Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer
Corresponding Author: Junliang Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 79
Abstract
Perovskite solar cells (PSCs) have attracted tremendous attention as a promising alternative candidate for clean energy generation. Many attempts have been made with various deposition techniques to scale-up manufacturing. Slot-die coating is a robust and facile deposition technique that can be applied in large-area roll-to-roll (R2R) fabrication of thin film solar cells with the advantages of high material utilization, low cost and high throughput. Herein, we demonstrate the encouraging result of PSCs prepared by slot-die coating under ambient environment using a two-step sequential process whereby PbI2:CsI is slot-die coated first followed by a subsequent slot-die coating of organic cations containing solution. A porous PbI2:CsI film can promote the rapid and complete transformation into perovskite film. The crystallinity and morphology of perovskite films are significantly improved by optimizing nitrogen blowing and controlling substrate temperature. A power conversion efficiency (PCE) of 18.13% is achieved, which is promising for PSCs fabricated by two-step fully slot-die-coated devices. Furthermore, PSCs with a 1 cm2 area yield a champion PCE of 15.10%. Moreover, a PCE of 13.00% is obtained on a flexible substrate by the roll-to-roll (R2R) coating, which is one of the highest reported cells with all layers except for metal electrode fabricated by R2R process under ambient condition.
Highlights:
1 The slot-die-coated porous PbI2:CsI film assisted with nitrogen blowing can promote the rapid and complete transformation of perovskite film.
2 The crystallinity and morphology of slot-die-coated perovskite film are significantly improved by controlling substrate temperature.
3 Fully slot-die-coated perovskite solar cells achieve a power conversion efficiency (PCE) of 18.13%, and fully roll-to-roll printed flexible PSCs achieve a PCE of 13.00% in ambient condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- https://www.nrel.gov/pv/cell-efficiency.html
- S.P. Dunfield, L. Bills, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
- Z.H. Dai, S. Yadavalli, M. Chen, Y. Qi, N.P. Padture, Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372(6542), 618–622 (2021). https://doi.org/10.1126/science.abf5602
- S.W. Song, S.J. Yang, W. Choi, H. Lee, W. Sung et al., Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10(42), 2001759 (2020). https://doi.org/10.1002/aenm.202001759
- H.Y. Li, C.T. Zuo, A.D. Scully, D. Angmo, J.L. Yang et al., Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flex. Print. Elecron. 5, 014006 (2020). https://doi.org/10.1088/2058-8585/ab639e
- K.J. Liao, C.B. Li, L.S. Xie, Y. Yuan, S.R. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12, 156 (2020). https://doi.org/10.1007/s40820-020-00494-2
- S. Ngqoloda, C.J. Arendse, T.F. Muller, P.F. Miceli, S. Guha et al., Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor. ACS Appl. Energy Mater. 3(3), 2350–2359 (2020). https://doi.org/10.1021/acsaem.9b01925
- D.Q. Bi, X. Li, J.V. Milic, D.J. Kubicki, N. Pellet et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
- H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 336(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
- M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, Y. Jo et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- W.J. Zhao, J. Xu, K. He, Y. Cai, S.M. Yang et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
- H. Ren, S.D. Yu, L.F. Chao, Y.D. Xia, Y.H. Sun et al., Efficient and stable ruddlesden-popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14, 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
