Multiscale Biomimetic Evaporators Based on Liquid Metal/Polyacrylonitrile Composite Fibers for Highly Efficient Solar Steam Generation
Corresponding Author: Qingbin Zheng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 129
Abstract
Solar steam generation (SSG) offers a cost-effective solution for producing clean water by utilizing solar energy. However, integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge. Here, inspired by the hierarchical structure of the stem of bird of paradise, a three-dimensional multiscale liquid metal/polyacrylonitrile (LM/PAN) evaporator is fabricated by assembling LM/PAN fibers. The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%. Consequently, the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m−2 h−1 with a solar energy efficiency of 96.5% under one sun irradiation and an exceptional water rate of 2.58 kg m−2 h−1 in brine. Additionally, the LM/PAN evaporator demonstrates a superior purification performance for seawater, with the concentration of Na+, Mg2+, K+ and Ca2+ in real seawater dramatically decreased by three orders to less than 7 mg L−1 after desalination under light irradiation. The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation, providing valuable insight into the structural design principles for advanced SSG systems.
Highlights:
1 A three-dimensional multiscale liquid metal/polyacrylonitrile evaporator is fabricated through wet spinning and assembly.
2 The evaporator exhibits an outstanding water evaporation rate of 2.66 kg m−2 h−1 with a solar energy efficiency of 96.5% under one sun irradiation.
3 The evaporator demonstrates a superior purification performance for seawater and sewage under light irradiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. He, Z. Liu, J. Wu, X. Pan, Z. Fang et al., Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
- J.S. Famiglietti, G. Ferguson, The hidden crisis beneath our feet. Science 372, 344–345 (2021). https://doi.org/10.1126/science.abh2867
- Z. Mao, Q. Wang, Z. Yu, A. Osman, Y. Yao et al., High performance solar-driven power-water cogeneration for practical application: from micro/nano materials to beyond. ACS Nano 18, 22648–22663 (2024). https://doi.org/10.1021/acsnano.4c06339
- C. Lei, J. Park, W. Guan, Y. Zhao, K.P. Johnston et al., Biomimetically assembled sponge-like hydrogels for efficient solar water purification. Adv. Funct. Mater. 33, 2303883 (2023). https://doi.org/10.1002/adfm.202303883
- S. Hong, J. Kim, J. Park, S. Im, M.R. Hoffmann et al., Scalable Ir-doped NiFe2O4/TiO2 heterojunction anode for decentralized saline wastewater treatment and H2 production. Nano-Micro Lett. 17, 51 (2024). https://doi.org/10.1007/s40820-024-01542-x
- M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
- Q. Fan, L. Wu, Y. Liang, Z. Xu, Y. Li et al., The role of micro-nano pores in interfacial solar evaporation systems–a review. Appl. Energy 292, 116871 (2021). https://doi.org/10.1016/j.apenergy.2021.116871
- J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 254, 113652 (2019). https://doi.org/10.1016/j.apenergy.2019.113652
- Y. Song, S. Fang, N. Xu, M. Wang, S. Chen et al., Solar transpiration-powered lithium extraction and storage. Science 385, 1444–1449 (2024). https://doi.org/10.1126/science.adm7034
- C. Ge, D. Xu, Y. Song, Y. Liu, X. Feng et al., Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity generation. Adv. Funct. Mater. 34, 2403608 (2024). https://doi.org/10.1002/adfm.202403608
- Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- D. Wei, C. Wang, J. Zhang, H. Zhao, Y. Asakura et al., Water activation in solar-powered vapor generation. Adv. Mater. 35, 2212100 (2023). https://doi.org/10.1002/adma.202212100
- H. Zheng, J. Fan, A. Chen, X. Li, X. Xie et al., Enhancing solar-driven water purification by multiscale biomimetic evaporators featuring lamellar MoS2/GO heterojunctions. ACS Nano 18, 3115–3124 (2024). https://doi.org/10.1021/acsnano.3c08648
