Self-Generated Buried Submicrocavities for High-Performance Near-Infrared Perovskite Light-Emitting Diode
Corresponding Author: Zhiyong Fan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 125
Abstract
Embedding submicrocavities is an effective approach to improve the light out-coupling efficiency (LOCE) for planar perovskite light-emitting diodes (PeLEDs). In this work, we employ phenethylammonium iodide (PEAI) to trigger the Ostwald ripening for the downward recrystallization of perovskite, resulting in spontaneous formation of buried submicrocavities as light output coupler. The simulation suggests the buried submicrocavities can improve the LOCE from 26.8 to 36.2% for near-infrared light. Therefore, PeLED yields peak external quantum efficiency (EQE) increasing from 17.3% at current density of 114 mA cm−2 to 25.5% at current density of 109 mA cm−2 and a radiance increasing from 109 to 487 W sr−1 m−2 with low rolling-off. The turn-on voltage decreased from 1.25 to 1.15 V at 0.1 W sr−1 m−2. Besides, downward recrystallization process slightly reduces the trap density from 8.90 × 1015 to 7.27 × 1015 cm−3. This work provides a self-assembly method to integrate buried output coupler for boosting the performance of PeLEDs.
Highlights:
1 Synergistic effect triggers the Ostwald ripening for the downward recrystallization of perovskite to form buried submicrocavities as light output coupler.
2 The simulation suggests the buried submicrocavities can improve the light out-coupling efficiency from 26.8% to 36.2% for near-infrared light.
3 Light-emitting diodes yields peak external quantum efficiency increasing from 17.3% at current density of 114 mA cm−2 to 25.5% at current density of 109 mA cm−2 and a radiance increasing from 109 to 487 W sr−1 m−2 with low rolling-off.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
- L. Quan, B. Rand, R. Friend, S. Mhaisalkar, T.W. Lee et al., Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019). https://doi.org/10.1021/acs.chemrev.9b00107
- Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, e2103268 (2021). https://doi.org/10.1002/adma.202103268
- L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12(1), 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
- M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13(1), 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
- L. Tang, J. Qiu, Q. Wei, H. Gu, B. Du et al., Enhanced performance of perovskite light-emitting diodes via diamine interface modification. ACS Appl. Mater. Interfaces 11(32), 29132–29138 (2019). https://doi.org/10.1021/acsami.9b11866
- C. Liu, Y.B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/c9cs00711c
- Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5(2), 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
- D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im et al., Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy 61, 236–244 (2019). https://doi.org/10.1016/j.nanoen.2019.04.061
- F. Zhang, H. Min, Y. Zhang, Z. Kuang, J. Wang et al., Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Adv. Mater. 34, e2203180 (2022). https://doi.org/10.1002/adma.202203180
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah et al., Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 16(4), 284–290 (2022). https://doi.org/10.1038/s41566-022-00978-0
- Q. Zhang, M.M. Tavakoli, L. Gu, D. Zhang, L. Tang et al., Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10(1), 727 (2019). https://doi.org/10.1038/s41467-019-08561-y
- L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31(2), 1805836 (2019). https://doi.org/10.1002/adma.201805836
- X.-B. Shi, Y. Liu, Z. Yuan, X.-K. Liu, Y. Miao et al., Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6(17), 1800667 (2018). https://doi.org/10.1002/adom.201800667
- B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- P. Fassl, V. Lami, F.J. Berger, L.M. Falk, J. Zaumseil et al., Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter 4(4), 1391–1412 (2021). https://doi.org/10.1016/j.matt.2021.01.019
- L. Yang, Y. Zhang, J. Ma, P. Chen, Y. Yu et al., Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett. 6, 2386–2394 (2021). https://doi.org/10.1021/acsenergylett.1c00752
