Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy
Corresponding Author: Jianlin Shi
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 220
Abstract
The low immunogenicity of tumors remains one of the major limitations of cancer immunotherapy. Herein, we report a bacterial metabolism-initiated and photothermal-enhanced nanocatalytic therapy strategy to completely eradicate primary tumor by triggering highly effective antitumor immune responses. Briefly, a microbiotic nanomedicine, designated as Cu2O@ΔSt, has been constructed by conjugating PEGylated Cu2O nanoparticles on the surface of an engineered Salmonella typhimurium strain (ΔSt). Owing to the natural hypoxia tropism of ΔSt, Cu2O@ΔSt could selectively colonize hypoxic solid tumors, thus minimizing the adverse effects of the bacteria on normal tissues. Upon bacterial metabolism within the tumor, Cu2O@ΔSt generates H2S gas and other acidic substances in the tumor microenvironment (TME), which will in situ trigger the sulfidation of Cu2O to form CuS facilitating tumor-specific photothermal therapy (PTT) under local NIR laser irradiation on the one hand. Meanwhile, the dissolved Cu+ ions from Cu2O into the acidified TME enables the nanocatalytic tumor therapy by catalyzing the Fenton-like reaction of decomposing endogenous H2O2 into cytotoxic hydroxyl radicals (·OH) on the other hand. Such a bacterial metabolism-triggered PTT-enhanced nanocatalytic treatment could effectively destroy tumor cells and induce a massive release of tumor antigens and damage-associated molecular patterns, thereby sensitizing tumors to checkpoint blockade (ICB) therapy. The combined nanocatalytic and ICB therapy results in the much-inhibited growth of distant and metastatic tumors, and more importantly, induces a powerful immunological memory effect after the primary tumor ablation.
Highlights:
1 Novel-designed microbiotic nanomedicine capable of targeting hypoxic tumor sites.
2 First paradigm of bacterial metabolism-initiated and photothermal therapy-enhanced nanocatalytic therapy for ablating tumors and inducing immunogenic cell death.
3 Strong antitumor immunity activation for abscopal tumors therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Pan, J. Ryan, D. Pan, K.W. Wucherpfennig, A. Letai, Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 185(9), 1521–1538 (2022). https://doi.org/10.1016/j.cell.2022.03.030
- M.M.T. Leent, B. Priem, D.P. Schrijver, A. Dreu, S.R.J. Hofstraat et al., Regulating trained immunity with nanomedicine. Nat. Rev. Mater. 7, 465–481 (2022). https://doi.org/10.1038/s41578-021-00413-w
- K.M. Garland, T.L. Sheehy, J.T. Wilson, Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 122(6), 5977–6039 (2022). https://doi.org/10.1021/acs.chemrev.1c00750
- F. Ali, M.R. Hussain, A. Deep, H. Abu-Sbeih, T. Alrifai et al., Gastrointestinal, pancreatic, and hepatic toxicity profile of CTLA-4 immune checkpoint inhibitors alone and in combination with PD-1/PD-L1 inhibitors: a meta-analysis of clinical trials. J. Clin. Oncol. 37, 14117–14117 (2019). https://doi.org/10.1200/JCO.2019.37.15_suppl.e14117
- X. Han, H.J. Li, D.J. Zhou, Z.W. Chen, Z. Gu, Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 53(11), 2521–2533 (2020). https://doi.org/10.1021/acs.accounts.0c00339
- W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 10, 2025 (2019). https://doi.org/10.1038/s41467-019-09760-3
- B. Priem, M.M.T. Leent, A.J.P. Teunissen, A.M. Sofias, V.P. Mourits et al., Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183(3), 786–801 (2020). https://doi.org/10.1016/j.cell.2020.09.059
- H. Phuengkham, L. Ren, I. Shin, Y.T. Lim, Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 31(34), 1803322 (2019). https://doi.org/10.1002/adma.201803322
- J. Xu, Q. Ma, Y. Zhang, Z. Fei, Y. Sun et al., Yeast-derived nanops remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13, 110 (2022). https://doi.org/10.1038/s41467-021-27750-2
- Z. Wang, X. Gong, J. Li, H. Wang, X. Xu et al., Oxygen-delivering polyfluorocarbon nanovehicles improve tumor oxygenation and potentiate photodynamic-mediated antitumor immunity. ACS Nano 15(3), 5405–5419 (2021). https://doi.org/10.1021/acsnano.1c00033
