng, H. Wang et al., Synergistic effect of Cu single atoms and Au–Cu alloy nanops on TiO2 for efficient CO2 photoreduction. ACS Nano 15, 14453–14464 (2021). https://doi.org/10.1021/acsnano.1c03961
- S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes et al., CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ. Sci. 12, 2685–2696 (2019). https://doi.org/10.1039/C9EE00734B
- Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10, 1903879 (2020). https://doi.org/10.1002/aenm.201903879
- J. Zhang, S. Yuan, J. Lin, Cd1–xZnxS nanorod solid solutions with sulfur vacancies as effective electron traps for highly efficient photocatalytic hydrogen evolution. J. Phys. Chem. C 125, 25600–25607 (2021). https://doi.org/10.1021/acs.jpcc.1c08457
- P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu et al., Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 29, 1900093 (2019). https://doi.org/10.1002/adfm.201900093
- J. Wang, C. Yang, L. Mao, X. Cai, Z. Geng et al., Regulating the metallic Cu–Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Adv. Funct. Mater. 33, 2213901 (2023). https://doi.org/10.1002/adfm.202213901
- C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
- M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
- Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Single-atom heterogeneous photocatalysts. Chem. Catal. 1, 1173–1214 (2021). https://doi.org/10.1016/j.checat.2021.08.009
- C.B. Hiragond, N.S. Powar, J. Lee, S.-I. In, Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: activity, product selectivity, stability, and surface chemistry. Small 18, 2201428 (2022). https://doi.org/10.1002/smll.202201428
- A. Zhang, M. Zhou, S. Liu, M. Chai, S. Jiang, Synthesis of single-atom catalysts through top-down atomization approaches. Front. Catal. 1, 754167 (2021). https://doi.org/10.3389/fctls.2021.754167
- X. Tan, H. Li, S. Yang, Single-atom catalysts-enabled reductive upgrading of CO2. ChemCatChem 13, 4859–4877 (2021). https://doi.org/10.1002/cctc.202100966
- W. Xie, K. Li, X.-H. Liu, X. Zhang, H. Huang, P-mediated Cu–N4 sites in carbon nitride realizing CO2 photoreduction to C2 H4 with selectivity modulation. Adv. Mater. 35, e2208132 (2023). https://doi.org/10.1002/adma.202208132
- G. Wang, C.-T. He, R. Huang, J. Mao, D. Wang et al., Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 142, 19339–19345 (2020). https://doi.org/10.1021/jacs.0c09599
- R. Xu, D.-H. Si, S.-S. Zhao, Q.-J. Wu, X.-S. Wang et al., Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 145, 8261–8270 (2023). https://doi.org/10.1021/jacs.3c02370
- N. Li, B. Wang, Y. Si, F. Xue, J. Zhou et al., Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor. ACS Catal. 9, 5590–5602 (2019). https://doi.org/10.1021/acscatal.9b00223
- H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai et al., Atomically dispersed indium-copper dual-metal active sites promoting C–C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 61, e202208904 (2022). https://doi.org/10.1002/anie.202208904
- T. Wang, L. Chen, C. Chen, M. Huang, Y. Huang et al., Engineering catalytic interfaces in Cuδ+/CeO2–TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 16, 2306–2318 (2022). https://doi.org/10.1021/acsnano.1c08505
- D. Zeng, H. Wang, X. Zhu, H. Cao, W. Wang et al., Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: chloride enhanced C–C coupling mechanism. Appl. Catal. B Environ. 323, 122177 (2023). https://doi.org/10.1016/j.apcatb.2022.122177
- Y. Shen, C. Ren, L. Zheng, X. Xu, R. Long et al., Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 14, 1117 (2023). https://doi.org/10.1038/s41467-023-36778-5
- J.J. Plata, J. Graciani, J. Evans, J.A. Rodriguez, J.F. Sanz, Cu deposited on CeOx-modified TiO2(110): synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction. ACS Catal. 6, 4608–4615 (2016). https://doi.org/10.1021/acscatal.6b00948
- J. Yang, Y. Huang, H. Qi, C. Zeng, Q. Jiang et al., Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 13, 4244 (2022). https://doi.org/10.1038/s41467-022-31966-1
- T. Pu, W. Zhang, M. Zhu, Engineering heterogeneous catalysis with strong metal–support interactions: characterization, theory and manipulation. Angew. Chem. Int. Ed. 62, e202212278 (2023). https://doi.org/10.1002/anie.202212278
- S. Yu, P.K. Jain, Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019). https://doi.org/10.1038/s41467-019-10084-5
- H. Zhang, X. Chang, J.G. Chen, W.A. Goddard 3rd., B. Xu et al., Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10, 3340 (2019). https://doi.org/10.1038/s41467-019-11292-9
- D.-L. Meng, M.-D. Zhang, D.-H. Si, M.-J. Mao, Y. Hou et al., Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanop catalysts. Angew. Chem. Int. Ed. 60, 25485–25492 (2021). https://doi.org/10.1002/anie.202111136
- T. Zhang, J.C. Bui, Z. Li, A.T. Bell, A.Z. Weber et al., Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022). https://doi.org/10.1038/s41929-022-00751-0
- F. Zhang, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 268, 118380 (2020). https://doi.org/10.1016/j.apcatb.2019.118380
- Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30(10), 1706108 (2018). https://doi.org/10.1002/adma.201706108
- B. Wang, J. Zhao, H. Chen, Y.-X. Weng, H. Tang et al., Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl. Catal. B Environ. 293, 120182 (2021). https://doi.org/10.1016/j.apcatb.2021.120182
- C.-Y. Wu, C.-J. Lee, Y.-H. Yu, H.-W. Tsao, Y.-H. Su et al., Efficacious CO2 photoconversion to C2 and C3 hydrocarbons on upright SnS–SnS2 heterojunction nanosheet frameworks. ACS Appl. Mater. Interfaces 13, 4984–4992 (2021). https://doi.org/10.1021/acsami.0c18420
