B-Bridge Regulated Asymmetric Dual-Atomic Catalysts for Synergistically Enhanced Styrene Mineralization and CO2 Reduction
Corresponding Author: Chuncai Kong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 304
Abstract
Developing innovative resource utilization strategies to achieve sustainable recycling of waste-to-fuel is highly desirable, yet the design of cost-effective bifunctional catalysts with dual high-efficiency remains unexplored. While the Fenton-like reaction relies on enhancing peroxymonosulfate (PMS) adsorption and accelerating interfacial electron transfer to improve kinetic rates, CO2 reduction is constrained by sluggish kinetics and competing hydrogen evolution reaction. Herein, we construct a bifunctional catalyst (NiFe-BNC) featuring dual-atomic active sites by introducing boron atoms into a biomass-derived chitosan substrate rich in functional groups, which optimizes atomic coordination environments. In situ experiments and density functional theory calculations reveal that B-atom modulation facilitates carbon substrate defect enrichment, while the charge-tuning effect between metal sites and "boron electron bridge" optimizes PMS adsorption configurations. This synergistic effect facilitates the interfacial electron transfer and enhances the CO2 adsorption capacity of NiFe-BNC by 6 times that of NiFe-NC. The obtained NiFe-BNC exhibits significantly enhanced catalytic activity and selectivity, realizing 99% efficient degradation of volatile organic pollutants in the flowing phase within 2 h and stable mineralization exceeding 60%, while achieving a large current density of 1000 mA cm−2 and CO Faraday efficiency of 98% in the flow electrolytic cell. This work innovatively paves a new way for the rational design of cost-effective functional catalysts to achieve carbon cycle utilization.
Highlights:
1 Bifunctional atomic catalyst for dual environmental-energetic applications.
2 Unprecedented catalytic performance: simultaneously 99% flowing-phase styrene degradation and 98% FECO at 1000 mA cm−2.
3 Boron incorporation for accelerated electron transfer and optimized eCO2RR microenvironments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss et al., The technological and economic prospects for CO2 utilization and removal. Nature 575(7781), 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6
- Y. Li, N.M. Adli, W. Shan, M. Wang, M.J. Zachman et al., Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 15(5), 2108–2119 (2022). https://doi.org/10.1039/d2ee00318j
- Y. Xiang, X. Xie, H. Zhong, F. Xiao, R. Xie et al., Efficient catalytic elimination of toxic volatile organic compounds via advanced oxidation process wet scrubbing with bifunctional cobalt sulfide/activated carbon catalysts. Environ. Sci. Technol. 58(20), 8846–8856 (2024). https://doi.org/10.1021/acs.est.4c00481
- Z. Cheng, Y. Zhou, X. Zhao, Z. Chen, S. Zhang et al., Efficient removal of VOCs emission from soil thermal desorption via MnCoOx/Kaolin activating peroxymonosulfate in wet scrubber. Chem. Eng. J. 480, 148159 (2024). https://doi.org/10.1016/j.cej.2023.148159
- V.N. Lima, C.S.D. Rodrigues, R.A.C. Borges, L.M. Madeira, Gaseous and liquid effluents treatment in bubble column reactors by advanced oxidation processes: a review. Crit. Rev. Environ. Sci. Technol. 48(16–18), 949–996 (2018). https://doi.org/10.1080/10643389.2018.1493335
- L. Wen, H. Fu, J. Hu, S. Huang, Analytical model for assessing mass transfer of VOC in liquid desiccant dehumidifier: a broad-range response to Henry’s law constant. Int. J. Heat Mass Transf. 221, 125016 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125016
- H. Huang, X. Xie, F. Xiao, B. Liu, T. Zhang et al., A critical review of deep oxidation of gaseous volatile organic compounds via aqueous advanced oxidation processes. Environ. Sci. Technol. 58(42), 18456–18473 (2024). https://doi.org/10.1021/acs.est.4c07202