- M. Chang, M. Wang, M. Wang, M. Shu, B. Ding et al., A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 31(51), 1905271 (2019). https://doi.org/10.1002/adma.201905271
- W. Jiang, L. Wang, Q. Wang, H. Zhou, Y. Ma et al., Reversing Immunosuppression in hypoxic and immune-cold tumors with ultrathin oxygen self-supplementing polymer nanosheets under near infrared light irradiation. Adv. Funct. Mater. 31(20), 2100354 (2021). https://doi.org/10.1002/adfm.202100354
- H. Jiang, Y. Guo, C. Wei, P. Hu, J. Shi, Nanocatalytic innate immunity activation by mitochondrial DNA oxidative damage for tumor-specific therapy. Adv. Mater. 33(20), 2008065 (2021). https://doi.org/10.1002/adma.202008065
- J.X. Fan, M.Y. Peng, H. Wang, H.R. Zheng, Z.L. Liu et al., Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31(16), e1808278 (2019). https://doi.org/10.1002/adma.201808278
- W. Wu, Y. Pu, H. Yao, H. Lin, J. Shi, Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today 42, 101377 (2022). https://doi.org/10.1016/j.nantod.2022.101377
- Z. Meng, X. Zhou, J. Xu, X. Han, Z. Dong et al., Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31(24), 1900927 (2019). https://doi.org/10.1002/adma.201900927
- J. Wang, Y. Chang, H. Luo, W. Jiang, L. Xu et al., Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses. Biomaterials 255, 120153 (2020). https://doi.org/10.1016/j.biomaterials.2020.120153
- W. Wu, L. Yu, Y. Pu, H. Yao, Y. Chen et al., Copper-enriched Prussian blue nanomedicine for in situ disulfiram toxification and photothermal antitumor amplification. Adv. Mater. 32(17), 2000542 (2020). https://doi.org/10.1002/adma.202000542
- Y. Zhang, Y. Wang, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13(10), 11967–11980 (2019). https://doi.org/10.1021/acsnano.9b06040
- H. Zhao, J.B. Xu, C. Feng, J.Y. Ren, L. Bao et al., Tailoring aggregation extent of photosensitizers to boost phototherapy potency for eliciting systemic antitumor immunity. Adv. Mater. 34(8), 2106390 (2022). https://doi.org/10.1002/adma.202106390
- H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler et al., Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47(7), 2280–2297 (2018). https://doi.org/10.1039/c7cs00522a
- B. Shi, N. Ren, L.Y. Gu, G. Xu, R.C. Wang et al., Theranostic nanoplatform with hydrogen sulfide activatable NIR responsiveness for imaging-guided on-demand drug release. Angew Chem. Int. Ed. 58(47), 16826–16830 (2019). https://doi.org/10.1002/ange.201909883
- Z.M. Wang, X. Zhen, P.K. Upputuri, Y.Y. Jiang, J.W. Lau et al., Redox-activatable and acid-enhanced nanotheranostics for second near-infrared photoacoustic tomography and combined photothermal tumor therapy. ACS Nano 13(5), 5816–5825 (2019). https://doi.org/10.1021/acsnano.9b01411
- W.L. Liu, T. Liu, M.Z. Zou, W.Y. Yu, C.X. Li et al., Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 30(35), 1802006 (2018). https://doi.org/10.1002/adma.201802006
- D. Liu, M. Liu, Y. Wan, X. Zhou, S. Yang et al., Remodeling endogenous H2S microenvironment in colon cancer to enhance chemodynamic therapy. Chem. Eng. J. 422, 130098 (2021). https://doi.org/10.1016/j.cej.2021.130098
- Y. Wang, M. Qian, Y. Du, J. Zhou, T. Huo et al., Tumor-selective biodegradation-regulated photothermal H2S donor for redox dyshomeostasis- and glycolysis disorder-enhanced theranostics. Small 18(8), 2106168 (2022). https://doi.org/10.1002/smll.202106168
- Z. Yang, Y. Luo, Y. Hu, K. Liang, G. He et al., Photothermo-promoted nanocatalysis combined with H2S-mediated respiration inhibition for efficient cancer therapy. Adv. Funct. Mater. 31(8), 2007991 (2021). https://doi.org/10.1002/adfm.202007991
- F. Chen, Z. Zang, Z. Chen, L. Cui, Z. Chang et al., Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 214, 119226 (2019). https://doi.org/10.1016/j.biomaterials.2019.119226
- W. Chen, Z. Guo, Y. Zhu, N. Qiao, Z. Zhang et al., Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 30(1), 1906623 (2020). https://doi.org/10.1002/adfm.201906623
- X. Lu, S. Gao, H. Lin, H. Tian, D. Xu et al., Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac022
- B. Yu, M. Yang, L. Shi, Y. Yao, Q. Jiang et al., Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci. Rep. 2, 436 (2012). https://doi.org/10.1038/srep00436
- W. Wu, Y. Pu, J. Shi, Dual size/charge-switchable nanocatalytic medicine for deep tumor therapy. Adv. Sci. 8(9), 2002816 (2021). https://doi.org/10.1002/advs.202002816
