Adsorption Site Regulations of [W–O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density
Corresponding Author: Jianlin Shi
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 212
Abstract
Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W–O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm−2) and HzOR (78.99 mV at 10,00 mA cm−2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm−2. The introduction of [W–O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W–O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm−2 h−1 at room temperature without external electricity supply.
Highlights:
1 The [W–O] group with strong adsorption capacity is introduced into CoP to fabricate a bi-functional catalyst towards HER and HzOR.
2 The cell voltage of HzOR coupled electrolyzer with 6W–O–CoP/NF as both anode and cathode catalysts is 1.634 V lower than that of the water splitting system at 100 mA cm−2.
3 A proof-of-concept self-powered H2 production system is assembled to realize the H2 evolution rate of 3.53 mmol cm−2 h−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.F. Fan, Y.X. Ji, G.X. Wang, J.X. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740
- T.Z. Wang, X.J. Cao, L.F. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61, e202213328 (2022). https://doi.org/10.1002/anie.202213328
- G.X. Wang, J.X. Chen, P.W. Cai, J.C. Jia, Z.H. Wen, A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. J. Mater. Chem. A 6, 17763–17770 (2018). https://doi.org/10.1039/C8TA06827E
- X. Liu, Y. Han, Y. Guo, X.T. Zhao, D. Pan et al., Electrochemical hydrogen generation by oxygen evolution reaction-alternative anodic oxidation reactions. Adv. Energy Sustain. Res. 3, 2200005 (2022). https://doi.org/10.1002/aesr.202200005
- J.S. Wang, X.Y. Guan, H.B. Li, S.Y. Zeng, R. Li et al., Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy 100, 107467 (2022). https://doi.org/10.1016/j.nanoen.2022.107467
- Y. Yu, S.J. Lee, J. Theerthagiri, Y. Lee, M.Y. Choi, Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal. B-Environ. 316, 121603 (2022). https://doi.org/10.1016/j.apcatb.2022.121603
- R.Q. Li, S.Y. Zeng, B. Sang, C.Z. Xue, K.G. Qu et al., Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Res. 16, 2543–2550 (2023). https://doi.org/10.1007/s12274-022-4912-3
- X.J. Zhai, Q.P. Yu, J.Q. Chi, X.P. Wang, B. Li et al., Accelerated dehydrogenation kinetics through Ru, Fe dual-doped Ni2P as bifunctional electrocatalyst for hydrazine-assisted self-powered hydrogen generation. Nano Energy 105, 108008 (2023). https://doi.org/10.1016/j.nanoen.2022.108008
- H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15, 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
- Q. Liu, X.B. Liao, Y.H. Tang, J.H. Wang, X.Z. Lv et al., Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy Environ. Sci. 15, 3246–3256 (2022). https://doi.org/10.1039/D2EE01463G
- X.Y. Fu, D.F. Cheng, C.Z. Wan, S. Kumari, H.T. Zhang et al., Bifunctional ultrathin RhRu0.5 alloy nanowire electrocatalysts for hydrazine assisted water splitting. Adv. Mater. 35, e2301533 (2023). https://doi.org/10.1002/adma.202301533
- J. Zhang, Y.X. Wang, C.J. Yang, S.A. Chen, Z.J. Li et al., Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 14, 4650–4657 (2021). https://doi.org/10.1007/s12274-021-3397-9
- Y.P. Zhu, K. Fan, C.S. Hsu, G. Chen, C.S. Chen et al., Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301133
- K. Zhang, Y.X. Duan, N. Graham, W.Z. Yu, Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction. Appl. Catal. B-Environ. 323, 122144 (2023). https://doi.org/10.1016/j.apcatb.2022.122144
- J.Y. Wang, J.R. Feng, Y.Y. Li, F.L. Lai, G.C. Wang et al., Multilayered molybdate microflowers fabricated by one-pot reaction for efficient water splitting. Adv. Sci. 10, 122144 (2023). https://doi.org/10.1002/advs.202206952