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- J. Li, X. Meng, X. Song, J. Qi, F. Liu et al., Valence engineering via manganese-doping on cobalt nitride nanoarrays for efficient electrochemically paired glycerol valorization and H2 production. Adv. Funct. Mater. 34(33), 2316718 (2024). https://doi.org/10.1002/adfm.202316718
- J. Qi, Y. Xia, X. Meng, J. Li, S. Yang et al., Cation-vacancy engineering in cobalt selenide boosts electrocatalytic upcycling of polyester thermoplastics at industrial-level current density. Adv. Mater. 37(10), e2419058 (2025). https://doi.org/10.1002/adma.202419058
- J. Zhang, C. Zhang, M. Wang, Y. Mao, B. Wu et al., Isotopic labelling of water reveals the hydrogen transfer route in electrochemical CO2 reduction. Nat. Chem. 17(3), 334–343 (2025). https://doi.org/10.1038/s41557-024-01721-8
- Y. Ma, T. Xiao, K. Zhu, W. Zhang, Z. Yin et al., Industry-level electrocatalytic CO2 to CO enabled by 2D mesoporous Ni single atom catalysts. Angew. Chem. Int. Ed. 64(5), e202416629 (2025). https://doi.org/10.1002/anie.202416629
- Z. Ma, B. Wang, X. Yang, C. Ma, W. Wang et al., P-block aluminum single-atom catalyst for electrocatalytic CO2 reduction with high intrinsic activity. J. Am. Chem. Soc. 146(42), 29140–29149 (2024). https://doi.org/10.1021/jacs.4c11326
- Q.-Y. Wu, Z.-W. Yang, Z.-W. Wang, W.-L. Wang, Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt–oxo species formation. Proc. Natl. Acad. Sci. 120(16), e2219923120 (2023). https://doi.org/10.1073/pnas.2219923120
- X. Mi, P. Wang, S. Xu, L. Su, H. Zhong et al., Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem. Int. Ed. 60(9), 4588–4593 (2021). https://doi.org/10.1002/anie.202014472
- W. Xia, Y. Xie, S. Jia, S. Han, R. Qi et al., Adjacent copper single atoms promote C-C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145(31), 17253–17264 (2023). https://doi.org/10.1021/jacs.3c04612
- X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
- Y. Du, X. Meng, Y. Ma, J. Qi, G. Xu et al., Dimensionality engineering toward carbon materials for electrochemical CO2 reduction: progress and prospect. Adv. Funct. Mater. 34(46), 2408013 (2024). https://doi.org/10.1002/adfm.202408013
- J. Wu, J. Wang, C. Liu, C. Nie, T. Wang et al., Removal of gaseous volatile organic compounds by a multiwalled carbon nanotubes/peroxymonosulfate wet scrubber. Environ. Sci. Technol. 56(19), 13996–14007 (2022). https://doi.org/10.1021/acs.est.2c03590
- P. Hu, H. Su, Z. Chen, C. Yu, Q. Li et al., Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation. Environ. Sci. Technol. 51(19), 11288–11296 (2017). https://doi.org/10.1021/acs.est.7b03014
- X. Mi, H. Zhong, H. Zhang, S. Xu, Y. Li et al., Facilitating redox cycles of copper species by pollutants in peroxymonosulfate activation. Environ. Sci. Technol. 56(4), 2637–2646 (2022). https://doi.org/10.1021/acs.est.1c06762
- S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 60(38), 20627–20648 (2021). https://doi.org/10.1002/anie.202101818
- J. Han, Q. Xu, J. Rong, X. Zhao, P. She et al., Molecular engineering of porous Fe-N-C catalyst with sulfur incorporation for boosting CO2 reduction and Zn-CO2 battery. Adv. Sci. 11(38), 2407063 (2024). https://doi.org/10.1002/advs.202407063
- J. Song, X. Lei, J. Mu, J. Li, X. Song et al., Boron-doped nickel-nitrogen-carbon single-atom catalyst for boosting electrochemical CO2 reduction. Small 19(52), e2305666 (2023). https://doi.org/10.1002/smll.202305666
- Z. Liu, X.-Y. Xu, F. Xu, R.-D. Su, B. Li et al., Diatomic “catalytic/co-catalytic” Fe/Mo catalysts promote Fenton-like reaction to treat organic wastewater through special interfacial reaction enhancement mechanism. Water Res. 274, 123147 (2025). https://doi.org/10.1016/j.watres.2025.123147