- M. Yang, Y. Wu, M. Chen, Y. Wang, L. Zhang et al., Hofmeister effect-assisted facile fabrication of self-assembled poly(vinyl alcohol)/graphite composite sponge-like hydrogel for solar steam generation. Small 20, e2402151 (2024). https://doi.org/10.1002/smll.202402151
- L. Ren, X. Yi, Z. Yang, D. Wang, L. Liu et al., Designing carbonized loofah sponge architectures with plasmonic Cu nanops encapsulated in graphitic layers for highly efficient solar vapor generation. Nano Lett. 21, 1709–1715 (2021). https://doi.org/10.1021/acs.nanolett.0c04511
- R. Cui, J. Wei, C. Du, S. Sun, C. Zhou et al., Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. J. Mater. Chem. A 8, 13311–13319 (2020). https://doi.org/10.1039/D0TA03850D
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2 O3 nanops. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
- B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
- Y. Liu, H. Liu, J. Xiong, A. Li, R. Wang et al., Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem. Eng. J. 427, 131539 (2022). https://doi.org/10.1016/j.cej.2021.131539
- J. Lin, J. Huang, Z. Guo, B.B. Xu, Y. Cao et al., Hydrophobic multilayered PEG@PAN/MXene/PVDF@SiO2 composite film with excellent thermal management and electromagnetic interference shielding for electronic devices. Small 20, e2402938 (2024). https://doi.org/10.1002/smll.202402938
- X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34, 2409675 (2024). https://doi.org/10.1002/adfm.202409675
- R. Yan, Z. Huang, Y. Chen, L. Zhang, X. Sheng, Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 277, 134233 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134233
- Z. Wang, X. Wu, F. He, S. Peng, Y. Li, Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 31, 2011114 (2021). https://doi.org/10.1002/adfm.202011114
- X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31, 2102618 (2021). https://doi.org/10.1002/adfm.202102618
- Y. Ma, J. Shen, T. Li, X. Sheng, Y. Chen, A “net-ball” structure fiber membrane with electro-/ photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy Mater. Sol. Cells 276, 113078 (2024). https://doi.org/10.1016/j.solmat.2024.113078
- K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
- O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander et al., Solar vapor generation enabled by nanops. ACS Nano 7, 42–49 (2013). https://doi.org/10.1021/nn304948h
- Z. Fang, Y.-R. Zhen, O. Neumann, F. Albert Polman, J. García, P. de Abajo et al., Evolution of light-induced vapor generation at a liquid-immersed metallic nanop. Nano Lett. 13(4), 1736–1742 (2013). https://doi.org/10.1021/nl4003238
- S. Chen, Z. Sun, W. Xiang, C. Shen, Z. Wang et al., Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 76, 104998 (2020). https://doi.org/10.1016/j.nanoen.2020.104998
- F. Yang, Z. Bao, Z. Liang, G. He, J. Li et al., Black silver-decorated liquid metal nanofillers coupled with glycerol-modified hydrogel composites for high efficiency solar steam generation and thermoelectric conversion. Chem. Eng. J. 490, 151815 (2024). https://doi.org/10.1016/j.cej.2024.151815
- Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect. Adv. Funct. Mater. 32, 2206287 (2022). https://doi.org/10.1002/adfm.202206287
- Z. Wei, C. Cai, Y. Huang, Y. Wang, Y. Fu, Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 86, 106138 (2021). https://doi.org/10.1016/j.nanoen.2021.106138
- S. Yang, Y. Zhang, J. Bai, Y. He, X. Zhao et al., Integrating dual-interfacial liquid metal based nanodroplet architectures and micro-nanostructured engineering for high efficiency solar energy harvesting. ACS Nano 16, 15086–15099 (2022). https://doi.org/10.1021/acsnano.2c06245