- I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy et al., Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanop decorated graphene oxide. Nano Lett. 14, 6097–6103 (2014). https://doi.org/10.1021/nl503609v
- H. Ge, B. Zhang, H. Liang, M. Zhang, K. Fang et al., Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal. B Environ. 263, 118133 (2020). https://doi.org/10.1016/j.apcatb.2019.118133
- L. Zhang, T. Liu, T. Liu, S. Hussain, Q. Li et al., Improving photocatalytic performance of defective titania for carbon dioxide photoreduction by Cu cocatalyst with SCN- ion modification. Chem. Eng. J. 463, 142358 (2023). https://doi.org/10.1016/j.cej.2023.142358
- A.E. Nogueira, G.T.S.T. Silva, J.A. Oliveira, O.F. Lopes, J.A. Torres et al., CuO decoration controls Nb2O5 photocatalyst selectivity in CO2 reduction. ACS Appl. Energy Mater. 3, 7629–7636 (2020). https://doi.org/10.1021/acsaem.0c01047
- H. Du, X. Gao, Q. Ma, X. Yang, T.-S. Zhao, Cu/PCN metal-semiconductor heterojunction by thermal reduction for photoreaction of CO2-aerated H2O to CH3OH and C2H5OH. ACS Omega 7, 16817–16826 (2022). https://doi.org/10.1021/acsomega.2c01827
- H. Du, Q. Ma, X. Gao, T.-S. Zhao, Cu/ZnV2O4 heterojunction interface promoted methanol and ethanol generation from CO2 and H2O under UV–vis light irradiation. ACS Omega 7, 7278–7286 (2022). https://doi.org/10.1021/acsomega.1c07108
- S. Xie, Y. Li, B. Sheng, W. Zhang, W. Wang et al., Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 310, 121320 (2022). https://doi.org/10.1016/j.apcatb.2022.121320
- N. Li, X. Liu, J. Zhou, W. Chen, M. Liu, Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Eng. J. 399, 125782 (2020). https://doi.org/10.1016/j.cej.2020.125782
- X. Yu, V.V. Ordomsky, A.Y. Khodakov, Selective deposition of cobalt and copper oxides on BiVO4 facets for enhancement of CO2 photocatalytic reduction to hydrocarbons. ChemCatChem 12, 740–749 (2020). https://doi.org/10.1002/cctc.201901115
- J. Cai, Y. Xiao, Y. Tursun, A. Abulizi, Z-type heterojunction of Cu2O-modified layered BiOI composites with superior photocatalytic performance for CO2 reduction. Mater. Sci. Semicond. Process. 149, 106891 (2022). https://doi.org/10.1016/j.mssp.2022.106891
- D. Kim, C.S. Kley, Y. Li, P. Yang, Copper nanop ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. U.S.A. 114, 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114
- B. Yang, L. Chen, S. Xue, H. Sun, K. Feng et al., Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nat. Commun. 13, 5122 (2022). https://doi.org/10.1038/s41467-022-32740-z
- C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978
- Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang et al., High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanop/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016). https://doi.org/10.1002/slct.201601169
- C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer et al., Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017). https://doi.org/10.1002/aenm.201602114
- D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q
- K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
- K.L. Bae, J. Kim, C.K. Lim, K.M. Nam, H. Song, Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 8, 1156 (2017). https://doi.org/10.1038/s41467-017-01165-4
- A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016). https://doi.org/10.1016/j.cattod.2015.06.009
- C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100
- K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. Engl. 56, 796–800 (2017). https://doi.org/10.1002/anie.201610432
- A.S. Varela, W. Ju, T. Reier, P. Strasser, Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016). https://doi.org/10.1021/acscatal.5b02550
- Y. Lum, B. Yue, P. Lobaccaro, A.T. Bell, J.W. Ager, Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017). https://doi.org/10.1021/acs.jpcc.7b03673
- W. Luo, X. Nie, M.J. Janik, A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967
- T. Cheng, H. Xiao, W.A. Goddard 3rd., Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. U.S.A. 114, 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114
- W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech et al., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012). https://doi.org/10.1039/c1cp22700a
- A. Eilert, F. Cavalca, F.S. Roberts, J. Osterwalder, C. Liu et al., Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017). https://doi.org/10.1021/acs.jpclett.6b02273
- R. Yang, J. Duan, P. Dong, Q. Wen, M. Wu et al., In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 61, e202116706 (2022). https://doi.org/10.1002/anie.202116706
- B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng et al., Crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microps. Angew. Chem. Int. Ed. 61, 202114080 (2021). https://doi.org/10.1002/anie.202114080
- P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
- Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003). https://doi.org/10.1016/S1381-1169(03)00016-5
- F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
- A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 128, 5883–5886 (2016). https://doi.org/10.1002/ange.201601582
- M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55, 6680–6684 (2016). https://doi.org/10.1002/anie.201601282
- Z. Wang, G. Yang, Z. Zhang, M. Jin, Y. Yin, Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 10, 4559–4564 (2016). https://doi.org/10.1021/acsnano.6b00602