- S. Ghosh, T. Singh, Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 63, 103828 (2019). https://doi.org/10.1016/j.nanoen.2019.06.024
- K.N. Noel, S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Horantner et al., A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10(1), 145–152 (2017). https://doi.org/10.1039/c6ee02373h
- Z.Q. Lin, H.J. Lian, B. Ge, Z.R. Zhou, H.Y. Yuan et al., Mediating the local oxygen-bridge interactions of oxysalt/perovskite interface for defect passivation of perovskite photovoltaics. Nano-Micro Lett. 13, 177 (2021). https://doi.org/10.1007/s40820-021-00683-7
- J. Xiong, B.C. Yang, C.H. Cao, R.S. Wu, Y.L. Huang et al., Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Org. Electron. 30, 30–35 (2016). https://doi.org/10.1016/j.orgel.2015.12.010
- I.A. Howard, T. Abzieher, I.M. Hossain, H. Eggers, F. Schackmar et al., Coated and printed perovskites for photovoltaic applications. Adv. Mater. 31(26), 1806702 (2019). https://doi.org/10.1002/adma.201806702
- J.W. Lee, D.K. Lee, D.N. Jeong, N.G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
- F. Huang, M.J. Li, P. Siffalovic, G.Z. Cao, J.J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019). https://doi.org/10.1039/c8ee03025a
- M.L. Xie, H. Lu, L.P. Zhang, J. Wang, Q. Luo et al., Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode. Sol. RRL 2(2), 1700184 (2018). https://doi.org/10.1002/solr.201700184
- J.H. Chang, K. Liu, S.Y. Lin, Y.B. Yuan, C.H. Zhou et al., Solution-processed perovskite solar cells. J. Cent. South Univ. 27, 1104–1133 (2020). https://doi.org/10.1007/s11771-020-4353-7
- D. Angmo, G. Deluca, A.D. Scully, A.S.R. Chesman, A. Seeber et al., A lab-to-fab study toward roll-to-roll fabrication of reproducible perovskite solar cells under ambient room conditions. Cell Rep. Phys. Sci. 2(1), 100293 (2021). https://doi.org/10.1016/j.xcrp.2020.100293
- F.Z. Li, Y. Zhang, K.J. Jiang, C.S. Zhang, J.H. Huang et al., A novel strategy for scalable high-efficiency planar perovskite solar cells with new precursors and cation displacement approach. Adv. Mater. 30(44), 1804454 (2018). https://doi.org/10.1002/adma.201804454
- W.Q. Wu, P.N. Rudd, Q. Wang, Z.B. Yang, J.S. Huang, Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 32(28), 2000995 (2020). https://doi.org/10.1002/adma.202000995
- C.T. Zuo, D. Vak, D. Angmo, L.M. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
- C.D. Gong, S.C. Tong, K.Q. Huang, H.Y. Li, H. Huang et al., Flexible planar heterojunction perovskite solar cells fabricated via sequential roll-to-roll microgravure printing and slot-die coating deposition. Sol. RRL 4(2), 1900304 (2019). https://doi.org/10.1002/solr.201900204
- J.E. Kim, S.S. Kim, C.T. Zuo, M. Gao, D. Vak et al., Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Adv. Funct. Mater. 29(26), 1809194 (2019). https://doi.org/10.1002/adfm.201809194
- Y.J. Heo, J.E. Kim, H. Weerasinhe, D. Angmo, T.S. Qin et al., Printing-friendly sequential deposition via intra-additive approach for rollto-roll process of perovskite solar cells. Nano Energy 41, 443–451 (2017). https://doi.org/10.1016/j.nanoen.2017.09.051
- Y.Y. Kim, E.Y. Park, T.Y. Yang, J.H. Noh, T.J. Shin et al., Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high performance perovskite solar cells. J. Mater. Chem. A 6(26), 12447–12454 (2018). https://doi.org/10.1039/c8ta02868k
- Y. Li, L. Ji, R.G. Liu, A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A 6(27), 12842–12875 (2018). https://doi.org/10.1039/c8ta04120b
- Y.Y. Kim, T.Y. Yang, R. Suhonen, M. Valimaki, T. Maaninen et al., Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing. Adv. Sci. 6(7), 1802094 (2019). https://doi.org/10.1002/advs.201802094