- B. Chen, F. University, C. University, D. Shi et al., (2024) Leveraging atomic-scale synergy for selective CO2 electrocatalysis to CO over CuNi dual-atom catalysts. ACS Catal 14(21), 16224–16233
- Z. Jin, M. Yang, Y. Dong, X. Ma, Y. Wang et al., Atomic dispersed hetero-pairs for enhanced electrocatalytic CO2 reduction. Nano-Micro Lett. 16(1), 4 (2023). https://doi.org/10.1007/s40820-023-01214-2
- Y. Lin, Y. Wang, Z. Weng, Y. Zhou, S. Liu et al., Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions. Nat. Commun. 15(1), 10032 (2024). https://doi.org/10.1038/s41467-024-54225-x
- Y. Chai, H. Dai, X. Duan, Z. Sun, F. Hu et al., Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B Environ. 341, 123289 (2024). https://doi.org/10.1016/j.apcatb.2023.123289
- C. Yue, X. Yang, X. Zhang, S. Wang, W. Xu et al., Secondary coordination sphere engineering of single-Sn-atom catalyst via P doping for efficient CO2 electroreduction. Adv. Energy Mater. 14(38), 2401448 (2024). https://doi.org/10.1002/aenm.202401448
- Z. Sun, C. Li, Z. Wei, F. Zhang, Z. Deng et al., Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 36(33), e2404665 (2024). https://doi.org/10.1002/adma.202404665
- L. Zhang, K. Cheng, Z. Yang, Y. Zhang, S. Kubuki et al., Deciphering the origin of higher shell coordination on single iron catalysts for resilient modulating persulfate oxidation into singlet oxygen pathway. Adv. Funct. Mater. 35(12), 2417441 (2025). https://doi.org/10.1002/adfm.202417441
- J. Bi, P. Li, J. Liu, Y. Wang, X. Song et al., High-rate CO2 electrolysis to formic acid over a wide potential window: an electrocatalyst comprised of indium nanops on chitosan-derived graphene. Angew. Chem. Int. Ed. 62(36), e202307612 (2023). https://doi.org/10.1002/anie.202307612
- Z.-S. Zhu, Y. Wang, X. Duan, P. Wang, S. Zhong et al., Atomic-level engineered cobalt catalysts for Fenton-like reactions: synergy of single atom metal sites and nonmetal-bonded functionalities. Adv. Mater. 36(32), 2401454 (2024). https://doi.org/10.1002/adma.202401454
- J. Bi, P. Li, J. Liu, S. Jia, Y. Wang et al., Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols. Nat. Commun. 14(1), 2823 (2023). https://doi.org/10.1038/s41467-023-38524-3
- Y. Fu, L. Qin, D. Huang, G. Zeng, C. Lai et al., Chitosan functionalized activated coke for Au nanops anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl. Catal. B Environ. 255, 117740 (2019). https://doi.org/10.1016/j.apcatb.2019.05.042
- Y. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang et al., Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 33(41), e2102212 (2021). https://doi.org/10.1002/adma.202102212
- Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12(1), 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
- Q. Hao, Q. Tang, H.-X. Zhong, J.-Z. Wang, D.-X. Liu et al., Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Sci. Bull. 67(14), 1477–1485 (2022). https://doi.org/10.1016/j.scib.2022.06.006
- X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
- H. Fu, J. Wei, G. Chen, M. Xu, J. Liu et al., Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B Environ. 321, 122012 (2023). https://doi.org/10.1016/j.apcatb.2022.122012
- Y. Long, Z. Cao, W. Wu, W. Liu, P. Yang et al., Rational modulation of Fe single-atom electronic structure in a Fe-N2B4 configuration for preferential 1O2 generation in Fenton-like reactions. Appl. Catal. B Environ. Energy 344, 123643 (2024). https://doi.org/10.1016/j.apcatb.2023.123643
- X. Chen, X. Duan, W.-D. Oh, P.-H. Zhang, C.-T. Guan et al., Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: maneuverable N–B bonding configurations and oxidation pathways. Appl. Catal. B Environ. 253, 419–432 (2019). https://doi.org/10.1016/j.apcatb.2019.04.018
- H. Zhang, C. Chen, M. Lin, L. Zhou, H. Wen et al., Boron-doped porous carbon boosts electron transport efficiency for enhancing Fenton-like oxidation capacity: high-speed driving of Fe(III) reduction. Appl. Catal. B Environ. 343, 123535 (2024). https://doi.org/10.1016/j.apcatb.2023.123535