- H. Xiao, W.A. Goddard 3rd., T. Cheng, Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. U.S.A. 114, 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
- H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
- H. Jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won et al., Electrochemical fragmentation of Cu2O nanops enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019). https://doi.org/10.1021/jacs.8b11237
- H. Xiao, T. Cheng, W.A. Goddard 3rd., Atomistic mechanisms underlying selectivities in C(1) and C(2) products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017). https://doi.org/10.1021/jacs.6b06846
- T. Burdyny, P.J. Graham, Y. Pang, C.-T. Dinh, M. Liu et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017). https://doi.org/10.1021/acssuschemeng.7b00023
- P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng et al., Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022). https://doi.org/10.1038/s41467-022-31427-9
- C.G. Morales-Guio, E.R. Cave, S. Nitopi, J.T. Feaster, L. Wang et al., Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9
- W. Zhang, P. He, C. Wang, T. Ding, T. Chen et al., Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction. J. Mater. Chem. A 8, 25970–25977 (2020). https://doi.org/10.1039/D0TA08369K
- W. Guo, S. Liu, X. Tan, R. Wu, X. Yan et al., Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts. Angew. Chem. Int. Ed. 60, 21979–21987 (2021). https://doi.org/10.1002/anie.202108635
- W. Li, L. Li, Q. Xia, S. Hong, L. Wang et al., Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B Environ. 318, 121823 (2022). https://doi.org/10.1016/j.apcatb.2022.121823
- J. Feng, L. Wu, S. Liu, L. Xu, X. Song et al., Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023). https://doi.org/10.1021/jacs.3c02428
- A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
- Z. Yang, F.E. Oropeza, K.H.L. Zhang, P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Mater. 8, 060901 (2020). https://doi.org/10.1063/5.0004194
- D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
- Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang et al., Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 34, 13544–13549 (2018). https://doi.org/10.1021/acs.langmuir.8b02837
- J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
- T. Zhang, Z. Li, J. Zhang, J. Wu, Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 387, 163–169 (2020). https://doi.org/10.1016/j.jcat.2020.05.002
- A.H.M. da Silva, S.J. Raaijman, C.S. Santana, J.M. Assaf, J.F. Gomes et al., Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology. J. Electroanal. Chem. 880, 114750 (2021). https://doi.org/10.1016/j.jelechem.2020.114750
- J. Timoshenko, H.S. Jeon, I. Sinev, F.T. Haase, A. Herzog et al., Linking the evolution of catalytic properties and structural changes in copper–zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 11, 3727–3736 (2020). https://doi.org/10.1039/D0SC00382D
- T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
- D. Wei, Y. Wang, C.-L. Dong, Z. Zhang, X. Wang et al., Decrypting the controlled product selectivity over Ag–Cu bimetallic surface alloys for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202217369 (2023). https://doi.org/10.1002/anie.202217369
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
- Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min et al., Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x
- A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5, 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
- D.-H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani et al., Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378–11386 (2018). https://doi.org/10.1021/jacs.8b06407
- D. Karapinar, N.T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
- H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu et al., Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020). https://doi.org/10.1038/s41560-020-0666-x
- Y. Liang, J. Zhao, Y. Yang, S.-F. Hung, J. Li et al., Stabilizing copper sites in coordination polymers toward efficient electrochemical C–C coupling. Nat. Commun. 14, 474 (2023). https://doi.org/10.1038/s41467-023-35993-4
- K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan et al., Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8
References
J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan et al., Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018). https://doi.org/10.1038/s41929-018-0170-x
S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu et al., Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017). https://doi.org/10.1126/science.aah4321
E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
S.I. Seneviratne, M.G. Donat, A.J. Pitman, R. Knutti, R.L. Wilby, Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016). https://doi.org/10.1038/nature16542
M. Forkel, N. Carvalhais, C. Rödenbeck, R. Keeling, M. Heimann et al., Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016). https://doi.org/10.1126/science.aac4971
Z.-J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. Int. Ed. 59, 8016–8035 (2020). https://doi.org/10.1002/anie.201907443
G.H. Han, J. Bang, G. Park, S. Choe, Y.J. Jang et al., Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small 19, 2205765 (2023). https://doi.org/10.1002/smll.202205765
X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
C. Wang, Z. Sun, Y. Zheng, Y.H. Hu, Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A 7, 865–887 (2019). https://doi.org/10.1039/C8TA09865D