- W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10, 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
- L.P. Zhao, R.R. Zheng, J.Q. Huang, X.Y. Chen, F.A. Deng et al., Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy. ACS Nano 14(12), 17100–17113 (2020). https://doi.org/10.1021/acsnano.0c06765
- I. Kinjyo, J. Qin, S.Y. Tan, C.J. Wellard, P. Mrass et al., Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 6, 6301 (2015). https://doi.org/10.1038/ncomms7301
- H. Yuan, W. Jiang, C.A. Roemeling, Y. Qie, X. Liu et al., Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12(8), 763–769 (2017). https://doi.org/10.1038/nnano.2017.69
- E. Teixeiro, M.A. Daniels, S.E. Hamilton, A.G. Schrum, R. Bragado et al., Different T cell receptor signals determine CD8+ memory versus effector development. Science 323(5913), 502–505 (2009). https://doi.org/10.1126/science.116361
- S.M. Kaech, E.J. Wherry, R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2(4), 251–262 (2002). https://doi.org/10.1038/nri778
References
R. Pan, J. Ryan, D. Pan, K.W. Wucherpfennig, A. Letai, Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 185(9), 1521–1538 (2022). https://doi.org/10.1016/j.cell.2022.03.030
M.M.T. Leent, B. Priem, D.P. Schrijver, A. Dreu, S.R.J. Hofstraat et al., Regulating trained immunity with nanomedicine. Nat. Rev. Mater. 7, 465–481 (2022). https://doi.org/10.1038/s41578-021-00413-w
K.M. Garland, T.L. Sheehy, J.T. Wilson, Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 122(6), 5977–6039 (2022). https://doi.org/10.1021/acs.chemrev.1c00750
F. Ali, M.R. Hussain, A. Deep, H. Abu-Sbeih, T. Alrifai et al., Gastrointestinal, pancreatic, and hepatic toxicity profile of CTLA-4 immune checkpoint inhibitors alone and in combination with PD-1/PD-L1 inhibitors: a meta-analysis of clinical trials. J. Clin. Oncol. 37, 14117–14117 (2019). https://doi.org/10.1200/JCO.2019.37.15_suppl.e14117
X. Han, H.J. Li, D.J. Zhou, Z.W. Chen, Z. Gu, Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 53(11), 2521–2533 (2020). https://doi.org/10.1021/acs.accounts.0c00339
W. Yue, L. Chen, L. Yu, B. Zhou, H. Yin et al., Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 10, 2025 (2019). https://doi.org/10.1038/s41467-019-09760-3
B. Priem, M.M.T. Leent, A.J.P. Teunissen, A.M. Sofias, V.P. Mourits et al., Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183(3), 786–801 (2020). https://doi.org/10.1016/j.cell.2020.09.059
H. Phuengkham, L. Ren, I. Shin, Y.T. Lim, Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 31(34), 1803322 (2019). https://doi.org/10.1002/adma.201803322
J. Xu, Q. Ma, Y. Zhang, Z. Fei, Y. Sun et al., Yeast-derived nanops remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13, 110 (2022). https://doi.org/10.1038/s41467-021-27750-2
Z. Wang, X. Gong, J. Li, H. Wang, X. Xu et al., Oxygen-delivering polyfluorocarbon nanovehicles improve tumor oxygenation and potentiate photodynamic-mediated antitumor immunity. ACS Nano 15(3), 5405–5419 (2021). https://doi.org/10.1021/acsnano.1c00033
M. Chang, M. Wang, M. Wang, M. Shu, B. Ding et al., A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 31(51), 1905271 (2019). https://doi.org/10.1002/adma.201905271
W. Jiang, L. Wang, Q. Wang, H. Zhou, Y. Ma et al., Reversing Immunosuppression in hypoxic and immune-cold tumors with ultrathin oxygen self-supplementing polymer nanosheets under near infrared light irradiation. Adv. Funct. Mater. 31(20), 2100354 (2021). https://doi.org/10.1002/adfm.202100354
H. Jiang, Y. Guo, C. Wei, P. Hu, J. Shi, Nanocatalytic innate immunity activation by mitochondrial DNA oxidative damage for tumor-specific therapy. Adv. Mater. 33(20), 2008065 (2021). https://doi.org/10.1002/adma.202008065
J.X. Fan, M.Y. Peng, H. Wang, H.R. Zheng, Z.L. Liu et al., Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31(16), e1808278 (2019). https://doi.org/10.1002/adma.201808278
W. Wu, Y. Pu, H. Yao, H. Lin, J. Shi, Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today 42, 101377 (2022). https://doi.org/10.1016/j.nantod.2022.101377
Z. Meng, X. Zhou, J. Xu, X. Han, Z. Dong et al., Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31(24), 1900927 (2019). https://doi.org/10.1002/adma.201900927