- H. Bark, M.W.M. Tan, G. Thangavel, P.S. Lee, Deformable high loading liquid metal nanops composites for thermal energy management. Adv. Energy Mater. 11, 2101387 (2021). https://doi.org/10.1002/aenm.202101387
- J. Xie, G. Zhou, Y. Sun, F. Zhang, F. Kang et al., Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 20, e2305163 (2024). https://doi.org/10.1002/smll.202305163
- X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1, 1700046 (2017). https://doi.org/10.1002/adsu.201700046
- C. Li, D. Jiang, B. Huo, M. Ding, C. Huang et al., Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 60, 841–849 (2019). https://doi.org/10.1016/j.nanoen.2019.03.087
- Z. Rao, S. Wang, M. Wu, Z. Lin, F. Li, Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers. Manag. 65, 92–97 (2013). https://doi.org/10.1016/j.enconman.2012.08.014
- X. Li, X. Ding, Y. Du, C. Xiao, Y. Wang et al., Rapidly responsive liquid metal/polyimide photothermal actuators designed based on the bilayer structure difference in coefficient of thermal expansion. J. Mater. Chem. C 10, 14255–14264 (2022). https://doi.org/10.1039/D2TC02820D
- G. Valette, Hydrophilicity of metal surfaces Silver, gold and copper electrodes. J. Electroanal. Chem. Interfacial Electrochem. 139, 285–301 (1982). https://doi.org/10.1016/0022-0728(82)85127-9
- Y. Zhang, Z. Guo, H. Zhu, W. Xing, P. Tao et al., Synthesis of liquid Gallium@Reduced graphene oxide core-shell nanops with enhanced photoacoustic and photothermal performance. J. Am. Chem. Soc. 144, 6779–6790 (2022). https://doi.org/10.1021/jacs.2c00162
- M. Wu, Y. Wei, Y. Zhu, Y. Bai, Y. Wang et al., Hydrophilic polymer foam as a monolithic interfacial solar evaporator with rapid self-cleaning, high evaporation efficiency, and salt resistance. Adv. Funct. Mater. 34, 2410729 (2024). https://doi.org/10.1002/adfm.202410729
- Y. Sekine, T. Ikeda-Fukazawa, Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 130, 034501 (2009). https://doi.org/10.1063/1.3058616
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
- Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33, 2306806 (2023). https://doi.org/10.1002/adfm.202306806
- X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
- Z. Sun, C. Han, S. Gao, Z. Li, M. Jing et al., Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat. Commun. 13, 5077 (2022). https://doi.org/10.1038/s41467-022-32820-0
- C. Ma, Q. Liu, Q. Peng, G. Yang, M. Jiang et al., Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices. ACS Nano 15, 19877–19887 (2021). https://doi.org/10.1021/acsnano.1c07391
- M.-Y. Yu, J. Wu, G. Yin, F.-Z. Jiao, Z.-Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17, 48 (2024). https://doi.org/10.1007/s40820-024-01544-9
- H. Zhou, C. Xue, Q. Chang, J. Yang, S. Hu, Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chem. Eng. J. 421, 129822 (2021). https://doi.org/10.1016/j.cej.2021.129822
- S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2, 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
- F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- B. Yu, Y. Zhang, Y. Wang, Z. Zhang, Recent advances and challenges of metal-based materials for solar steam generation. Adv. Funct. Mater. 33, 2307533 (2023). https://doi.org/10.1002/adfm.202307533
- Y. Chen, Y. Wang, J. Xu, M.R.I. Raihan, B. Guo et al., A 3D opened hollow photothermal evaporator for highly efficient solar steam generation. Sol. RRL 6, 2200202 (2022). https://doi.org/10.1002/solr.202200202
- Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
- H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
- H.K. Kim, J. Park, I. Hwang, Investigating water transport through the xylem network in vascular plants. J. Exp. Bot. 65, 1895–1904 (2014). https://doi.org/10.1093/jxb/eru075
- J.S. Sperry, Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003). https://doi.org/10.1086/368398