Y. Gao, K. Qian, B. Xu, Z. Li, J. Zheng et al., Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals. Carbon Resour. Convers. 3, 46–59 (2020). https://doi.org/10.1016/j.crcon.2020.02.003
J. Albero, Y. Peng, H. García, Photocatalytic CO2 reduction to C2+ products. ACS Catal. 10, 5734–5749 (2020). https://doi.org/10.1021/acscatal.0c00478
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
M. Jouny, W. Luc, F. Jiao, General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514
Q. Lu, F. Jiao, Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016). https://doi.org/10.1016/j.nanoen.2016.04.009
E. Vahidzadeh, S. Zeng, A.P. Manuel, S. Riddell, P. Kumar et al., Asymmetric multipole plasmon-mediated catalysis shifts the product selectivity of CO2 photoreduction toward C2+ products. ACS Appl. Mater. Interfaces 13, 7248–7258 (2021). https://doi.org/10.1021/acsami.0c21067
X. Wu, Y. Li, G. Zhang, H. Chen, J. Li et al., Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 141, 5267–5274 (2019). https://doi.org/10.1021/jacs.8b12928
X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nanomicro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
V.S.S. Mosali, X. Zhang, Y. Liang, L. Li, G. Puxty et al., CdS-enhanced ethanol selectivity in electrocatalytic CO2 reduction at sulfide-derived Cu–Cd. Chemsuschem 14, 2924–2934 (2021). https://doi.org/10.1002/cssc.202100903
D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang et al., Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 281, 119426 (2021). https://doi.org/10.1016/j.apcatb.2020.119426
M.G. Méndez-Medrano, E. Kowalska, B. Ohtani, D. Bahena Uribe, C. Colbeau-Justin et al., Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. J. Chem. Phys. 153, 034705 (2020). https://doi.org/10.1063/5.0015277
Y. Song, M. Ichimura, H2O2 treatment of electrochemically deposited Cu2O thin films for enhancing optical absorption. Int. J. Photoenergy 2013, 738063 (2013). https://doi.org/10.1155/2013/738063
C.-F. Li, R.-T. Guo, Z.-R. Zhang, T. Wu, W.-G. Pan, Converting CO2 into value-added products by Cu2O-based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis. Small 19, 2207875 (2023). https://doi.org/10.1002/smll.202207875
W. Wang, L. Wang, W. Su, Y. Xing, Photocatalytic CO2 reduction over copper-based materials: a review. J. CO2 Util. 61, 102056 (2022). https://doi.org/10.1016/j.jcou.2022.102056
D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
Y. Lum, T. Cheng, W.A. Goddard 3rd., J.W. Ager, Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018). https://doi.org/10.1021/jacs.8b03986
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang et al., Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 143, 2984–2993 (2021). https://doi.org/10.1021/jacs.1c00206
F. Chang, M. Xiao, R. Miao, Y. Liu, M. Ren et al., Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem. Energy Rev. 5, 4 (2022). https://doi.org/10.1007/s41918-022-00139-5
M.K. Birhanu, M.-C. Tsai, A.W. Kahsay, C.-T. Chen, T.S. Zeleke et al., Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction. Adv. Mater. Interfaces 5, 1800919 (2018). https://doi.org/10.1002/admi.201800919
A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017). https://doi.org/10.1002/cphc.201700736
O. Zoubir, L. Atourki, H. Ait Ahsaine, A. BaQais, Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review. RSC Adv. 12, 30056–30075 (2022). https://doi.org/10.1039/D2RA05385C
W. Fu, Z. Liu, T. Wang, J. Liang, S. Duan et al., Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets. ACS Sustain. Chem. Eng. 8, 15223–15229 (2020). https://doi.org/10.1021/acssuschemeng.0c04873
B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang et al., Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols. ACS Appl. Mater. Interfaces 13, 39165–39177 (2021). https://doi.org/10.1021/acsami.1c03850
X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. Engl. 60, 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
K. Yang, Z. Yang, C. Zhang, Y. Gu, J. Wei et al., Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem. Eng. J. 418, 129344 (2021). https://doi.org/10.1016/j.cej.2021.129344
M.Q. Yang, M. Gao, M. Hong, G.W. Ho, Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 30, e1802894 (2018). https://doi.org/10.1002/adma.201802894
X. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine et al., Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012). https://doi.org/10.1002/anie.201205619
S. Yan, J. Wang, H. Gao, N. Wang, H. Yu et al., An ion-exchange phase transformation to ZnGa2O4 nanocube towards efficient solar fuel synthesis. Adv. Funct. Mater. 23, 758–763 (2013). https://doi.org/10.1002/adfm.201202042
L. Chen, M. Sun, J. Meng, B. Chu, X. Xie et al., Control of charge transfer direction by spatial engineering of redox active centers for boosting photocatalytic CO2 reduction. Appl. Surf. Sci. 637, 157948 (2023). https://doi.org/10.1016/j.apsusc.2023.157948
S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016). https://doi.org/10.1039/c5cp05665a
C.M. Gabardo, A. Seifitokaldani, J.P. Edwards, C.-T. Dinh, T. Burdyny et al., Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018). https://doi.org/10.1039/C8EE01684D
J. Wicks, M.L. Jue, V.A. Beck, J.S. Oakdale, N.A. Dudukovic et al., 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 33, e2003855 (2021). https://doi.org/10.1002/adma.202003855
F.P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm–2. Science 367, 661–666 (2020). https://doi.org/10.1126/science.aay4217