- Y.Y. Kim, T.Y. Yang, R. Suhonen, A. Kemppainen, K. Hwang et al., Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Comm. 11, 5146 (2020). https://doi.org/10.1038/s41467-020-18940-5
- D. Burkitt, R. Patidar, P. Greenwood, K. Hooper, J. Mcgettric et al., Roll-to-roll slot-die coated P-I-N perovskite solar cells using acetonitrile based singly step perovskite solvent system. Sustain. Energy Fuels 4(7), 3340–3351 (2020). https://doi.org/10.1039/D0SE00460J
- M. Othman, F. Zheng, A. Seeber, A.S.R. Chesman, A.D. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202110700
- J. Burschka, N. Pellet, S.J. Moon, B.R. Humphry, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- C.H. Wang, C.J. Zhang, S.T. Wang, G. Liu, H.Y. Xia et al., Low-temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells. Sol. RRL 2(2), 1700209 (2018). https://doi.org/10.1002/solr.201700209
- K.Q. Huang, Y.Y. Peng, Y.X. Gao, J. Shi, H.Y. Li et al., High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9(44), 1901419 (2019). https://doi.org/10.1002/aenm.201901419
- T.L. Bu, J. Li, F. Zheng, W.J. Chen, X.M. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
- C.T. Zuo, A. Scully, D. Yak, W.L. Tan, X.C. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
- H. Wu, C.J. Zhang, K.X. Ding, L.J. Wang, Y.L. Gao et al., Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307 (2017). https://doi.org/10.1016/j.orgel.2017.03.017
- C.C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3(7), 1772–1778 (2018). https://doi.org/10.1021/acsenergylett.8b00926
- F.M. Li, Z.T. Shen, Y.J. Weng, Q. Lou, C. Chen et al., Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability. Adv. Funct. Mater. 30(45), 2004933 (2020). https://doi.org/10.1002/adfm.202004933
- K. Ma, H.R. Atapattu, Q.C. Zhao, Y. Gao, B.P. Finkenauer et al., Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33(32), 2100791 (2021). https://doi.org/10.1002/adma.202100791
- M.M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt et al., Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv. Energy Mater. 9(1), 1802646 (2019). https://doi.org/10.1002/aenm.201802646
- Q.D. Tai, P. You, H.Q. Sang, Z.K. Liu, C.L. Hu et al., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7, 11105 (2016). https://doi.org/10.1038/ncomms11105
- T.J. Jacobsson, J.P. Correa, E.H. Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
- J.J. Tian, Q.F. Xue, X.F. Tang, Y.X. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
- P.Y. Liu, W. Wang, S.M. Liu, H.G. Yang, Z.P. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017
- W. Tress, J.P.C. Baena, M. Saliba, A. Abate, M. Graetzel, Inverted current-voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination. Adv. Energy Mater. 6(19), 1600396 (2016). https://doi.org/10.1002/aenm.201600396
- M.F. Ayguler, A.G. Hugnagel, P. Rieder, M. Wussler, W. Jaegermann, Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interfaces 10(14), 11414–11419 (2018). https://doi.org/10.1021/acsami.8b00990
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
https://www.nrel.gov/pv/cell-efficiency.html
S.P. Dunfield, L. Bills, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
Z.H. Dai, S. Yadavalli, M. Chen, Y. Qi, N.P. Padture, Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372(6542), 618–622 (2021). https://doi.org/10.1126/science.abf5602
S.W. Song, S.J. Yang, W. Choi, H. Lee, W. Sung et al., Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10(42), 2001759 (2020). https://doi.org/10.1002/aenm.202001759
H.Y. Li, C.T. Zuo, A.D. Scully, D. Angmo, J.L. Yang et al., Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flex. Print. Elecron. 5, 014006 (2020). https://doi.org/10.1088/2058-8585/ab639e