- G.W. Koch, S.C. Sillett, G.M. Jennings, S.D. Davis, The limits to tree height. Nature 428, 851–854 (2004). https://doi.org/10.1038/nature02417
- L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
- J. Wu, Z. Cui, Y. Yu, B. Yue, J. Hu et al., Multifunctional solar evaporator with adjustable island structure improves performance and salt discharge capacity of desalination. Adv. Sci. 10, e2305523 (2023). https://doi.org/10.1002/advs.202305523
- X. Yu, W. Fan, Y. Liu, K. Dong, S. Wang et al., A one-step fabricated sheath-core stretchable fiber based on liquid metal with superior electric conductivity for wearable sensors and heaters. Adv. Mater. Technol. 7, 2101618 (2022). https://doi.org/10.1002/admt.202101618
- X. Qi, H. Zhao, L. Wang, F. Sun, X. Ye et al., Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 437, 135382 (2022). https://doi.org/10.1016/j.cej.2022.135382
- J. Lin, X. Feng, J. Huang, Y. Liu, Y. Xiao et al., Flexible AIE/PCM composite fiber with biosensing of alcohol, fluorescent anti-counterfeiting and body thermal management functions. Biosens. Bioelectron. 267, 116799 (2025). https://doi.org/10.1016/j.bios.2024.116799
- A.B. Ali, D. Slawig, A. Schlosser, J. Koch, N.C. Bigall et al., Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon 172, 283–295 (2021). https://doi.org/10.1016/j.carbon.2020.10.033
- E. Zussman, X. Chen, W. Ding, L. Calabri, D.A. Dikin et al., Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43, 2175–2185 (2005). https://doi.org/10.1016/j.carbon.2005.03.031
- Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
- Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15, 13007–13018 (2021). https://doi.org/10.1021/acsnano.1c01900
- A.J. McElrone, W.T. Pockman, J. Martínez-Vilalta, R.B. Jackson, Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol. 163, 507–517 (2004). https://doi.org/10.1111/j.1469-8137.2004.01127.x
- Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33, 2306947 (2023). https://doi.org/10.1002/adfm.202306947
- L. Gong, M.H.T. Nguyen, E.-S. Oh, High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun. 29, 45–47 (2013). https://doi.org/10.1016/j.elecom.2013.01.010
- L. Xia, S. Zhou, C. Zhang, Z. Fu, A. Wang et al., Environment-friendly Juncus effusus-based adsorbent with a three-dimensional network structure for highly efficient removal of dyes from wastewater. J. Clean. Prod. 259, 120812 (2020). https://doi.org/10.1016/j.jclepro.2020.120812
- C. Jin, Y. Liu, J. Fan, T. Liu, G. Liu et al., Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloid Surf. A-Physicochem. Eng. Asp. 643, 128760 (2022). https://doi.org/10.1016/j.colsurfa.2022.128760
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061
References
C. He, Z. Liu, J. Wu, X. Pan, Z. Fang et al., Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
J.S. Famiglietti, G. Ferguson, The hidden crisis beneath our feet. Science 372, 344–345 (2021). https://doi.org/10.1126/science.abh2867
Z. Mao, Q. Wang, Z. Yu, A. Osman, Y. Yao et al., High performance solar-driven power-water cogeneration for practical application: from micro/nano materials to beyond. ACS Nano 18, 22648–22663 (2024). https://doi.org/10.1021/acsnano.4c06339
C. Lei, J. Park, W. Guan, Y. Zhao, K.P. Johnston et al., Biomimetically assembled sponge-like hydrogels for efficient solar water purification. Adv. Funct. Mater. 33, 2303883 (2023). https://doi.org/10.1002/adfm.202303883
S. Hong, J. Kim, J. Park, S. Im, M.R. Hoffmann et al., Scalable Ir-doped NiFe2O4/TiO2 heterojunction anode for decentralized saline wastewater treatment and H2 production. Nano-Micro Lett. 17, 51 (2024). https://doi.org/10.1007/s40820-024-01542-x
M. Ning, Y. Wang, L. Wu, L. Yang, Z. Chen et al., Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nano-Micro Lett. 15, 157 (2023). https://doi.org/10.1007/s40820-023-01129-y