- P. Shao, S. Yu, X. Duan, L. Yang, H. Shi et al., Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants. Environ. Sci. Technol. 54(13), 8464–8472 (2020). https://doi.org/10.1021/acs.est.0c02645
- L. Wang, H. Xu, N. Jiang, Z. Wang, J. Jiang et al., Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant. Environ. Sci. Technol. 54(7), 4686–4694 (2020). https://doi.org/10.1021/acs.est.0c00284
- F. Li, P. Wang, M. Li, T. Zhang, Y. Li et al., Efficient photo-Fenton reaction for tetracycline and antibiotic resistant bacteria removal using hollow Fe-doped In2O3 nanotubes: From theoretical research to practical application. Water Res. 240, 120088 (2023). https://doi.org/10.1016/j.watres.2023.120088
- Y. Chen, G. Zhang, H. Liu, J. Qu, Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 58(24), 8134–8138 (2019). https://doi.org/10.1002/anie.201903531
- L. Wu, Z. Sun, Y. Zhen, S. Zhu, C. Yang et al., Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O2) in the Fe–co LDH/peroxymonosulfate system. Environ. Sci. Technol. 55(22), 15400–15411 (2021). https://doi.org/10.1021/acs.est.1c04600
- L.-S. Zhang, X.-H. Jiang, Z.-A. Zhong, L. Tian, Q. Sun et al., Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew. Chem. Int. Ed. 60(40), 21751–21755 (2021). https://doi.org/10.1002/anie.202109488
- S. Wang, J. Wang, Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Appl. Catal. B Environ. 321, 122051 (2023). https://doi.org/10.1016/j.apcatb.2022.122051
- Q. Tang, Q. Hao, Q. Zhu, J. Wu, K. Huang et al., Intrinsic electron transfer in heteronuclear dual-atom sites facilitates selective electrocatalytic carbon dioxide reduction. Adv. Energy Mater. 15(7), 2403778 (2025). https://doi.org/10.1002/aenm.202403778
- E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen et al., Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141(42), 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
- Z.-S. Zhu, Y. Wang, P. Wang, S. Zhong, K. Hu et al., Multidimensional engineering of single-atom cobalt catalysts for ultrafast Fenton-like reactions. Nat. Water 3(2), 211–221 (2025). https://doi.org/10.1038/s44221-024-00382-8
- Z. Liu, X. Lv, S. Kong, M. Liu, K. Liu et al., Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 62(43), e202309319 (2023). https://doi.org/10.1002/anie.202309319
- H. Liu, T. Yan, S. Tan, L. Sun, Z. Zhang et al., Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction. J. Am. Chem. Soc. 146(8), 5333–5342 (2024). https://doi.org/10.1021/jacs.3c12321
- P. Rao, X. Han, H. Sun, F. Wang, Y. Liang et al., Precise synthesis of dual-single-atom electrocatalysts through pre-coordination-directed in situ confinement for CO2 reduction. Angew. Chem. Int. Ed. 64(3), e202415223 (2025). https://doi.org/10.1002/anie.202415223
- X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007
References
C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss et al., The technological and economic prospects for CO2 utilization and removal. Nature 575(7781), 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6
Y. Li, N.M. Adli, W. Shan, M. Wang, M.J. Zachman et al., Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 15(5), 2108–2119 (2022). https://doi.org/10.1039/d2ee00318j
Y. Xiang, X. Xie, H. Zhong, F. Xiao, R. Xie et al., Efficient catalytic elimination of toxic volatile organic compounds via advanced oxidation process wet scrubbing with bifunctional cobalt sulfide/activated carbon catalysts. Environ. Sci. Technol. 58(20), 8846–8856 (2024). https://doi.org/10.1021/acs.est.4c00481
Z. Cheng, Y. Zhou, X. Zhao, Z. Chen, S. Zhang et al., Efficient removal of VOCs emission from soil thermal desorption via MnCoOx/Kaolin activating peroxymonosulfate in wet scrubber. Chem. Eng. J. 480, 148159 (2024). https://doi.org/10.1016/j.cej.2023.148159