- M. Zhou, X.L. Jiang, W.J. Kong, H.F. Li, F. Lu et al., Synergistic effect of dual-doped carbon on Mo2C nanocrystals facilitates alkaline hydrogen evolution. Nano-Micro Lett. 15, 166 (2023). https://doi.org/10.1007/s40820-023-01135-0
- X.H. Xu, T. Wang, W.B. Lu, L.J. Dong, H.S. Zhang et al., CoxP@Co3O4 nanocomposite on cobalt foam as efficient bifunctional electrocatalysts for hydrazine-assisted hydrogen production. ACS Sustain. Chem. Eng. 9, 4688–4701 (2021). https://doi.org/10.1021/acssuschemeng.1c00705
- K. Zhang, G. Zhang, Q.H. Ji, J.H. Qu, H.J. Liu, Arrayed cobalt phosphide electrocatalyst achieves low energy consumption and persistent H2 liberation from anodic chemical conversion. Nano-Micro Lett. 12, 154 (2020). https://doi.org/10.1007/s40820-020-00486-2
- H.Q. Song, M. Wu, Z.Y. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs Nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021). https://doi.org/10.1002/anie.202017102
- X.Y. Wang, W.H. Zhang, Q.P. Yu, X.B. Liu, Q.C. Liang et al., Fe-doped CoNiP@N-doped carbon nanosheet arrays for hydrazine oxidation assisting energy-saving seawater splitting. Chem. Eng. J. 446, 136987 (2022). https://doi.org/10.1016/j.cej.2022.136987
- H.R. Sun, L.Y. Gao, A. Kumar, Z.B. Cao, Z. Chang et al., Superaerophobic CoP nanowire arrays as a highly effective anode electrocatalyst for direct hydrazine fuel cells. ACS Appl. Energy Mater. 5, 9455–9462 (2022). https://doi.org/10.1021/acsaem.2c01005
- J.M. Wang, R.M. Kong, A.M. Asiri, X.P. Sun, Replacing oxygen evolution with hydrazine oxidation at the anode for energy-saving electrolytic hydrogen production. ChemElectroChem 4, 481–484 (2017). https://doi.org/10.1002/celc.201600759
- T. Meng, J.W. Qin, D. Xu, M.H. Cao, Atomic heterointerface-induced local charge distribution and enhanced water adsorption behavior in a cobalt phosphide electrocatalyst for self-powered highly efficient overall water splitting. ACS Appl. Mater. Interfaces 11, 9023–9032 (2019). https://doi.org/10.1021/acsami.8b19341
- S. Geng, F.Y. Tian, M.G. Li, X. Guo, Y.S. Yu et al., Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 9, 8561–8567 (2021). https://doi.org/10.1039/D1TA00044F
- K. Xu, H. Cheng, H.F. Lv, J.Y. Wang, L.Q. Liu et al., Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 30, 1703322 (2018). https://doi.org/10.1002/adma.201703322
- J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong et al., Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56, 2960–2964 (2017). https://doi.org/10.1002/anie.201611767
- Y.N. Zhou, W.H. Hu, Y.N. Zhen, B. Dong, Y.W. Dong et al., Metallic MoOx layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA/cm2. Appl. Catal. B-Environ. 309, 121230 (2022). https://doi.org/10.1016/j.apcatb.2022.121230
- W.H. Liu, H.M. Zhang, M.Y. Ma, D. Cao, D.J. Cheng, Constructing a highly active amorphous WO3/crystalline CoP interface for enhanced hydrogen evolution at different pH values. ACS Appl. Energy Mater. 5, 10794–10801 (2022). https://doi.org/10.1021/acsaem.2c01489
- J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
- Y.N. Men, Y. Tan, P. Li, X.M. Cao, S.F. Jia et al., Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 284, 119718 (2021). https://doi.org/10.1016/j.apcatb.2020.119718
- G.Y. Zhou, M. Li, Y.L. Li, H. Dong, D.M. Sun et al., Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 30, 1905252 (2020). https://doi.org/10.1002/adfm.201905252
- K. Xu, Y.Q. Sun, Y.M. Sun, Y.Q. Zhang, G.C. Jia et al., Yin-yang harmony: metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett. 3, 2750–2756 (2018). https://doi.org/10.1021/acsenergylett.8b01893
- G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- PE. Blöchi. Projector augmented-wave method. Phys Rev B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- B. Hammer, L.B Hansen, J.K. Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals Physical Review B 59(11) 7413-7421 (1999). https://doi.org/10.1103/PhysRevB.59.7413