Q. Fan, L. Wu, Y. Liang, Z. Xu, Y. Li et al., The role of micro-nano pores in interfacial solar evaporation systems–a review. Appl. Energy 292, 116871 (2021). https://doi.org/10.1016/j.apenergy.2021.116871
J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 254, 113652 (2019). https://doi.org/10.1016/j.apenergy.2019.113652
Y. Song, S. Fang, N. Xu, M. Wang, S. Chen et al., Solar transpiration-powered lithium extraction and storage. Science 385, 1444–1449 (2024). https://doi.org/10.1126/science.adm7034
C. Ge, D. Xu, Y. Song, Y. Liu, X. Feng et al., Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity generation. Adv. Funct. Mater. 34, 2403608 (2024). https://doi.org/10.1002/adfm.202403608
Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro-nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
D. Wei, C. Wang, J. Zhang, H. Zhao, Y. Asakura et al., Water activation in solar-powered vapor generation. Adv. Mater. 35, 2212100 (2023). https://doi.org/10.1002/adma.202212100
H. Zheng, J. Fan, A. Chen, X. Li, X. Xie et al., Enhancing solar-driven water purification by multiscale biomimetic evaporators featuring lamellar MoS2/GO heterojunctions. ACS Nano 18, 3115–3124 (2024). https://doi.org/10.1021/acsnano.3c08648
M. Yang, Y. Wu, M. Chen, Y. Wang, L. Zhang et al., Hofmeister effect-assisted facile fabrication of self-assembled poly(vinyl alcohol)/graphite composite sponge-like hydrogel for solar steam generation. Small 20, e2402151 (2024). https://doi.org/10.1002/smll.202402151
L. Ren, X. Yi, Z. Yang, D. Wang, L. Liu et al., Designing carbonized loofah sponge architectures with plasmonic Cu nanops encapsulated in graphitic layers for highly efficient solar vapor generation. Nano Lett. 21, 1709–1715 (2021). https://doi.org/10.1021/acs.nanolett.0c04511
R. Cui, J. Wei, C. Du, S. Sun, C. Zhou et al., Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. J. Mater. Chem. A 8, 13311–13319 (2020). https://doi.org/10.1039/D0TA03850D
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2 O3 nanops. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
Y. Liu, H. Liu, J. Xiong, A. Li, R. Wang et al., Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem. Eng. J. 427, 131539 (2022). https://doi.org/10.1016/j.cej.2021.131539
J. Lin, J. Huang, Z. Guo, B.B. Xu, Y. Cao et al., Hydrophobic multilayered PEG@PAN/MXene/PVDF@SiO2 composite film with excellent thermal management and electromagnetic interference shielding for electronic devices. Small 20, e2402938 (2024). https://doi.org/10.1002/smll.202402938
X. He, C. Cui, Y. Chen, L. Zhang, X. Sheng et al., MXene and polymer collision: sparking the future of high-performance multifunctional coatings. Adv. Funct. Mater. 34, 2409675 (2024). https://doi.org/10.1002/adfm.202409675
R. Yan, Z. Huang, Y. Chen, L. Zhang, X. Sheng, Phase change composite based on lignin carbon aerogel/nickel foam dual-network for multisource energy harvesting and superb EMI shielding. Int. J. Biol. Macromol. 277, 134233 (2024). https://doi.org/10.1016/j.ijbiomac.2024.134233
Z. Wang, X. Wu, F. He, S. Peng, Y. Li, Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv. Funct. Mater. 31, 2011114 (2021). https://doi.org/10.1002/adfm.202011114
X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31, 2102618 (2021). https://doi.org/10.1002/adfm.202102618
Y. Ma, J. Shen, T. Li, X. Sheng, Y. Chen, A “net-ball” structure fiber membrane with electro-/ photo-thermal heating and phase change synchronous temperature regulation capacity via electrospinning. Sol. Energy Mater. Sol. Cells 276, 113078 (2024). https://doi.org/10.1016/j.solmat.2024.113078
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander et al., Solar vapor generation enabled by nanops. ACS Nano 7, 42–49 (2013). https://doi.org/10.1021/nn304948h