G. Díaz-Sainz, M. Alvarez-Guerra, A. Irabien, Continuous electroreduction of CO2 towards formate in gas-phase operation at high current densities with an anion exchange membrane. J. CO2 Util. 56, 101822 (2022). https://doi.org/10.1016/j.jcou.2021.101822
W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. 57, 6883–6887 (2018). https://doi.org/10.1002/anie.201803501
H.-K. Lim, H. Shin, W.A. Goddard 3rd., Y.J. Hwang, B.K. Min et al., Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. J. Am. Chem. Soc. 136, 11355–11361 (2014). https://doi.org/10.1021/ja503782w
K.A. Adegoke, R.O. Adegoke, A.O. Ibrahim, S.A. Adegoke, O.S. Bello, Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: realities and prospects of Cu-based materials. Sustain. Mater. Technol. 25, e00200 (2020). https://doi.org/10.1016/j.susmat.2020.e00200
U.J. Etim, C. Zhang, Z. Zhong, Impacts of the catalyst structures on CO2 activation on catalyst surfaces. Nanomaterials 11, 3265 (2021). https://doi.org/10.3390/nano11123265
X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D
Megha, K. Mondal, A. Banerjee, T.K. Ghanty, Adsorption and activation of CO2 on Zrn (n = 2–7) clusters. Phys. Chem. Chem. Phys. 22, 16877–16886 (2020). https://doi.org/10.1039/d0cp02505d
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013). https://doi.org/10.1002/anie.201207199
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020). https://doi.org/10.1016/j.mattod.2019.06.009
S. Samanta, R. Srivastava, Catalytic conversion of CO2 to chemicals and fuels. Mater. Adv. 1, 1506–1545 (2020). https://doi.org/10.1039/D0MA00293C
Megha, A. Banerjee, T.K. Ghanty, Role of metcar on the adsorption and activation of carbon dioxide: a DFT study. Phys. Chem. Chem. Phys. 23, 5559–5570 (2021). https://doi.org/10.1039/d0cp05756h
J. Jia, C. Qian, Y. Dong, Y.F. Li, H. Wang et al., Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering–perfecting imperfection. Chem. Soc. Rev. 46, 4631–4644 (2017). https://doi.org/10.1039/C7CS00026J
A.K. Mishra, A. Roldan, N.H. de Leeuw, CuO surfaces and CO2 activation: a dispersion-corrected DFT+U study. J. Phys. Chem. C 120, 2198–2214 (2016). https://doi.org/10.1021/acs.jpcc.5b10431
J. Lee, D.C. Sorescu, X. Deng, Electron-induced dissociation of CO2 on TiO2(110). J. Am. Chem. Soc. 133, 10066–10069 (2011). https://doi.org/10.1021/ja204077e
W. Chu, Q. Zheng, O.V. Prezhdo, J. Zhao, CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: Ab initio quantum dynamics simulation. J. Am. Chem. Soc. 142, 3214–3221 (2020). https://doi.org/10.1021/jacs.9b13280
S. Huygh, A. Bogaerts, E.C. Neyts, How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). J. Phys. Chem. C 120, 21659–21669 (2016). https://doi.org/10.1021/acs.jpcc.6b07459
Z. Cheng, B.J. Sherman, C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. J. Chem. Phys. 138, 014702 (2013). https://doi.org/10.1063/1.4773248
P. Gao, S. Li, X. Bu, S. Dang, Z. Liu et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017). https://doi.org/10.1038/nchem.2794
L. Liu, W. Fan, X. Zhao, H. Sun, P. Li et al., Surface dependence of CO2 adsorption on Zn2GeO4. Langmuir 28, 10415–10424 (2012). https://doi.org/10.1021/la301679h
H. Chen, T. Fan, Y. Ji, CO2 reduction mechanism on the Cu2O(110) surface: a first-principles study. ChemPhysChem 24, e202300047 (2023). https://doi.org/10.1002/cphc.202300047
L.I. Bendavid, E.A. Carter, CO2 adsorption on Cu2O(111): a DFT+U and DFT-D study. J. Phys. Chem. C 117, 26048–26059 (2013). https://doi.org/10.1021/jp407468t
Z. Gu, N. Yang, P. Han, M. Kuang, B. Mei et al., Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3, 1800449 (2019). https://doi.org/10.1002/smtd.201800449
C. Hiragond, S. Ali, S. Sorcar, Su-Il In, Hierarchical nanostructured photocatalysts for CO2 photoreduction. Catalysts 9, 370 (2019). https://doi.org/10.3390/catal9040370
H. Molavi, A. Eskandari, A. Shojaei, S.A. Mousavi, Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous Mesoporous Mater. 257, 193–201 (2018). https://doi.org/10.1016/j.micromeso.2017.08.043
X. Ma, L. Li, R. Chen, C. Wang, H. Li et al., Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Appl. Surf. Sci. 435, 494–502 (2018). https://doi.org/10.1016/j.apsusc.2017.11.069
R. Zhao, P. Ding, P. Wei, L. Zhang, Q. Liu et al., Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 31, 2009449 (2021). https://doi.org/10.1002/adfm.202009449
J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
J. Santatiwongchai, K. Faungnawakij, P. Hirunsit, Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: the solvent effect from explicit water–Cu(100) interface models. ACS Catal. 11, 9688–9701 (2021). https://doi.org/10.1021/acscatal.1c01486
A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
S. Pablo-García, F.L.P. Veenstra, L.R.L. Ting, R. García-Muelas, F. Dattila et al., Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022). https://doi.org/10.1039/d1cy01423d
G.M. Tomboc, S. Choi, T. Kwon, Y.J. Hwang, K. Lee, Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 32, e1908398 (2020). https://doi.org/10.1002/adma.201908398
N.J. Azhari, N. Nurdini, S. Mardiana, T. Ilmi, A.T.N. Fajar et al., Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: a review. J. CO2 Util. 59, 101969 (2022). https://doi.org/10.1016/j.jcou.2022.101969
L. Liao, G. Xie, X. Xie, N. Zhang, Advances in modulating the activity and selectivity of photocatalytic CO2 reduction to multicarbon products. J. Phys. Chem. C 127, 2766–2781 (2023). https://doi.org/10.1021/acs.jpcc.2c08963