- L. Goerigk, S. Grimme. A thorough benchmark of density functional methods for general main group thermochemistry kinetics and noncovalent interactions Phys Chem Chem Phys 13(14), 6670 (2011). https://doi.org/10.1039/c0cp02984j
- J. Neugebauer, M. Scheffler. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Review B 46(24), 16067–16080 (1992) https://doi.org/10.1103/PhysRevB.46.16067
- A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phy 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- Graeme, Henkelman Andri, Arnaldsson Hannes, Jónsson (2006) A fast and robust algorithm for Bader decomposition of charge density Computational Materials Science 36(3) 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010
- Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single Co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, 2006477 (2021). https://doi.org/10.1002/smll.202006477
- G.H. Liu, T.Q. Nie, H.J. Wang, T.Y. Shen, X.L. Sun et al., Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanops to nanoclusters and single atoms. ACS Catal. 12, 10711–10717 (2022). https://doi.org/10.1021/acscatal.2c02628
- W.Y. Zhang, B.L. Huang, K. Wang, W.X. Yang, F. Lv et al., WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 11, 2003192 (2021). https://doi.org/10.1002/aenm.202003192
- D. Rathore, A. Banerjee, S. Pande, Bifunctional tungsten-doped Ni(OH)2/NiOOH nanosheets for overall water splitting in an alkaline medium. ACS Appl. Nano Mater. 5, 2664–2677 (2022). https://doi.org/10.1021/acsanm.1c04359
- J.Q. Yan, L.Q. Kong, Y.J. Ji, J. White, Y.Y. Li et al., Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149 (2019). https://doi.org/10.1038/s41467-019-09845-z
- S.W. Niu, Y.Y. Fang, D.W. Rao, G.J. Liang, S.Y. Li et al., Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 18, 2106870 (2022). https://doi.org/10.1002/smll.202106870
- K. Xu, H. Ding, M.X. Zhang, M. Chen, Z.K. Hao et al., Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 29, 1606980 (2017). https://doi.org/10.1002/adma.201606980
- B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
- J.C. Li, Y. Li, J.A. Wang, C. Zhang, H.J. Ma et al., Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation-boosted alkaline hydrogen evolution. Adv. Funct. Mater. 32, 2109439 (2022). https://doi.org/10.1002/adfm.202109439
- R.Z. Chen, J.F. Yao, Q.F. Gu, S. Smeets, C. Baerlocher et al., A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 49, 9500–9502 (2013). https://doi.org/10.1039/C3CC44342F
- D.C. Yang, J.A. Hernandez, R.S. Katiyar, L.F. Fonseca, Surface morphology-controlled fabrication of Na2WO4 films with high structural stability. Chem. Phys. Lett. 653, 73–77 (2016). https://doi.org/10.1016/j.cplett.2016.04.071
- Y.K. Voron’ko, A.A. Sobol, Influence of cations on the vibrational spectra and structure of WO4 complexes in molten tungstates. Inorg. Mater. 41, 420–428 (2005). https://doi.org/10.1016/j.cplett.2016.04.071
- J. Wu, N.N. Han, S.C. Ning, T. Chen, C.Y. Zhu et al., Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 8, 14825–14832 (2020). https://doi.org/10.1021/acssuschemeng.0c04322
- C. Guan, W. Xiao, H.J. Wu, X.M. Liu, W.J. Zang et al., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018). https://doi.org/10.1016/j.nanoen.2018.03.034
- Y.F. Huang, F.T. Kong, H. Tian, F.L. Pei, Y.F. Chen et al., Ultra-uniformly dispersed Cu nanops embedded in N-doped carbon as a robust oxygen electrocatalyst. ACS Sustain. Chem. Eng. 10, 6370–6381 (2022). https://doi.org/10.1021/acssuschemeng.2c01086
- X.L. Ma, G.Q. Ning, Y.Z. Sun, Y.J. Pu, J.S. Gao, High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79, 310–320 (2014). https://doi.org/10.1016/j.carbon.2014.07.072
- F. Xu, A. Fahmi, Y.M. Zhao, Y.D. Xia, Y.Q. Zhu, Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil. Nanoscale 4, 7031–7037 (2012). https://doi.org/10.1039/C2NR32169F