K.J. Liao, C.B. Li, L.S. Xie, Y. Yuan, S.R. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12, 156 (2020). https://doi.org/10.1007/s40820-020-00494-2
S. Ngqoloda, C.J. Arendse, T.F. Muller, P.F. Miceli, S. Guha et al., Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor. ACS Appl. Energy Mater. 3(3), 2350–2359 (2020). https://doi.org/10.1021/acsaem.9b01925
D.Q. Bi, X. Li, J.V. Milic, D.J. Kubicki, N. Pellet et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 336(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, Y. Jo et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
W.J. Zhao, J. Xu, K. He, Y. Cai, S.M. Yang et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
H. Ren, S.D. Yu, L.F. Chao, Y.D. Xia, Y.H. Sun et al., Efficient and stable ruddlesden-popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14, 154–163 (2020). https://doi.org/10.1038/s41566-019-0572-6
S. Ghosh, T. Singh, Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 63, 103828 (2019). https://doi.org/10.1016/j.nanoen.2019.06.024
K.N. Noel, S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Horantner et al., A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10(1), 145–152 (2017). https://doi.org/10.1039/c6ee02373h
Z.Q. Lin, H.J. Lian, B. Ge, Z.R. Zhou, H.Y. Yuan et al., Mediating the local oxygen-bridge interactions of oxysalt/perovskite interface for defect passivation of perovskite photovoltaics. Nano-Micro Lett. 13, 177 (2021). https://doi.org/10.1007/s40820-021-00683-7
J. Xiong, B.C. Yang, C.H. Cao, R.S. Wu, Y.L. Huang et al., Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Org. Electron. 30, 30–35 (2016). https://doi.org/10.1016/j.orgel.2015.12.010
I.A. Howard, T. Abzieher, I.M. Hossain, H. Eggers, F. Schackmar et al., Coated and printed perovskites for photovoltaic applications. Adv. Mater. 31(26), 1806702 (2019). https://doi.org/10.1002/adma.201806702
J.W. Lee, D.K. Lee, D.N. Jeong, N.G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
F. Huang, M.J. Li, P. Siffalovic, G.Z. Cao, J.J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019). https://doi.org/10.1039/c8ee03025a
M.L. Xie, H. Lu, L.P. Zhang, J. Wang, Q. Luo et al., Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode. Sol. RRL 2(2), 1700184 (2018). https://doi.org/10.1002/solr.201700184
J.H. Chang, K. Liu, S.Y. Lin, Y.B. Yuan, C.H. Zhou et al., Solution-processed perovskite solar cells. J. Cent. South Univ. 27, 1104–1133 (2020). https://doi.org/10.1007/s11771-020-4353-7
D. Angmo, G. Deluca, A.D. Scully, A.S.R. Chesman, A. Seeber et al., A lab-to-fab study toward roll-to-roll fabrication of reproducible perovskite solar cells under ambient room conditions. Cell Rep. Phys. Sci. 2(1), 100293 (2021). https://doi.org/10.1016/j.xcrp.2020.100293
F.Z. Li, Y. Zhang, K.J. Jiang, C.S. Zhang, J.H. Huang et al., A novel strategy for scalable high-efficiency planar perovskite solar cells with new precursors and cation displacement approach. Adv. Mater. 30(44), 1804454 (2018). https://doi.org/10.1002/adma.201804454
W.Q. Wu, P.N. Rudd, Q. Wang, Z.B. Yang, J.S. Huang, Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 32(28), 2000995 (2020). https://doi.org/10.1002/adma.202000995
C.T. Zuo, D. Vak, D. Angmo, L.M. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
C.D. Gong, S.C. Tong, K.Q. Huang, H.Y. Li, H. Huang et al., Flexible planar heterojunction perovskite solar cells fabricated via sequential roll-to-roll microgravure printing and slot-die coating deposition. Sol. RRL 4(2), 1900304 (2019). https://doi.org/10.1002/solr.201900204
J.E. Kim, S.S. Kim, C.T. Zuo, M. Gao, D. Vak et al., Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Adv. Funct. Mater. 29(26), 1809194 (2019). https://doi.org/10.1002/adfm.201809194