M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 217, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2017.05.058
S. Rej, M. Bisetto, A. Naldoni, P. Fornasiero, Well-defined Cu2O photocatalysts for solar fuels and chemicals. J. Mater. Chem. A 9, 5915–5951 (2021). https://doi.org/10.1039/D0TA10181H
L. Yu, G. Li, X. Zhang, X. Ba, G. Shi et al., Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal. 6, 6444–6454 (2016). https://doi.org/10.1021/acscatal.6b01455
H. Huo, D. Liu, H. Feng, Z. Tian, X. Liu et al., Double-shelled Cu2O/MnOx mesoporous hollow structure for CO2 photoreduction with enhanced stability and activity. Nanoscale 12, 13912–13917 (2020). https://doi.org/10.1039/D0NR02944K
L. Cui, L. Hu, Q. Shen, X. Liu, H. Jia et al., Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light. Appl. Surf. Sci. 581, 152343 (2022). https://doi.org/10.1016/j.apsusc.2021.152343
S. Wang, X. Bai, Q. Li, Y. Ouyang, L. Shi et al., Selective visible-light driven highly efficient photocatalytic reduction of CO2 to C2H5OH by two-dimensional Cu2S monolayers. Nanoscale Horiz. 6, 661–668 (2021). https://doi.org/10.1039/d1nh00196e
H. Park, H.-H. Ou, A.J. Colussi, M.R. Hoffmann, Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanop elemental copper and CdS quantum dots. J. Phys. Chem. A 119, 4658–4666 (2015). https://doi.org/10.1021/jp511329d
P. Li, L. Liu, W. An, H. Wang, H. Guo et al., Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanops and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B Environ. 266, 118618 (2020). https://doi.org/10.1016/j.apcatb.2020.118618
Y. Yu, X.-A. Dong, P. Chen, Q. Geng, H. Wang et al., Synergistic effect of Cu single atoms and Au–Cu alloy nanops on TiO2 for efficient CO2 photoreduction. ACS Nano 15, 14453–14464 (2021). https://doi.org/10.1021/acsnano.1c03961
S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes et al., CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ. Sci. 12, 2685–2696 (2019). https://doi.org/10.1039/C9EE00734B
Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10, 1903879 (2020). https://doi.org/10.1002/aenm.201903879
J. Zhang, S. Yuan, J. Lin, Cd1–xZnxS nanorod solid solutions with sulfur vacancies as effective electron traps for highly efficient photocatalytic hydrogen evolution. J. Phys. Chem. C 125, 25600–25607 (2021). https://doi.org/10.1021/acs.jpcc.1c08457
P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu et al., Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 29, 1900093 (2019). https://doi.org/10.1002/adfm.201900093
J. Wang, C. Yang, L. Mao, X. Cai, Z. Geng et al., Regulating the metallic Cu–Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Adv. Funct. Mater. 33, 2213901 (2023). https://doi.org/10.1002/adfm.202213901
C. Gao, J. Low, R. Long, T. Kong, J. Zhu et al., Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840
M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
Y. Xia, M. Sayed, L. Zhang, B. Cheng, J. Yu, Single-atom heterogeneous photocatalysts. Chem. Catal. 1, 1173–1214 (2021). https://doi.org/10.1016/j.checat.2021.08.009
C.B. Hiragond, N.S. Powar, J. Lee, S.-I. In, Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: activity, product selectivity, stability, and surface chemistry. Small 18, 2201428 (2022). https://doi.org/10.1002/smll.202201428
A. Zhang, M. Zhou, S. Liu, M. Chai, S. Jiang, Synthesis of single-atom catalysts through top-down atomization approaches. Front. Catal. 1, 754167 (2021). https://doi.org/10.3389/fctls.2021.754167
X. Tan, H. Li, S. Yang, Single-atom catalysts-enabled reductive upgrading of CO2. ChemCatChem 13, 4859–4877 (2021). https://doi.org/10.1002/cctc.202100966
W. Xie, K. Li, X.-H. Liu, X. Zhang, H. Huang, P-mediated Cu–N4 sites in carbon nitride realizing CO2 photoreduction to C2 H4 with selectivity modulation. Adv. Mater. 35, e2208132 (2023). https://doi.org/10.1002/adma.202208132
G. Wang, C.-T. He, R. Huang, J. Mao, D. Wang et al., Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 142, 19339–19345 (2020). https://doi.org/10.1021/jacs.0c09599
R. Xu, D.-H. Si, S.-S. Zhao, Q.-J. Wu, X.-S. Wang et al., Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 145, 8261–8270 (2023). https://doi.org/10.1021/jacs.3c02370
N. Li, B. Wang, Y. Si, F. Xue, J. Zhou et al., Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor. ACS Catal. 9, 5590–5602 (2019). https://doi.org/10.1021/acscatal.9b00223
H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai et al., Atomically dispersed indium-copper dual-metal active sites promoting C–C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 61, e202208904 (2022). https://doi.org/10.1002/anie.202208904
T. Wang, L. Chen, C. Chen, M. Huang, Y. Huang et al., Engineering catalytic interfaces in Cuδ+/CeO2–TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 16, 2306–2318 (2022). https://doi.org/10.1021/acsnano.1c08505
D. Zeng, H. Wang, X. Zhu, H. Cao, W. Wang et al., Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: chloride enhanced C–C coupling mechanism. Appl. Catal. B Environ. 323, 122177 (2023). https://doi.org/10.1016/j.apcatb.2022.122177
Y. Shen, C. Ren, L. Zheng, X. Xu, R. Long et al., Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 14, 1117 (2023). https://doi.org/10.1038/s41467-023-36778-5
J.J. Plata, J. Graciani, J. Evans, J.A. Rodriguez, J.F. Sanz, Cu deposited on CeOx-modified TiO2(110): synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction. ACS Catal. 6, 4608–4615 (2016). https://doi.org/10.1021/acscatal.6b00948