- Y. Pan, K.A. Sun, Y. Lin, X. Cao, Y.S. Cheng et al., Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 56, 411–419 (2019). https://doi.org/10.1016/j.nanoen.2018.11.034
- X. Feng, B.W. Liu, K.X. Guo, L.F. Fan, G.X. Wang et al., Anodic electrocatalysis of glycerol oxidation for hybrid alkali/acid electrolytic hydrogen generation. J. Electrochem. 29, 2215005 (2023). https://doi.org/10.13208/j.electrochem.2215005
- X.K. Huang, X.P. Xu, C. Li, D.F. Wu, D.J. Cheng et al., Vertical CoP nanoarray wrapped by N,P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv. Energy Mater. 9, 1803970 (2019). https://doi.org/10.1002/aenm.201803970
- X. Wang, Z.J. Ma, L.L. Chai, L.Q. Xu, Z.Y. Zhu et al., MOF derived N-doped carbon coated CoP p/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643–651 (2019). https://doi.org/10.1016/j.carbon.2018.10.023
- J. Yu, Q.Q. Li, Y. Li, C.Y. Xu, L. Zhen et al., Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
- R.P. Li, H. Xu, P.X. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
- Q. Li, Y.C. Wang, J. Zeng, Q.M. Wu, Q.C. Wang et al., Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chinese Chem. Lett. 32, 3355–3358 (2021). https://doi.org/10.1016/j.cclet.2021.03.063
- J. Yao, M.Y. Zhang, X.Z. Ma, L.L. Xu, F. Gao et al., Interfacial electronic modulation of CoP–CoO p–p type heterojunction for enhancing oxygen evolution reaction. J. Colloid Interface Sci. 607, 1343–1352 (2022). https://doi.org/10.1016/j.jcis.2021.09.097
- J.C. Liu, C.Y. Tang, Z.J. Ke, R. Chen, H.B. Wang et al., Optimizing hydrogen adsorption by d–d orbital modulation for efficient hydrogen evolution catalysis. Adv. Energy Mater. 12, 2103301 (2022). https://doi.org/10.1002/aenm.202103301
- Y. Lin, Y. Pan, S.J. Liu, K.A. Sun, Y.S. Cheng et al., Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl. Catal. B-Environ. 259, 118039 (2019). https://doi.org/10.1016/j.apcatb.2019.118039
- Y. Yang, Y.M. Qian, H.J. Li, Z.H. Zhang, Y.W. Mu et al., O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020). https://doi.org/10.1126/sciadv.aba658
- Y.Y. Gao, S. Qian, H.J. Wang, W.Z. Yuan, Y. Fan et al., Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl. Catal. B-Environ. 320, 122014 (2023). https://doi.org/10.1016/j.apcatb.2022.122014
- H.Y. Lu, W. Fan, Y.P. Huang, T.X. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanops as all-pH hydrogen evolution electrocatalysts. Nano Res. 11, 1274–1284 (2018). https://doi.org/10.1007/s12274-017-1741-x
- L.F. Fan, Y.X. Ji, G.X. Wang, Z.F. Zhang, L.C. Yi et al., Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 72, 424–431 (2022). https://doi.org/10.1016/j.jechem.2022.04.027
- Z.L. Zheng, L. Yu, M. Gao, X.Y. Chen, W. Zhou et al., Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 11, 3315 (2020). https://doi.org/10.1038/s41467-020-17199-0
- R. Chellappa, D. Dattelbaum, L. Daemen, Z.X. Liu, High pressure spectroscopic studies of hydrazine (N2H4). J. Phys. Conf. Ser. 500, 052008 (2014). https://doi.org/10.1088/1742-6596/500/5/052008
- W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
- J.L. Zhang, Y.H. Tang, C.J. Song, J.J. Zhang, H.J. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
- K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8024–8027 (2007). https://doi.org/10.1002/ange.200701334 Y.P. Huang, T.X. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanops as all-pH hydrogen evolution electrocatalysts. Nano Res. 11, 1274–1284 (2018). https://doi.org/10.1007/s12274-017-1741-x
- L.F. Fan, Y.X. Ji, G.X. Wang, Z.F. Zhang, L.C. Yi et al., Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 72, 424–431 (2022). https://doi.org/10.1016/j.jechem.2022.04.027
- Z.L. Zheng, L. Yu, M. Gao, X.Y. Chen, W. Zhou et al., Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 11, 3315 (2020). https://doi.org/10.1038/s41467-020-17199-0