- M. Jiang, Z. Hu, Z. Liu, Z. Wu, L.K. Ono et al., Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 4(11), 2731–2738 (2019). https://doi.org/10.1021/acsenergylett.9b02032
- T. Jiang, H. Min, R. Zou, M. Wang, K. Wen et al., Molecularly controlled quantum well width distribution and optoelectronic properties in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 13(18), 4098–4103 (2022). https://doi.org/10.1021/acs.jpclett.2c00360
- Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
- J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
- H. Yuan, Z. Zhang, T. Guo, L. Yu, Z. Deng et al., Steric effect of amino-acids as additives for perovskite solar cells. J. Alloys Compd. 876, 160140 (2021). https://doi.org/10.1016/j.jallcom.2021.160140
- S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu et al., NH2CH═NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014). https://doi.org/10.1021/cm404006p
- M. Ren, J. Shi, Y. Chen, Y. Miao, Y. Zhao, Cs-content-dependent organic cation exchange in FA1−xCsxPbI3 perovskite. J. Energy Chem. 72, 539–544 (2022). https://doi.org/10.1016/j.jechem.2022.05.042
- L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti et al., Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11(3), 3119–3134 (2017). https://doi.org/10.1021/acsnano.7b00116
- W.L. Tan, C.R. McNeill, X-ray diffraction of photovoltaic perovskites: principles and applications. Appl. Phys. Rev. 9(2), 021310 (2022). https://doi.org/10.1063/5.0076665
- M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ giwaxs. Adv. Mater. 33(51), e2105290 (2021). https://doi.org/10.1002/adma.202105290
- F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai et al., Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10(9), 1942–1949 (2017). https://doi.org/10.1039/c7ee01675a
- Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019). https://doi.org/10.1002/adma.201901517
- L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Technol. 39(1), 7–24 (2006). https://doi.org/10.1007/s10971-006-7302-5
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- J. Guo, J. Sun, L. Hu, S. Fang, X. Ling et al., Indigo: a natural molecular passivator for efficient perovskite solar cells. Adv. Energy Mater. 12(22), 2200537 (2022). https://doi.org/10.1002/aenm.202200537
- C. Shi, Q. Song, H. Wang, S. Ma, C. Wang et al., Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv. Funct. Mater. 32, 2201193 (2022). https://doi.org/10.1002/adfm.202201193
- H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability > 300 h. Adv. Mater. 33(15), e2008820 (2021). https://doi.org/10.1002/adma.202008820
- F. Wang, W. Geng, Y. Zhou, H.H. Fang, C.J. Tong et al., Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28(45), 9986–9992 (2016). https://doi.org/10.1002/adma.201603062
- M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč et al., CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23(7), A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
- Z. Xie, S. Sun, Y. Yan, L. Zhang, R. Hou et al., Refractive index and extinction coefficient of NH2CH=NH2PbI3 perovskite photovoltaic material. J. Phys. Condens. Matter 29(24), 245702 (2017). https://doi.org/10.1088/1361-648x/aa6e6c
- L. Lin, R. Proietti Zaccaria, D. Garoli, R. Krahne, Photonic cavity effects for enhanced efficiency in layered perovskite-based light-emitting diodes. Nanomater (Basel) 11(11), 2947 (2021). https://doi.org/10.3390/nano11112947
- D.-K. Lee, Y. Shin, H.J. Jang, J.-H. Lee, K. Park et al., Nanocrystalline polymorphic energy funnels for efficient and stable perovskite light-emitting diodes. ACS Energy Lett. 6(5), 1821–1830 (2021). https://doi.org/10.1021/acsenergylett.1c00565
- X.Q. Dong Shi, Y. Li, Y. He, C. Zhong, J. Pan et al., Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering. Sci. Adv. 2, e1501491 (2016). https://doi.org/10.1126/sciadv.1501491
- O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with Spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6(10), 1883–1890 (2015). https://doi.org/10.1021/acs.jpclett.5b00732
- J.S. Manser, P.V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8(9), 737–743 (2014). https://doi.org/10.1038/nphoton.2014.171