J. Yang, Y. Huang, H. Qi, C. Zeng, Q. Jiang et al., Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 13, 4244 (2022). https://doi.org/10.1038/s41467-022-31966-1
T. Pu, W. Zhang, M. Zhu, Engineering heterogeneous catalysis with strong metal–support interactions: characterization, theory and manipulation. Angew. Chem. Int. Ed. 62, e202212278 (2023). https://doi.org/10.1002/anie.202212278
S. Yu, P.K. Jain, Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019). https://doi.org/10.1038/s41467-019-10084-5
H. Zhang, X. Chang, J.G. Chen, W.A. Goddard 3rd., B. Xu et al., Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10, 3340 (2019). https://doi.org/10.1038/s41467-019-11292-9
D.-L. Meng, M.-D. Zhang, D.-H. Si, M.-J. Mao, Y. Hou et al., Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanop catalysts. Angew. Chem. Int. Ed. 60, 25485–25492 (2021). https://doi.org/10.1002/anie.202111136
T. Zhang, J.C. Bui, Z. Li, A.T. Bell, A.Z. Weber et al., Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 5, 202–211 (2022). https://doi.org/10.1038/s41929-022-00751-0
F. Zhang, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 268, 118380 (2020). https://doi.org/10.1016/j.apcatb.2019.118380
Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30(10), 1706108 (2018). https://doi.org/10.1002/adma.201706108
B. Wang, J. Zhao, H. Chen, Y.-X. Weng, H. Tang et al., Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl. Catal. B Environ. 293, 120182 (2021). https://doi.org/10.1016/j.apcatb.2021.120182
C.-Y. Wu, C.-J. Lee, Y.-H. Yu, H.-W. Tsao, Y.-H. Su et al., Efficacious CO2 photoconversion to C2 and C3 hydrocarbons on upright SnS–SnS2 heterojunction nanosheet frameworks. ACS Appl. Mater. Interfaces 13, 4984–4992 (2021). https://doi.org/10.1021/acsami.0c18420
I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy et al., Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanop decorated graphene oxide. Nano Lett. 14, 6097–6103 (2014). https://doi.org/10.1021/nl503609v
H. Ge, B. Zhang, H. Liang, M. Zhang, K. Fang et al., Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal. B Environ. 263, 118133 (2020). https://doi.org/10.1016/j.apcatb.2019.118133
L. Zhang, T. Liu, T. Liu, S. Hussain, Q. Li et al., Improving photocatalytic performance of defective titania for carbon dioxide photoreduction by Cu cocatalyst with SCN- ion modification. Chem. Eng. J. 463, 142358 (2023). https://doi.org/10.1016/j.cej.2023.142358
A.E. Nogueira, G.T.S.T. Silva, J.A. Oliveira, O.F. Lopes, J.A. Torres et al., CuO decoration controls Nb2O5 photocatalyst selectivity in CO2 reduction. ACS Appl. Energy Mater. 3, 7629–7636 (2020). https://doi.org/10.1021/acsaem.0c01047
H. Du, X. Gao, Q. Ma, X. Yang, T.-S. Zhao, Cu/PCN metal-semiconductor heterojunction by thermal reduction for photoreaction of CO2-aerated H2O to CH3OH and C2H5OH. ACS Omega 7, 16817–16826 (2022). https://doi.org/10.1021/acsomega.2c01827
H. Du, Q. Ma, X. Gao, T.-S. Zhao, Cu/ZnV2O4 heterojunction interface promoted methanol and ethanol generation from CO2 and H2O under UV–vis light irradiation. ACS Omega 7, 7278–7286 (2022). https://doi.org/10.1021/acsomega.1c07108
S. Xie, Y. Li, B. Sheng, W. Zhang, W. Wang et al., Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl. Catal. B Environ. 310, 121320 (2022). https://doi.org/10.1016/j.apcatb.2022.121320
N. Li, X. Liu, J. Zhou, W. Chen, M. Liu, Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Eng. J. 399, 125782 (2020). https://doi.org/10.1016/j.cej.2020.125782
X. Yu, V.V. Ordomsky, A.Y. Khodakov, Selective deposition of cobalt and copper oxides on BiVO4 facets for enhancement of CO2 photocatalytic reduction to hydrocarbons. ChemCatChem 12, 740–749 (2020). https://doi.org/10.1002/cctc.201901115
J. Cai, Y. Xiao, Y. Tursun, A. Abulizi, Z-type heterojunction of Cu2O-modified layered BiOI composites with superior photocatalytic performance for CO2 reduction. Mater. Sci. Semicond. Process. 149, 106891 (2022). https://doi.org/10.1016/j.mssp.2022.106891
D. Kim, C.S. Kley, Y. Li, P. Yang, Copper nanop ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. U.S.A. 114, 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114
B. Yang, L. Chen, S. Xue, H. Sun, K. Feng et al., Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nat. Commun. 13, 5122 (2022). https://doi.org/10.1038/s41467-022-32740-z
C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978
Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang et al., High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanop/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016). https://doi.org/10.1002/slct.201601169
C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer et al., Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017). https://doi.org/10.1002/aenm.201602114
D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi et al., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
K.L. Bae, J. Kim, C.K. Lim, K.M. Nam, H. Song, Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 8, 1156 (2017). https://doi.org/10.1038/s41467-017-01165-4
A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016). https://doi.org/10.1016/j.cattod.2015.06.009
C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100
K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. Engl. 56, 796–800 (2017). https://doi.org/10.1002/anie.201610432
A.S. Varela, W. Ju, T. Reier, P. Strasser, Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016). https://doi.org/10.1021/acscatal.5b02550
Y. Lum, B. Yue, P. Lobaccaro, A.T. Bell, J.W. Ager, Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017). https://doi.org/10.1021/acs.jpcc.7b03673