V.N. Lima, C.S.D. Rodrigues, R.A.C. Borges, L.M. Madeira, Gaseous and liquid effluents treatment in bubble column reactors by advanced oxidation processes: a review. Crit. Rev. Environ. Sci. Technol. 48(16–18), 949–996 (2018). https://doi.org/10.1080/10643389.2018.1493335
L. Wen, H. Fu, J. Hu, S. Huang, Analytical model for assessing mass transfer of VOC in liquid desiccant dehumidifier: a broad-range response to Henry’s law constant. Int. J. Heat Mass Transf. 221, 125016 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125016
H. Huang, X. Xie, F. Xiao, B. Liu, T. Zhang et al., A critical review of deep oxidation of gaseous volatile organic compounds via aqueous advanced oxidation processes. Environ. Sci. Technol. 58(42), 18456–18473 (2024). https://doi.org/10.1021/acs.est.4c07202
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
J. Li, X. Meng, X. Song, J. Qi, F. Liu et al., Valence engineering via manganese-doping on cobalt nitride nanoarrays for efficient electrochemically paired glycerol valorization and H2 production. Adv. Funct. Mater. 34(33), 2316718 (2024). https://doi.org/10.1002/adfm.202316718
J. Qi, Y. Xia, X. Meng, J. Li, S. Yang et al., Cation-vacancy engineering in cobalt selenide boosts electrocatalytic upcycling of polyester thermoplastics at industrial-level current density. Adv. Mater. 37(10), e2419058 (2025). https://doi.org/10.1002/adma.202419058
J. Zhang, C. Zhang, M. Wang, Y. Mao, B. Wu et al., Isotopic labelling of water reveals the hydrogen transfer route in electrochemical CO2 reduction. Nat. Chem. 17(3), 334–343 (2025). https://doi.org/10.1038/s41557-024-01721-8
Y. Ma, T. Xiao, K. Zhu, W. Zhang, Z. Yin et al., Industry-level electrocatalytic CO2 to CO enabled by 2D mesoporous Ni single atom catalysts. Angew. Chem. Int. Ed. 64(5), e202416629 (2025). https://doi.org/10.1002/anie.202416629
Z. Ma, B. Wang, X. Yang, C. Ma, W. Wang et al., P-block aluminum single-atom catalyst for electrocatalytic CO2 reduction with high intrinsic activity. J. Am. Chem. Soc. 146(42), 29140–29149 (2024). https://doi.org/10.1021/jacs.4c11326
Q.-Y. Wu, Z.-W. Yang, Z.-W. Wang, W.-L. Wang, Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt–oxo species formation. Proc. Natl. Acad. Sci. 120(16), e2219923120 (2023). https://doi.org/10.1073/pnas.2219923120
X. Mi, P. Wang, S. Xu, L. Su, H. Zhong et al., Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem. Int. Ed. 60(9), 4588–4593 (2021). https://doi.org/10.1002/anie.202014472
W. Xia, Y. Xie, S. Jia, S. Han, R. Qi et al., Adjacent copper single atoms promote C-C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145(31), 17253–17264 (2023). https://doi.org/10.1021/jacs.3c04612
X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
Y. Du, X. Meng, Y. Ma, J. Qi, G. Xu et al., Dimensionality engineering toward carbon materials for electrochemical CO2 reduction: progress and prospect. Adv. Funct. Mater. 34(46), 2408013 (2024). https://doi.org/10.1002/adfm.202408013
J. Wu, J. Wang, C. Liu, C. Nie, T. Wang et al., Removal of gaseous volatile organic compounds by a multiwalled carbon nanotubes/peroxymonosulfate wet scrubber. Environ. Sci. Technol. 56(19), 13996–14007 (2022). https://doi.org/10.1021/acs.est.2c03590
P. Hu, H. Su, Z. Chen, C. Yu, Q. Li et al., Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation. Environ. Sci. Technol. 51(19), 11288–11296 (2017). https://doi.org/10.1021/acs.est.7b03014
X. Mi, H. Zhong, H. Zhang, S. Xu, Y. Li et al., Facilitating redox cycles of copper species by pollutants in peroxymonosulfate activation. Environ. Sci. Technol. 56(4), 2637–2646 (2022). https://doi.org/10.1021/acs.est.1c06762
S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 60(38), 20627–20648 (2021). https://doi.org/10.1002/anie.202101818