- K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao et al., Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118(4), 1770–1839 (2018). https://doi.org/10.1021/acs.chemrev.7b00425
- T. Handa, D.M. Tex, A. Shimazaki, A. Wakamiya, Y. Kanemitsu, Charge injection mechanism at heterointerfaces in CH3NH3PbI3 perovskite solar cells revealed by simultaneous time-resolved photoluminescence and photocurrent measurements. J. Phys. Chem. Lett. 8(5), 954–960 (2017). https://doi.org/10.1021/acs.jpclett.6b02847
- J. Dagar, K. Hirselandt, A. Merdasa, A. Czudek, R. Munir et al., Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells. Solar RRL 3(9), 1900088 (2019). https://doi.org/10.1002/solr.201900088
- S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
- J. Wang, L. Yuan, H. Luo, C. Duan, B. Zhou et al., Ambient air processed highly oriented perovskite solar cells with efficiency exceeding 23% via amorphous intermediate. Chem. Eng. J. 446, 136968 (2022). https://doi.org/10.1016/j.cej.2022.136968
- S.D. Stranks, R.L.Z. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), e1803336 (2019). https://doi.org/10.1002/adma.201803336
- M. Lu, Y. Zhang, S. Wang, J. Guo, W.W. Yu et al., Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater. 29(30), 1902008 (2019). https://doi.org/10.1002/adfm.201902008
- Z. Wei, J. Xing, The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 10(11), 3035–3042 (2019). https://doi.org/10.1021/acs.jpclett.9b00277
- C. Duan, Z. Liu, L. Yuan, H. Zhu, H. Luo et al., PEDOT:PSS-metal oxide composite electrode with regulated wettability and work function for high-performance inverted perovskite solar cells. Adv. Opt. Mater. 8(17), 2000216 (2020). https://doi.org/10.1002/adom.202000216
- H. Zhu, C. Duan, M. Qin, Z. Liu, J. Li et al., Trifluoromethylphenylacetic acid as in situ accelerant of ostwald ripening for stable and efficient perovskite solar cells. Solar RRL 5, 2100040 (2021). https://doi.org/10.1002/solr.202100040
- U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76(8), 085303 (2007). https://doi.org/10.1103/PhysRevB.76.085303
- J. Li, C. Duan, Q. Wen, L. Yuan, S. Zou et al., Reciprocally photovoltaic light-emitting diode based on dispersive perovskite nanocrystal. Small 18(18), e2107145 (2022). https://doi.org/10.1002/smll.202107145
- M. Kim, J.M. Figueroa-Tapia, M. Prato, A. Petrozza, Engineering multiphase metal halide perovskites thin films for stable and efficient solar cells. Adv. Energy Mater. 10(8), 1903221 (2020). https://doi.org/10.1002/aenm.201903221
- C. Duan, J. Li, Z. Liu, Q. Wen, H. Tang et al., Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chem. Eng. J. 417, 128053 (2021). https://doi.org/10.1016/j.cej.2020.128053
References
B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
L. Quan, B. Rand, R. Friend, S. Mhaisalkar, T.W. Lee et al., Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019). https://doi.org/10.1021/acs.chemrev.9b00107
Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu et al., Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, e2103268 (2021). https://doi.org/10.1002/adma.202103268
L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin et al., Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nat. Commun. 12(1), 5081 (2021). https://doi.org/10.1038/s41467-021-25407-8
M. Ren, S. Cao, J. Zhao, B. Zou, R. Zeng, Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 13(1), 163 (2021). https://doi.org/10.1007/s40820-021-00685-5
L. Tang, J. Qiu, Q. Wei, H. Gu, B. Du et al., Enhanced performance of perovskite light-emitting diodes via diamine interface modification. ACS Appl. Mater. Interfaces 11(32), 29132–29138 (2019). https://doi.org/10.1021/acsami.9b11866
C. Liu, Y.B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/c9cs00711c
Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5(2), 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
D.H. Jung, J.H. Park, H.E. Lee, J. Byun, T.H. Im et al., Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy 61, 236–244 (2019). https://doi.org/10.1016/j.nanoen.2019.04.061