W. Luo, X. Nie, M.J. Janik, A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967
T. Cheng, H. Xiao, W.A. Goddard 3rd., Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. U.S.A. 114, 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114
W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech et al., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012). https://doi.org/10.1039/c1cp22700a
A. Eilert, F. Cavalca, F.S. Roberts, J. Osterwalder, C. Liu et al., Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017). https://doi.org/10.1021/acs.jpclett.6b02273
R. Yang, J. Duan, P. Dong, Q. Wen, M. Wu et al., In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 61, e202116706 (2022). https://doi.org/10.1002/anie.202116706
B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng et al., Crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microps. Angew. Chem. Int. Ed. 61, 202114080 (2021). https://doi.org/10.1002/anie.202114080
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003). https://doi.org/10.1016/S1381-1169(03)00016-5
F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 128, 5883–5886 (2016). https://doi.org/10.1002/ange.201601582
M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55, 6680–6684 (2016). https://doi.org/10.1002/anie.201601282
Z. Wang, G. Yang, Z. Zhang, M. Jin, Y. Yin, Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 10, 4559–4564 (2016). https://doi.org/10.1021/acsnano.6b00602
H. Xiao, W.A. Goddard 3rd., T. Cheng, Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. U.S.A. 114, 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123
H. Jung, S.Y. Lee, C.W. Lee, M.K. Cho, D.H. Won et al., Electrochemical fragmentation of Cu2O nanops enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019). https://doi.org/10.1021/jacs.8b11237
H. Xiao, T. Cheng, W.A. Goddard 3rd., Atomistic mechanisms underlying selectivities in C(1) and C(2) products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017). https://doi.org/10.1021/jacs.6b06846
T. Burdyny, P.J. Graham, Y. Pang, C.-T. Dinh, M. Liu et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017). https://doi.org/10.1021/acssuschemeng.7b00023
P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng et al., Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022). https://doi.org/10.1038/s41467-022-31427-9
C.G. Morales-Guio, E.R. Cave, S. Nitopi, J.T. Feaster, L. Wang et al., Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9
W. Zhang, P. He, C. Wang, T. Ding, T. Chen et al., Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction. J. Mater. Chem. A 8, 25970–25977 (2020). https://doi.org/10.1039/D0TA08369K
W. Guo, S. Liu, X. Tan, R. Wu, X. Yan et al., Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts. Angew. Chem. Int. Ed. 60, 21979–21987 (2021). https://doi.org/10.1002/anie.202108635
W. Li, L. Li, Q. Xia, S. Hong, L. Wang et al., Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B Environ. 318, 121823 (2022). https://doi.org/10.1016/j.apcatb.2022.121823
J. Feng, L. Wu, S. Liu, L. Xu, X. Song et al., Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023). https://doi.org/10.1021/jacs.3c02428
A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
Z. Yang, F.E. Oropeza, K.H.L. Zhang, P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Mater. 8, 060901 (2020). https://doi.org/10.1063/5.0004194
D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang et al., Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 34, 13544–13549 (2018). https://doi.org/10.1021/acs.langmuir.8b02837
J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
T. Zhang, Z. Li, J. Zhang, J. Wu, Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 387, 163–169 (2020). https://doi.org/10.1016/j.jcat.2020.05.002
A.H.M. da Silva, S.J. Raaijman, C.S. Santana, J.M. Assaf, J.F. Gomes et al., Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology. J. Electroanal. Chem. 880, 114750 (2021). https://doi.org/10.1016/j.jelechem.2020.114750
J. Timoshenko, H.S. Jeon, I. Sinev, F.T. Haase, A. Herzog et al., Linking the evolution of catalytic properties and structural changes in copper–zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 11, 3727–3736 (2020). https://doi.org/10.1039/D0SC00382D
T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
D. Wei, Y. Wang, C.-L. Dong, Z. Zhang, X. Wang et al., Decrypting the controlled product selectivity over Ag–Cu bimetallic surface alloys for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202217369 (2023). https://doi.org/10.1002/anie.202217369
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min et al., Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021). https://doi.org/10.1038/s41467-020-20769-x
A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5, 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
D.-H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani et al., Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378–11386 (2018). https://doi.org/10.1021/jacs.8b06407
D. Karapinar, N.T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu et al., Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020). https://doi.org/10.1038/s41560-020-0666-x
Y. Liang, J. Zhao, Y. Yang, S.-F. Hung, J. Li et al., Stabilizing copper sites in coordination polymers toward efficient electrochemical C–C coupling. Nat. Commun. 14, 474 (2023). https://doi.org/10.1038/s41467-023-35993-4
K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan et al., Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8