- R. Chellappa, D. Dattelbaum, L. Daemen, Z.X. Liu, High pressure spectroscopic studies of hydrazine (N2H4). J. Phys. Conf. Ser. 500, 052008 (2014). https://doi.org/10.1088/1742-6596/500/5/052008
- W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
- J.L. Zhang, Y.H. Tang, C.J. Song, J.J. Zhang, H.J. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
- K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8024–8027 (2007). https://doi.org/10.1002/ange.200701334
References
L.F. Fan, Y.X. Ji, G.X. Wang, J.X. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740
T.Z. Wang, X.J. Cao, L.F. Jiao, Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem. Int. Ed. 61, e202213328 (2022). https://doi.org/10.1002/anie.202213328
G.X. Wang, J.X. Chen, P.W. Cai, J.C. Jia, Z.H. Wen, A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. J. Mater. Chem. A 6, 17763–17770 (2018). https://doi.org/10.1039/C8TA06827E
X. Liu, Y. Han, Y. Guo, X.T. Zhao, D. Pan et al., Electrochemical hydrogen generation by oxygen evolution reaction-alternative anodic oxidation reactions. Adv. Energy Sustain. Res. 3, 2200005 (2022). https://doi.org/10.1002/aesr.202200005
J.S. Wang, X.Y. Guan, H.B. Li, S.Y. Zeng, R. Li et al., Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy 100, 107467 (2022). https://doi.org/10.1016/j.nanoen.2022.107467
Y. Yu, S.J. Lee, J. Theerthagiri, Y. Lee, M.Y. Choi, Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal. B-Environ. 316, 121603 (2022). https://doi.org/10.1016/j.apcatb.2022.121603
R.Q. Li, S.Y. Zeng, B. Sang, C.Z. Xue, K.G. Qu et al., Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Res. 16, 2543–2550 (2023). https://doi.org/10.1007/s12274-022-4912-3
X.J. Zhai, Q.P. Yu, J.Q. Chi, X.P. Wang, B. Li et al., Accelerated dehydrogenation kinetics through Ru, Fe dual-doped Ni2P as bifunctional electrocatalyst for hydrazine-assisted self-powered hydrogen generation. Nano Energy 105, 108008 (2023). https://doi.org/10.1016/j.nanoen.2022.108008
H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15, 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
Q. Liu, X.B. Liao, Y.H. Tang, J.H. Wang, X.Z. Lv et al., Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy Environ. Sci. 15, 3246–3256 (2022). https://doi.org/10.1039/D2EE01463G
X.Y. Fu, D.F. Cheng, C.Z. Wan, S. Kumari, H.T. Zhang et al., Bifunctional ultrathin RhRu0.5 alloy nanowire electrocatalysts for hydrazine assisted water splitting. Adv. Mater. 35, e2301533 (2023). https://doi.org/10.1002/adma.202301533
J. Zhang, Y.X. Wang, C.J. Yang, S.A. Chen, Z.J. Li et al., Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 14, 4650–4657 (2021). https://doi.org/10.1007/s12274-021-3397-9
Y.P. Zhu, K. Fan, C.S. Hsu, G. Chen, C.S. Chen et al., Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301133
K. Zhang, Y.X. Duan, N. Graham, W.Z. Yu, Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction. Appl. Catal. B-Environ. 323, 122144 (2023). https://doi.org/10.1016/j.apcatb.2022.122144
J.Y. Wang, J.R. Feng, Y.Y. Li, F.L. Lai, G.C. Wang et al., Multilayered molybdate microflowers fabricated by one-pot reaction for efficient water splitting. Adv. Sci. 10, 122144 (2023). https://doi.org/10.1002/advs.202206952
M. Zhou, X.L. Jiang, W.J. Kong, H.F. Li, F. Lu et al., Synergistic effect of dual-doped carbon on Mo2C nanocrystals facilitates alkaline hydrogen evolution. Nano-Micro Lett. 15, 166 (2023). https://doi.org/10.1007/s40820-023-01135-0
X.H. Xu, T. Wang, W.B. Lu, L.J. Dong, H.S. Zhang et al., CoxP@Co3O4 nanocomposite on cobalt foam as efficient bifunctional electrocatalysts for hydrazine-assisted hydrogen production. ACS Sustain. Chem. Eng. 9, 4688–4701 (2021). https://doi.org/10.1021/acssuschemeng.1c00705
K. Zhang, G. Zhang, Q.H. Ji, J.H. Qu, H.J. Liu, Arrayed cobalt phosphide electrocatalyst achieves low energy consumption and persistent H2 liberation from anodic chemical conversion. Nano-Micro Lett. 12, 154 (2020). https://doi.org/10.1007/s40820-020-00486-2