J. Wang, Y. Chang, H. Luo, W. Jiang, L. Xu et al., Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses. Biomaterials 255, 120153 (2020). https://doi.org/10.1016/j.biomaterials.2020.120153
W. Wu, L. Yu, Y. Pu, H. Yao, Y. Chen et al., Copper-enriched Prussian blue nanomedicine for in situ disulfiram toxification and photothermal antitumor amplification. Adv. Mater. 32(17), 2000542 (2020). https://doi.org/10.1002/adma.202000542
Y. Zhang, Y. Wang, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13(10), 11967–11980 (2019). https://doi.org/10.1021/acsnano.9b06040
H. Zhao, J.B. Xu, C. Feng, J.Y. Ren, L. Bao et al., Tailoring aggregation extent of photosensitizers to boost phototherapy potency for eliciting systemic antitumor immunity. Adv. Mater. 34(8), 2106390 (2022). https://doi.org/10.1002/adma.202106390
H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler et al., Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47(7), 2280–2297 (2018). https://doi.org/10.1039/c7cs00522a
B. Shi, N. Ren, L.Y. Gu, G. Xu, R.C. Wang et al., Theranostic nanoplatform with hydrogen sulfide activatable NIR responsiveness for imaging-guided on-demand drug release. Angew Chem. Int. Ed. 58(47), 16826–16830 (2019). https://doi.org/10.1002/ange.201909883
Z.M. Wang, X. Zhen, P.K. Upputuri, Y.Y. Jiang, J.W. Lau et al., Redox-activatable and acid-enhanced nanotheranostics for second near-infrared photoacoustic tomography and combined photothermal tumor therapy. ACS Nano 13(5), 5816–5825 (2019). https://doi.org/10.1021/acsnano.9b01411
W.L. Liu, T. Liu, M.Z. Zou, W.Y. Yu, C.X. Li et al., Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 30(35), 1802006 (2018). https://doi.org/10.1002/adma.201802006
D. Liu, M. Liu, Y. Wan, X. Zhou, S. Yang et al., Remodeling endogenous H2S microenvironment in colon cancer to enhance chemodynamic therapy. Chem. Eng. J. 422, 130098 (2021). https://doi.org/10.1016/j.cej.2021.130098
Y. Wang, M. Qian, Y. Du, J. Zhou, T. Huo et al., Tumor-selective biodegradation-regulated photothermal H2S donor for redox dyshomeostasis- and glycolysis disorder-enhanced theranostics. Small 18(8), 2106168 (2022). https://doi.org/10.1002/smll.202106168
Z. Yang, Y. Luo, Y. Hu, K. Liang, G. He et al., Photothermo-promoted nanocatalysis combined with H2S-mediated respiration inhibition for efficient cancer therapy. Adv. Funct. Mater. 31(8), 2007991 (2021). https://doi.org/10.1002/adfm.202007991
F. Chen, Z. Zang, Z. Chen, L. Cui, Z. Chang et al., Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 214, 119226 (2019). https://doi.org/10.1016/j.biomaterials.2019.119226
W. Chen, Z. Guo, Y. Zhu, N. Qiao, Z. Zhang et al., Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 30(1), 1906623 (2020). https://doi.org/10.1002/adfm.201906623
X. Lu, S. Gao, H. Lin, H. Tian, D. Xu et al., Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac022
B. Yu, M. Yang, L. Shi, Y. Yao, Q. Jiang et al., Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci. Rep. 2, 436 (2012). https://doi.org/10.1038/srep00436
W. Wu, Y. Pu, J. Shi, Dual size/charge-switchable nanocatalytic medicine for deep tumor therapy. Adv. Sci. 8(9), 2002816 (2021). https://doi.org/10.1002/advs.202002816
W. Li, J. Yang, L. Luo, M. Jiang, B. Qin et al., Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10, 3349 (2019). https://doi.org/10.1038/s41467-019-11269-8
L.P. Zhao, R.R. Zheng, J.Q. Huang, X.Y. Chen, F.A. Deng et al., Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy. ACS Nano 14(12), 17100–17113 (2020). https://doi.org/10.1021/acsnano.0c06765
I. Kinjyo, J. Qin, S.Y. Tan, C.J. Wellard, P. Mrass et al., Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat. Commun. 6, 6301 (2015). https://doi.org/10.1038/ncomms7301
H. Yuan, W. Jiang, C.A. Roemeling, Y. Qie, X. Liu et al., Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12(8), 763–769 (2017). https://doi.org/10.1038/nnano.2017.69
E. Teixeiro, M.A. Daniels, S.E. Hamilton, A.G. Schrum, R. Bragado et al., Different T cell receptor signals determine CD8+ memory versus effector development. Science 323(5913), 502–505 (2009). https://doi.org/10.1126/science.116361
S.M. Kaech, E.J. Wherry, R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2(4), 251–262 (2002). https://doi.org/10.1038/nri778