Z. Fang, Y.-R. Zhen, O. Neumann, F. Albert Polman, J. García, P. de Abajo et al., Evolution of light-induced vapor generation at a liquid-immersed metallic nanop. Nano Lett. 13(4), 1736–1742 (2013). https://doi.org/10.1021/nl4003238
S. Chen, Z. Sun, W. Xiang, C. Shen, Z. Wang et al., Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 76, 104998 (2020). https://doi.org/10.1016/j.nanoen.2020.104998
F. Yang, Z. Bao, Z. Liang, G. He, J. Li et al., Black silver-decorated liquid metal nanofillers coupled with glycerol-modified hydrogel composites for high efficiency solar steam generation and thermoelectric conversion. Chem. Eng. J. 490, 151815 (2024). https://doi.org/10.1016/j.cej.2024.151815
Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and Bénard–Marangoni effect. Adv. Funct. Mater. 32, 2206287 (2022). https://doi.org/10.1002/adfm.202206287
Z. Wei, C. Cai, Y. Huang, Y. Wang, Y. Fu, Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 86, 106138 (2021). https://doi.org/10.1016/j.nanoen.2021.106138
S. Yang, Y. Zhang, J. Bai, Y. He, X. Zhao et al., Integrating dual-interfacial liquid metal based nanodroplet architectures and micro-nanostructured engineering for high efficiency solar energy harvesting. ACS Nano 16, 15086–15099 (2022). https://doi.org/10.1021/acsnano.2c06245
H. Bark, M.W.M. Tan, G. Thangavel, P.S. Lee, Deformable high loading liquid metal nanops composites for thermal energy management. Adv. Energy Mater. 11, 2101387 (2021). https://doi.org/10.1002/aenm.202101387
J. Xie, G. Zhou, Y. Sun, F. Zhang, F. Kang et al., Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 20, e2305163 (2024). https://doi.org/10.1002/smll.202305163
X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1, 1700046 (2017). https://doi.org/10.1002/adsu.201700046
C. Li, D. Jiang, B. Huo, M. Ding, C. Huang et al., Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 60, 841–849 (2019). https://doi.org/10.1016/j.nanoen.2019.03.087
Z. Rao, S. Wang, M. Wu, Z. Lin, F. Li, Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers. Manag. 65, 92–97 (2013). https://doi.org/10.1016/j.enconman.2012.08.014
X. Li, X. Ding, Y. Du, C. Xiao, Y. Wang et al., Rapidly responsive liquid metal/polyimide photothermal actuators designed based on the bilayer structure difference in coefficient of thermal expansion. J. Mater. Chem. C 10, 14255–14264 (2022). https://doi.org/10.1039/D2TC02820D
G. Valette, Hydrophilicity of metal surfaces Silver, gold and copper electrodes. J. Electroanal. Chem. Interfacial Electrochem. 139, 285–301 (1982). https://doi.org/10.1016/0022-0728(82)85127-9
Y. Zhang, Z. Guo, H. Zhu, W. Xing, P. Tao et al., Synthesis of liquid Gallium@Reduced graphene oxide core-shell nanops with enhanced photoacoustic and photothermal performance. J. Am. Chem. Soc. 144, 6779–6790 (2022). https://doi.org/10.1021/jacs.2c00162
M. Wu, Y. Wei, Y. Zhu, Y. Bai, Y. Wang et al., Hydrophilic polymer foam as a monolithic interfacial solar evaporator with rapid self-cleaning, high evaporation efficiency, and salt resistance. Adv. Funct. Mater. 34, 2410729 (2024). https://doi.org/10.1002/adfm.202410729
Y. Sekine, T. Ikeda-Fukazawa, Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 130, 034501 (2009). https://doi.org/10.1063/1.3058616
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018). https://doi.org/10.1038/s41565-018-0097-z
Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33, 2306806 (2023). https://doi.org/10.1002/adfm.202306806
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
Z. Sun, C. Han, S. Gao, Z. Li, M. Jing et al., Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat. Commun. 13, 5077 (2022). https://doi.org/10.1038/s41467-022-32820-0
C. Ma, Q. Liu, Q. Peng, G. Yang, M. Jiang et al., Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices. ACS Nano 15, 19877–19887 (2021). https://doi.org/10.1021/acsnano.1c07391