H.Q. Song, M. Wu, Z.Y. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs Nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021). https://doi.org/10.1002/anie.202017102
X.Y. Wang, W.H. Zhang, Q.P. Yu, X.B. Liu, Q.C. Liang et al., Fe-doped CoNiP@N-doped carbon nanosheet arrays for hydrazine oxidation assisting energy-saving seawater splitting. Chem. Eng. J. 446, 136987 (2022). https://doi.org/10.1016/j.cej.2022.136987
H.R. Sun, L.Y. Gao, A. Kumar, Z.B. Cao, Z. Chang et al., Superaerophobic CoP nanowire arrays as a highly effective anode electrocatalyst for direct hydrazine fuel cells. ACS Appl. Energy Mater. 5, 9455–9462 (2022). https://doi.org/10.1021/acsaem.2c01005
J.M. Wang, R.M. Kong, A.M. Asiri, X.P. Sun, Replacing oxygen evolution with hydrazine oxidation at the anode for energy-saving electrolytic hydrogen production. ChemElectroChem 4, 481–484 (2017). https://doi.org/10.1002/celc.201600759
T. Meng, J.W. Qin, D. Xu, M.H. Cao, Atomic heterointerface-induced local charge distribution and enhanced water adsorption behavior in a cobalt phosphide electrocatalyst for self-powered highly efficient overall water splitting. ACS Appl. Mater. Interfaces 11, 9023–9032 (2019). https://doi.org/10.1021/acsami.8b19341
S. Geng, F.Y. Tian, M.G. Li, X. Guo, Y.S. Yu et al., Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 9, 8561–8567 (2021). https://doi.org/10.1039/D1TA00044F
K. Xu, H. Cheng, H.F. Lv, J.Y. Wang, L.Q. Liu et al., Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 30, 1703322 (2018). https://doi.org/10.1002/adma.201703322
J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong et al., Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed. 56, 2960–2964 (2017). https://doi.org/10.1002/anie.201611767
Y.N. Zhou, W.H. Hu, Y.N. Zhen, B. Dong, Y.W. Dong et al., Metallic MoOx layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA/cm2. Appl. Catal. B-Environ. 309, 121230 (2022). https://doi.org/10.1016/j.apcatb.2022.121230
W.H. Liu, H.M. Zhang, M.Y. Ma, D. Cao, D.J. Cheng, Constructing a highly active amorphous WO3/crystalline CoP interface for enhanced hydrogen evolution at different pH values. ACS Appl. Energy Mater. 5, 10794–10801 (2022). https://doi.org/10.1021/acsaem.2c01489
J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018). https://doi.org/10.1007/s40820-018-0229-x
Y.N. Men, Y. Tan, P. Li, X.M. Cao, S.F. Jia et al., Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl. Catal. B-Environ. 284, 119718 (2021). https://doi.org/10.1016/j.apcatb.2020.119718
G.Y. Zhou, M. Li, Y.L. Li, H. Dong, D.M. Sun et al., Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 30, 1905252 (2020). https://doi.org/10.1002/adfm.201905252
K. Xu, Y.Q. Sun, Y.M. Sun, Y.Q. Zhang, G.C. Jia et al., Yin-yang harmony: metal and nonmetal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution. ACS Energy Lett. 3, 2750–2756 (2018). https://doi.org/10.1021/acsenergylett.8b01893
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
PE. Blöchi. Projector augmented-wave method. Phys Rev B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
B. Hammer, L.B Hansen, J.K. Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals Physical Review B 59(11) 7413-7421 (1999). https://doi.org/10.1103/PhysRevB.59.7413
L. Goerigk, S. Grimme. A thorough benchmark of density functional methods for general main group thermochemistry kinetics and noncovalent interactions Phys Chem Chem Phys 13(14), 6670 (2011). https://doi.org/10.1039/c0cp02984j
J. Neugebauer, M. Scheffler. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Review B 46(24), 16067–16080 (1992) https://doi.org/10.1103/PhysRevB.46.16067
A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phy 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
Graeme, Henkelman Andri, Arnaldsson Hannes, Jónsson (2006) A fast and robust algorithm for Bader decomposition of charge density Computational Materials Science 36(3) 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