J. Han, Q. Xu, J. Rong, X. Zhao, P. She et al., Molecular engineering of porous Fe-N-C catalyst with sulfur incorporation for boosting CO2 reduction and Zn-CO2 battery. Adv. Sci. 11(38), 2407063 (2024). https://doi.org/10.1002/advs.202407063
J. Song, X. Lei, J. Mu, J. Li, X. Song et al., Boron-doped nickel-nitrogen-carbon single-atom catalyst for boosting electrochemical CO2 reduction. Small 19(52), e2305666 (2023). https://doi.org/10.1002/smll.202305666
Z. Liu, X.-Y. Xu, F. Xu, R.-D. Su, B. Li et al., Diatomic “catalytic/co-catalytic” Fe/Mo catalysts promote Fenton-like reaction to treat organic wastewater through special interfacial reaction enhancement mechanism. Water Res. 274, 123147 (2025). https://doi.org/10.1016/j.watres.2025.123147
B. Chen, F. University, C. University, D. Shi et al., (2024) Leveraging atomic-scale synergy for selective CO2 electrocatalysis to CO over CuNi dual-atom catalysts. ACS Catal 14(21), 16224–16233
Z. Jin, M. Yang, Y. Dong, X. Ma, Y. Wang et al., Atomic dispersed hetero-pairs for enhanced electrocatalytic CO2 reduction. Nano-Micro Lett. 16(1), 4 (2023). https://doi.org/10.1007/s40820-023-01214-2
Y. Lin, Y. Wang, Z. Weng, Y. Zhou, S. Liu et al., Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions. Nat. Commun. 15(1), 10032 (2024). https://doi.org/10.1038/s41467-024-54225-x
Y. Chai, H. Dai, X. Duan, Z. Sun, F. Hu et al., Elucidation of the mechanistic origin of spin-state-dependent P-doped Fe single-atom catalysts for the oxidation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B Environ. 341, 123289 (2024). https://doi.org/10.1016/j.apcatb.2023.123289
C. Yue, X. Yang, X. Zhang, S. Wang, W. Xu et al., Secondary coordination sphere engineering of single-Sn-atom catalyst via P doping for efficient CO2 electroreduction. Adv. Energy Mater. 14(38), 2401448 (2024). https://doi.org/10.1002/aenm.202401448
Z. Sun, C. Li, Z. Wei, F. Zhang, Z. Deng et al., Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 36(33), e2404665 (2024). https://doi.org/10.1002/adma.202404665
L. Zhang, K. Cheng, Z. Yang, Y. Zhang, S. Kubuki et al., Deciphering the origin of higher shell coordination on single iron catalysts for resilient modulating persulfate oxidation into singlet oxygen pathway. Adv. Funct. Mater. 35(12), 2417441 (2025). https://doi.org/10.1002/adfm.202417441
J. Bi, P. Li, J. Liu, Y. Wang, X. Song et al., High-rate CO2 electrolysis to formic acid over a wide potential window: an electrocatalyst comprised of indium nanops on chitosan-derived graphene. Angew. Chem. Int. Ed. 62(36), e202307612 (2023). https://doi.org/10.1002/anie.202307612
Z.-S. Zhu, Y. Wang, X. Duan, P. Wang, S. Zhong et al., Atomic-level engineered cobalt catalysts for Fenton-like reactions: synergy of single atom metal sites and nonmetal-bonded functionalities. Adv. Mater. 36(32), 2401454 (2024). https://doi.org/10.1002/adma.202401454
J. Bi, P. Li, J. Liu, S. Jia, Y. Wang et al., Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols. Nat. Commun. 14(1), 2823 (2023). https://doi.org/10.1038/s41467-023-38524-3
Y. Fu, L. Qin, D. Huang, G. Zeng, C. Lai et al., Chitosan functionalized activated coke for Au nanops anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl. Catal. B Environ. 255, 117740 (2019). https://doi.org/10.1016/j.apcatb.2019.05.042
Y. Li, B. Wei, M. Zhu, J. Chen, Q. Jiang et al., Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 33(41), e2102212 (2021). https://doi.org/10.1002/adma.202102212
Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12(1), 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
Q. Hao, Q. Tang, H.-X. Zhong, J.-Z. Wang, D.-X. Liu et al., Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Sci. Bull. 67(14), 1477–1485 (2022). https://doi.org/10.1016/j.scib.2022.06.006
X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang et al., Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 142(39), 16776–16786 (2020). https://doi.org/10.1021/jacs.0c07317