M.-Y. Yu, J. Wu, G. Yin, F.-Z. Jiao, Z.-Z. Yu et al., Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 17, 48 (2024). https://doi.org/10.1007/s40820-024-01544-9
H. Zhou, C. Xue, Q. Chang, J. Yang, S. Hu, Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chem. Eng. J. 421, 129822 (2021). https://doi.org/10.1016/j.cej.2021.129822
S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2, 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 (2023). https://doi.org/10.1007/s40820-023-01030-8
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
B. Yu, Y. Zhang, Y. Wang, Z. Zhang, Recent advances and challenges of metal-based materials for solar steam generation. Adv. Funct. Mater. 33, 2307533 (2023). https://doi.org/10.1002/adfm.202307533
Y. Chen, Y. Wang, J. Xu, M.R.I. Raihan, B. Guo et al., A 3D opened hollow photothermal evaporator for highly efficient solar steam generation. Sol. RRL 6, 2200202 (2022). https://doi.org/10.1002/solr.202200202
Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
H.K. Kim, J. Park, I. Hwang, Investigating water transport through the xylem network in vascular plants. J. Exp. Bot. 65, 1895–1904 (2014). https://doi.org/10.1093/jxb/eru075
J.S. Sperry, Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003). https://doi.org/10.1086/368398
G.W. Koch, S.C. Sillett, G.M. Jennings, S.D. Davis, The limits to tree height. Nature 428, 851–854 (2004). https://doi.org/10.1038/nature02417
L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
J. Wu, Z. Cui, Y. Yu, B. Yue, J. Hu et al., Multifunctional solar evaporator with adjustable island structure improves performance and salt discharge capacity of desalination. Adv. Sci. 10, e2305523 (2023). https://doi.org/10.1002/advs.202305523
X. Yu, W. Fan, Y. Liu, K. Dong, S. Wang et al., A one-step fabricated sheath-core stretchable fiber based on liquid metal with superior electric conductivity for wearable sensors and heaters. Adv. Mater. Technol. 7, 2101618 (2022). https://doi.org/10.1002/admt.202101618
X. Qi, H. Zhao, L. Wang, F. Sun, X. Ye et al., Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 437, 135382 (2022). https://doi.org/10.1016/j.cej.2022.135382
J. Lin, X. Feng, J. Huang, Y. Liu, Y. Xiao et al., Flexible AIE/PCM composite fiber with biosensing of alcohol, fluorescent anti-counterfeiting and body thermal management functions. Biosens. Bioelectron. 267, 116799 (2025). https://doi.org/10.1016/j.bios.2024.116799
A.B. Ali, D. Slawig, A. Schlosser, J. Koch, N.C. Bigall et al., Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon 172, 283–295 (2021). https://doi.org/10.1016/j.carbon.2020.10.033
E. Zussman, X. Chen, W. Ding, L. Calabri, D.A. Dikin et al., Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43, 2175–2185 (2005). https://doi.org/10.1016/j.carbon.2005.03.031
Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15, 13007–13018 (2021). https://doi.org/10.1021/acsnano.1c01900
A.J. McElrone, W.T. Pockman, J. Martínez-Vilalta, R.B. Jackson, Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol. 163, 507–517 (2004). https://doi.org/10.1111/j.1469-8137.2004.01127.x
Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33, 2306947 (2023). https://doi.org/10.1002/adfm.202306947
L. Gong, M.H.T. Nguyen, E.-S. Oh, High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun. 29, 45–47 (2013). https://doi.org/10.1016/j.elecom.2013.01.010
L. Xia, S. Zhou, C. Zhang, Z. Fu, A. Wang et al., Environment-friendly Juncus effusus-based adsorbent with a three-dimensional network structure for highly efficient removal of dyes from wastewater. J. Clean. Prod. 259, 120812 (2020). https://doi.org/10.1016/j.jclepro.2020.120812
C. Jin, Y. Liu, J. Fan, T. Liu, G. Liu et al., Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloid Surf. A-Physicochem. Eng. Asp. 643, 128760 (2022). https://doi.org/10.1016/j.colsurfa.2022.128760
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061