R.G. Kadam, T. Zhang, D. Zaoralová, M. Medveď, A. Bakandritsos et al., Single Co-atoms as electrocatalysts for efficient hydrazine oxidation reaction. Small 17, 2006477 (2021). https://doi.org/10.1002/smll.202006477
G.H. Liu, T.Q. Nie, H.J. Wang, T.Y. Shen, X.L. Sun et al., Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: from nanops to nanoclusters and single atoms. ACS Catal. 12, 10711–10717 (2022). https://doi.org/10.1021/acscatal.2c02628
W.Y. Zhang, B.L. Huang, K. Wang, W.X. Yang, F. Lv et al., WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv. Energy Mater. 11, 2003192 (2021). https://doi.org/10.1002/aenm.202003192
D. Rathore, A. Banerjee, S. Pande, Bifunctional tungsten-doped Ni(OH)2/NiOOH nanosheets for overall water splitting in an alkaline medium. ACS Appl. Nano Mater. 5, 2664–2677 (2022). https://doi.org/10.1021/acsanm.1c04359
J.Q. Yan, L.Q. Kong, Y.J. Ji, J. White, Y.Y. Li et al., Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149 (2019). https://doi.org/10.1038/s41467-019-09845-z
S.W. Niu, Y.Y. Fang, D.W. Rao, G.J. Liang, S.Y. Li et al., Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 18, 2106870 (2022). https://doi.org/10.1002/smll.202106870
K. Xu, H. Ding, M.X. Zhang, M. Chen, Z.K. Hao et al., Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 29, 1606980 (2017). https://doi.org/10.1002/adma.201606980
B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0
J.C. Li, Y. Li, J.A. Wang, C. Zhang, H.J. Ma et al., Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation-boosted alkaline hydrogen evolution. Adv. Funct. Mater. 32, 2109439 (2022). https://doi.org/10.1002/adfm.202109439
R.Z. Chen, J.F. Yao, Q.F. Gu, S. Smeets, C. Baerlocher et al., A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 49, 9500–9502 (2013). https://doi.org/10.1039/C3CC44342F
D.C. Yang, J.A. Hernandez, R.S. Katiyar, L.F. Fonseca, Surface morphology-controlled fabrication of Na2WO4 films with high structural stability. Chem. Phys. Lett. 653, 73–77 (2016). https://doi.org/10.1016/j.cplett.2016.04.071
Y.K. Voron’ko, A.A. Sobol, Influence of cations on the vibrational spectra and structure of WO4 complexes in molten tungstates. Inorg. Mater. 41, 420–428 (2005). https://doi.org/10.1016/j.cplett.2016.04.071
J. Wu, N.N. Han, S.C. Ning, T. Chen, C.Y. Zhu et al., Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 8, 14825–14832 (2020). https://doi.org/10.1021/acssuschemeng.0c04322
C. Guan, W. Xiao, H.J. Wu, X.M. Liu, W.J. Zang et al., Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48, 73–80 (2018). https://doi.org/10.1016/j.nanoen.2018.03.034
Y.F. Huang, F.T. Kong, H. Tian, F.L. Pei, Y.F. Chen et al., Ultra-uniformly dispersed Cu nanops embedded in N-doped carbon as a robust oxygen electrocatalyst. ACS Sustain. Chem. Eng. 10, 6370–6381 (2022). https://doi.org/10.1021/acssuschemeng.2c01086
X.L. Ma, G.Q. Ning, Y.Z. Sun, Y.J. Pu, J.S. Gao, High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79, 310–320 (2014). https://doi.org/10.1016/j.carbon.2014.07.072
F. Xu, A. Fahmi, Y.M. Zhao, Y.D. Xia, Y.Q. Zhu, Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil. Nanoscale 4, 7031–7037 (2012). https://doi.org/10.1039/C2NR32169F
Y. Pan, K.A. Sun, Y. Lin, X. Cao, Y.S. Cheng et al., Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 56, 411–419 (2019). https://doi.org/10.1016/j.nanoen.2018.11.034
X. Feng, B.W. Liu, K.X. Guo, L.F. Fan, G.X. Wang et al., Anodic electrocatalysis of glycerol oxidation for hybrid alkali/acid electrolytic hydrogen generation. J. Electrochem. 29, 2215005 (2023). https://doi.org/10.13208/j.electrochem.2215005
X.K. Huang, X.P. Xu, C. Li, D.F. Wu, D.J. Cheng et al., Vertical CoP nanoarray wrapped by N,P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv. Energy Mater. 9, 1803970 (2019). https://doi.org/10.1002/aenm.201803970