F. Zhang, H. Min, Y. Zhang, Z. Kuang, J. Wang et al., Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes. Adv. Mater. 34, e2203180 (2022). https://doi.org/10.1002/adma.202203180
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah et al., Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 16(4), 284–290 (2022). https://doi.org/10.1038/s41566-022-00978-0
Q. Zhang, M.M. Tavakoli, L. Gu, D. Zhang, L. Tang et al., Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10(1), 727 (2019). https://doi.org/10.1038/s41467-019-08561-y
L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31(2), 1805836 (2019). https://doi.org/10.1002/adma.201805836
X.-B. Shi, Y. Liu, Z. Yuan, X.-K. Liu, Y. Miao et al., Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6(17), 1800667 (2018). https://doi.org/10.1002/adom.201800667
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
P. Fassl, V. Lami, F.J. Berger, L.M. Falk, J. Zaumseil et al., Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter 4(4), 1391–1412 (2021). https://doi.org/10.1016/j.matt.2021.01.019
L. Yang, Y. Zhang, J. Ma, P. Chen, Y. Yu et al., Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett. 6, 2386–2394 (2021). https://doi.org/10.1021/acsenergylett.1c00752
M. Jiang, Z. Hu, Z. Liu, Z. Wu, L.K. Ono et al., Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett. 4(11), 2731–2738 (2019). https://doi.org/10.1021/acsenergylett.9b02032
T. Jiang, H. Min, R. Zou, M. Wang, K. Wen et al., Molecularly controlled quantum well width distribution and optoelectronic properties in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 13(18), 4098–4103 (2022). https://doi.org/10.1021/acs.jpclett.2c00360
Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei et al., Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562(7726), 249–253 (2018). https://doi.org/10.1038/s41586-018-0576-2
J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
H. Yuan, Z. Zhang, T. Guo, L. Yu, Z. Deng et al., Steric effect of amino-acids as additives for perovskite solar cells. J. Alloys Compd. 876, 160140 (2021). https://doi.org/10.1016/j.jallcom.2021.160140
S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu et al., NH2CH═NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014). https://doi.org/10.1021/cm404006p
M. Ren, J. Shi, Y. Chen, Y. Miao, Y. Zhao, Cs-content-dependent organic cation exchange in FA1−xCsxPbI3 perovskite. J. Energy Chem. 72, 539–544 (2022). https://doi.org/10.1016/j.jechem.2022.05.042
L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti et al., Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11(3), 3119–3134 (2017). https://doi.org/10.1021/acsnano.7b00116
W.L. Tan, C.R. McNeill, X-ray diffraction of photovoltaic perovskites: principles and applications. Appl. Phys. Rev. 9(2), 021310 (2022). https://doi.org/10.1063/5.0076665
M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ giwaxs. Adv. Mater. 33(51), e2105290 (2021). https://doi.org/10.1002/adma.202105290
F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai et al., Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10(9), 1942–1949 (2017). https://doi.org/10.1039/c7ee01675a
Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019). https://doi.org/10.1002/adma.201901517
L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Technol. 39(1), 7–24 (2006). https://doi.org/10.1007/s10971-006-7302-5
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
J. Guo, J. Sun, L. Hu, S. Fang, X. Ling et al., Indigo: a natural molecular passivator for efficient perovskite solar cells. Adv. Energy Mater. 12(22), 2200537 (2022). https://doi.org/10.1002/aenm.202200537
C. Shi, Q. Song, H. Wang, S. Ma, C. Wang et al., Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv. Funct. Mater. 32, 2201193 (2022). https://doi.org/10.1002/adfm.202201193
H. Li, H. Lin, D. Ouyang, C. Yao, C. Li et al., Efficient and stable red perovskite light-emitting diodes with operational stability > 300 h. Adv. Mater. 33(15), e2008820 (2021). https://doi.org/10.1002/adma.202008820
F. Wang, W. Geng, Y. Zhou, H.H. Fang, C.J. Tong et al., Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28(45), 9986–9992 (2016). https://doi.org/10.1002/adma.201603062