Y.J. Heo, J.E. Kim, H. Weerasinhe, D. Angmo, T.S. Qin et al., Printing-friendly sequential deposition via intra-additive approach for rollto-roll process of perovskite solar cells. Nano Energy 41, 443–451 (2017). https://doi.org/10.1016/j.nanoen.2017.09.051
Y.Y. Kim, E.Y. Park, T.Y. Yang, J.H. Noh, T.J. Shin et al., Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high performance perovskite solar cells. J. Mater. Chem. A 6(26), 12447–12454 (2018). https://doi.org/10.1039/c8ta02868k
Y. Li, L. Ji, R.G. Liu, A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A 6(27), 12842–12875 (2018). https://doi.org/10.1039/c8ta04120b
Y.Y. Kim, T.Y. Yang, R. Suhonen, M. Valimaki, T. Maaninen et al., Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing. Adv. Sci. 6(7), 1802094 (2019). https://doi.org/10.1002/advs.201802094
Y.Y. Kim, T.Y. Yang, R. Suhonen, A. Kemppainen, K. Hwang et al., Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Comm. 11, 5146 (2020). https://doi.org/10.1038/s41467-020-18940-5
D. Burkitt, R. Patidar, P. Greenwood, K. Hooper, J. Mcgettric et al., Roll-to-roll slot-die coated P-I-N perovskite solar cells using acetonitrile based singly step perovskite solvent system. Sustain. Energy Fuels 4(7), 3340–3351 (2020). https://doi.org/10.1039/D0SE00460J
M. Othman, F. Zheng, A. Seeber, A.S.R. Chesman, A.D. Scully et al., Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202110700
J. Burschka, N. Pellet, S.J. Moon, B.R. Humphry, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
C.H. Wang, C.J. Zhang, S.T. Wang, G. Liu, H.Y. Xia et al., Low-temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells. Sol. RRL 2(2), 1700209 (2018). https://doi.org/10.1002/solr.201700209
K.Q. Huang, Y.Y. Peng, Y.X. Gao, J. Shi, H.Y. Li et al., High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv. Energy Mater. 9(44), 1901419 (2019). https://doi.org/10.1002/aenm.201901419
T.L. Bu, J. Li, F. Zheng, W.J. Chen, X.M. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
C.T. Zuo, A. Scully, D. Yak, W.L. Tan, X.C. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
H. Wu, C.J. Zhang, K.X. Ding, L.J. Wang, Y.L. Gao et al., Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307 (2017). https://doi.org/10.1016/j.orgel.2017.03.017
C.C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3(7), 1772–1778 (2018). https://doi.org/10.1021/acsenergylett.8b00926
F.M. Li, Z.T. Shen, Y.J. Weng, Q. Lou, C. Chen et al., Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability. Adv. Funct. Mater. 30(45), 2004933 (2020). https://doi.org/10.1002/adfm.202004933
K. Ma, H.R. Atapattu, Q.C. Zhao, Y. Gao, B.P. Finkenauer et al., Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33(32), 2100791 (2021). https://doi.org/10.1002/adma.202100791
M.M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt et al., Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv. Energy Mater. 9(1), 1802646 (2019). https://doi.org/10.1002/aenm.201802646
Q.D. Tai, P. You, H.Q. Sang, Z.K. Liu, C.L. Hu et al., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7, 11105 (2016). https://doi.org/10.1038/ncomms11105
T.J. Jacobsson, J.P. Correa, E.H. Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
J.J. Tian, Q.F. Xue, X.F. Tang, Y.X. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
P.Y. Liu, W. Wang, S.M. Liu, H.G. Yang, Z.P. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017
W. Tress, J.P.C. Baena, M. Saliba, A. Abate, M. Graetzel, Inverted current-voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination. Adv. Energy Mater. 6(19), 1600396 (2016). https://doi.org/10.1002/aenm.201600396
M.F. Ayguler, A.G. Hugnagel, P. Rieder, M. Wussler, W. Jaegermann, Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interfaces 10(14), 11414–11419 (2018). https://doi.org/10.1021/acsami.8b00990