X. Wang, Z.J. Ma, L.L. Chai, L.Q. Xu, Z.Y. Zhu et al., MOF derived N-doped carbon coated CoP p/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643–651 (2019). https://doi.org/10.1016/j.carbon.2018.10.023
J. Yu, Q.Q. Li, Y. Li, C.Y. Xu, L. Zhen et al., Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
R.P. Li, H. Xu, P.X. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
Q. Li, Y.C. Wang, J. Zeng, Q.M. Wu, Q.C. Wang et al., Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chinese Chem. Lett. 32, 3355–3358 (2021). https://doi.org/10.1016/j.cclet.2021.03.063
J. Yao, M.Y. Zhang, X.Z. Ma, L.L. Xu, F. Gao et al., Interfacial electronic modulation of CoP–CoO p–p type heterojunction for enhancing oxygen evolution reaction. J. Colloid Interface Sci. 607, 1343–1352 (2022). https://doi.org/10.1016/j.jcis.2021.09.097
J.C. Liu, C.Y. Tang, Z.J. Ke, R. Chen, H.B. Wang et al., Optimizing hydrogen adsorption by d–d orbital modulation for efficient hydrogen evolution catalysis. Adv. Energy Mater. 12, 2103301 (2022). https://doi.org/10.1002/aenm.202103301
Y. Lin, Y. Pan, S.J. Liu, K.A. Sun, Y.S. Cheng et al., Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electrocatalytic water splitting. Appl. Catal. B-Environ. 259, 118039 (2019). https://doi.org/10.1016/j.apcatb.2019.118039
Y. Yang, Y.M. Qian, H.J. Li, Z.H. Zhang, Y.W. Mu et al., O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020). https://doi.org/10.1126/sciadv.aba658
Y.Y. Gao, S. Qian, H.J. Wang, W.Z. Yuan, Y. Fan et al., Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl. Catal. B-Environ. 320, 122014 (2023). https://doi.org/10.1016/j.apcatb.2022.122014
H.Y. Lu, W. Fan, Y.P. Huang, T.X. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanops as all-pH hydrogen evolution electrocatalysts. Nano Res. 11, 1274–1284 (2018). https://doi.org/10.1007/s12274-017-1741-x
L.F. Fan, Y.X. Ji, G.X. Wang, Z.F. Zhang, L.C. Yi et al., Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 72, 424–431 (2022). https://doi.org/10.1016/j.jechem.2022.04.027
Z.L. Zheng, L. Yu, M. Gao, X.Y. Chen, W. Zhou et al., Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 11, 3315 (2020). https://doi.org/10.1038/s41467-020-17199-0
R. Chellappa, D. Dattelbaum, L. Daemen, Z.X. Liu, High pressure spectroscopic studies of hydrazine (N2H4). J. Phys. Conf. Ser. 500, 052008 (2014). https://doi.org/10.1088/1742-6596/500/5/052008
W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
J.L. Zhang, Y.H. Tang, C.J. Song, J.J. Zhang, H.J. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8024–8027 (2007). https://doi.org/10.1002/ange.200701334 Y.P. Huang, T.X. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanops as all-pH hydrogen evolution electrocatalysts. Nano Res. 11, 1274–1284 (2018). https://doi.org/10.1007/s12274-017-1741-x
L.F. Fan, Y.X. Ji, G.X. Wang, Z.F. Zhang, L.C. Yi et al., Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. J. Energy Chem. 72, 424–431 (2022). https://doi.org/10.1016/j.jechem.2022.04.027
Z.L. Zheng, L. Yu, M. Gao, X.Y. Chen, W. Zhou et al., Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 11, 3315 (2020). https://doi.org/10.1038/s41467-020-17199-0
R. Chellappa, D. Dattelbaum, L. Daemen, Z.X. Liu, High pressure spectroscopic studies of hydrazine (N2H4). J. Phys. Conf. Ser. 500, 052008 (2014). https://doi.org/10.1088/1742-6596/500/5/052008
W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang et al., Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem. Int. Ed. 59, 3511–3516 (2020). https://doi.org/10.1002/anie.201914335
J.L. Zhang, Y.H. Tang, C.J. Song, J.J. Zhang, H.J. Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C. J. Power Sources 163, 532–537 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.026
K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8024–8027 (2007). https://doi.org/10.1002/ange.200701334