M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč et al., CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23(7), A263–A278 (2015). https://doi.org/10.1364/OE.23.00A263
Z. Xie, S. Sun, Y. Yan, L. Zhang, R. Hou et al., Refractive index and extinction coefficient of NH2CH=NH2PbI3 perovskite photovoltaic material. J. Phys. Condens. Matter 29(24), 245702 (2017). https://doi.org/10.1088/1361-648x/aa6e6c
L. Lin, R. Proietti Zaccaria, D. Garoli, R. Krahne, Photonic cavity effects for enhanced efficiency in layered perovskite-based light-emitting diodes. Nanomater (Basel) 11(11), 2947 (2021). https://doi.org/10.3390/nano11112947
D.-K. Lee, Y. Shin, H.J. Jang, J.-H. Lee, K. Park et al., Nanocrystalline polymorphic energy funnels for efficient and stable perovskite light-emitting diodes. ACS Energy Lett. 6(5), 1821–1830 (2021). https://doi.org/10.1021/acsenergylett.1c00565
X.Q. Dong Shi, Y. Li, Y. He, C. Zhong, J. Pan et al., Spiro-OMeTAD single crystals: remarkably enhanced charge-carrier transport via mesoscale ordering. Sci. Adv. 2, e1501491 (2016). https://doi.org/10.1126/sciadv.1501491
O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with Spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6(10), 1883–1890 (2015). https://doi.org/10.1021/acs.jpclett.5b00732
J.S. Manser, P.V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8(9), 737–743 (2014). https://doi.org/10.1038/nphoton.2014.171
K.Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao et al., Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118(4), 1770–1839 (2018). https://doi.org/10.1021/acs.chemrev.7b00425
T. Handa, D.M. Tex, A. Shimazaki, A. Wakamiya, Y. Kanemitsu, Charge injection mechanism at heterointerfaces in CH3NH3PbI3 perovskite solar cells revealed by simultaneous time-resolved photoluminescence and photocurrent measurements. J. Phys. Chem. Lett. 8(5), 954–960 (2017). https://doi.org/10.1021/acs.jpclett.6b02847
J. Dagar, K. Hirselandt, A. Merdasa, A. Czudek, R. Munir et al., Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells. Solar RRL 3(9), 1900088 (2019). https://doi.org/10.1002/solr.201900088
S. Zhang, H. Si, W. Fan, M. Shi, M. Li et al., Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew. Chem. Int. Ed. 59(28), 11573–11582 (2020). https://doi.org/10.1002/anie.202003502
J. Wang, L. Yuan, H. Luo, C. Duan, B. Zhou et al., Ambient air processed highly oriented perovskite solar cells with efficiency exceeding 23% via amorphous intermediate. Chem. Eng. J. 446, 136968 (2022). https://doi.org/10.1016/j.cej.2022.136968
S.D. Stranks, R.L.Z. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), e1803336 (2019). https://doi.org/10.1002/adma.201803336
M. Lu, Y. Zhang, S. Wang, J. Guo, W.W. Yu et al., Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater. 29(30), 1902008 (2019). https://doi.org/10.1002/adfm.201902008
Z. Wei, J. Xing, The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 10(11), 3035–3042 (2019). https://doi.org/10.1021/acs.jpclett.9b00277
C. Duan, Z. Liu, L. Yuan, H. Zhu, H. Luo et al., PEDOT:PSS-metal oxide composite electrode with regulated wettability and work function for high-performance inverted perovskite solar cells. Adv. Opt. Mater. 8(17), 2000216 (2020). https://doi.org/10.1002/adom.202000216
H. Zhu, C. Duan, M. Qin, Z. Liu, J. Li et al., Trifluoromethylphenylacetic acid as in situ accelerant of ostwald ripening for stable and efficient perovskite solar cells. Solar RRL 5, 2100040 (2021). https://doi.org/10.1002/solr.202100040
U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76(8), 085303 (2007). https://doi.org/10.1103/PhysRevB.76.085303
J. Li, C. Duan, Q. Wen, L. Yuan, S. Zou et al., Reciprocally photovoltaic light-emitting diode based on dispersive perovskite nanocrystal. Small 18(18), e2107145 (2022). https://doi.org/10.1002/smll.202107145
M. Kim, J.M. Figueroa-Tapia, M. Prato, A. Petrozza, Engineering multiphase metal halide perovskites thin films for stable and efficient solar cells. Adv. Energy Mater. 10(8), 1903221 (2020). https://doi.org/10.1002/aenm.201903221
C. Duan, J. Li, Z. Liu, Q. Wen, H. Tang et al., Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chem. Eng. J. 417, 128053 (2021). https://doi.org/10.1016/j.cej.2020.128053