H. Fu, J. Wei, G. Chen, M. Xu, J. Liu et al., Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B Environ. 321, 122012 (2023). https://doi.org/10.1016/j.apcatb.2022.122012
Y. Long, Z. Cao, W. Wu, W. Liu, P. Yang et al., Rational modulation of Fe single-atom electronic structure in a Fe-N2B4 configuration for preferential 1O2 generation in Fenton-like reactions. Appl. Catal. B Environ. Energy 344, 123643 (2024). https://doi.org/10.1016/j.apcatb.2023.123643
X. Chen, X. Duan, W.-D. Oh, P.-H. Zhang, C.-T. Guan et al., Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: maneuverable N–B bonding configurations and oxidation pathways. Appl. Catal. B Environ. 253, 419–432 (2019). https://doi.org/10.1016/j.apcatb.2019.04.018
H. Zhang, C. Chen, M. Lin, L. Zhou, H. Wen et al., Boron-doped porous carbon boosts electron transport efficiency for enhancing Fenton-like oxidation capacity: high-speed driving of Fe(III) reduction. Appl. Catal. B Environ. 343, 123535 (2024). https://doi.org/10.1016/j.apcatb.2023.123535
P. Shao, S. Yu, X. Duan, L. Yang, H. Shi et al., Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants. Environ. Sci. Technol. 54(13), 8464–8472 (2020). https://doi.org/10.1021/acs.est.0c02645
L. Wang, H. Xu, N. Jiang, Z. Wang, J. Jiang et al., Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant. Environ. Sci. Technol. 54(7), 4686–4694 (2020). https://doi.org/10.1021/acs.est.0c00284
F. Li, P. Wang, M. Li, T. Zhang, Y. Li et al., Efficient photo-Fenton reaction for tetracycline and antibiotic resistant bacteria removal using hollow Fe-doped In2O3 nanotubes: From theoretical research to practical application. Water Res. 240, 120088 (2023). https://doi.org/10.1016/j.watres.2023.120088
Y. Chen, G. Zhang, H. Liu, J. Qu, Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 58(24), 8134–8138 (2019). https://doi.org/10.1002/anie.201903531
L. Wu, Z. Sun, Y. Zhen, S. Zhu, C. Yang et al., Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O2) in the Fe–co LDH/peroxymonosulfate system. Environ. Sci. Technol. 55(22), 15400–15411 (2021). https://doi.org/10.1021/acs.est.1c04600
L.-S. Zhang, X.-H. Jiang, Z.-A. Zhong, L. Tian, Q. Sun et al., Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew. Chem. Int. Ed. 60(40), 21751–21755 (2021). https://doi.org/10.1002/anie.202109488
S. Wang, J. Wang, Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Appl. Catal. B Environ. 321, 122051 (2023). https://doi.org/10.1016/j.apcatb.2022.122051
Q. Tang, Q. Hao, Q. Zhu, J. Wu, K. Huang et al., Intrinsic electron transfer in heteronuclear dual-atom sites facilitates selective electrocatalytic carbon dioxide reduction. Adv. Energy Mater. 15(7), 2403778 (2025). https://doi.org/10.1002/aenm.202403778
E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen et al., Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141(42), 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
Z.-S. Zhu, Y. Wang, P. Wang, S. Zhong, K. Hu et al., Multidimensional engineering of single-atom cobalt catalysts for ultrafast Fenton-like reactions. Nat. Water 3(2), 211–221 (2025). https://doi.org/10.1038/s44221-024-00382-8
Z. Liu, X. Lv, S. Kong, M. Liu, K. Liu et al., Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 62(43), e202309319 (2023). https://doi.org/10.1002/anie.202309319
H. Liu, T. Yan, S. Tan, L. Sun, Z. Zhang et al., Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction. J. Am. Chem. Soc. 146(8), 5333–5342 (2024). https://doi.org/10.1021/jacs.3c12321
P. Rao, X. Han, H. Sun, F. Wang, Y. Liang et al., Precise synthesis of dual-single-atom electrocatalysts through pre-coordination-directed in situ confinement for CO2 reduction. Angew. Chem. Int. Ed. 64(3), e202415223 (2025). https://doi.org/10.1002/anie.202415223
X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007