Selective CO2 Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation
Corresponding Author: Jian Yang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 262
Abstract
Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO2 reduction reaction (CO2RR) toward multi-carbon (C2+) products, primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO2/CO concentration at the electrode. Building upon this approach, we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO2RR to C2+ in a neutral electrolyte. Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules (HEB-CuO NPs), a remarkable C2+ Faradaic efficiency of nearly 90% was achieved at an unprecedented current density of 300 mA cm−2, and a high FE (> 80%) was maintained at a wide range of current densities (100–600 mA cm−2) in neutral environments using a flow cell. Furthermore, in a membrane electrode assembly (MEA) electrolyzer, 86.14% FEC2+ was achieved at a partial current density of 387.6 mA cm−2 while maintaining continuous operation for over 50 h at a current density of 200 mA cm−2. In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C–C coupling and enhancing the yield of C2+ products. This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C2+ production.
Highlights:
1 Developing surface-functionalized catalysts with exceptional activity and selectivity for the electrocatalytic CO2RR to C2+ products under neutral electrolyte.
2 A remarkable C2+ FE of nearly 90% at an unprecedented current density of 300 mA cm−2 and maintain high FE (> 80%) at the wide current density performance (100–600 mA cm−2) in neutral environments using a flow cell as well as MEA electrolyzer.
3 Mechanical study reveals that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C–C coupling and enhancing the yield of C2+ products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Xu, X. Tan, Z.-H. He, L. Hao, W. Wang et al., Emerging green catalytic synthesis of biomolecules from CO2 and/or nitrogenous small molecules. Matter 7, 59–81 (2024). https://doi.org/10.1016/j.matt.2023.10.025
- E. Dietzenbacher, I. Cazcarro, I. Arto, Towards a more effective climate policy on international trade. Nat. Commun. 11, 1130 (2020). https://doi.org/10.1038/s41467-020-14837-5
- Y. Sun, Y. Zhao, Y. Zhou, L. Wang, Z. Wang et al., Engineering the micro-structure for reducing energy consumption in CO2 capture and catalytic conversion process. Mater. Today Energy 37, 101397 (2023). https://doi.org/10.1016/j.mtener.2023.101397
- Y. Xu, S. Liu, J.P. Edwards, Y.C. Xiao, Y. Zhao et al., Regeneration of direct air CO2 capture liquid via alternating electrocatalysis. Joule 7, 2107–2117 (2023). https://doi.org/10.1016/j.joule.2023.07.011
- P. Zhu, Z.-Y. Wu, A. Elgazzar, C. Dong, T.-U. Wi et al., Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023). https://doi.org/10.1038/s41586-023-06060-1
- J. Zhang, J. Ding, Y. Liu, C. Su, H. Yang et al., Molecular tuning for electrochemical CO2 reduction. Joule 7, 1700–1744 (2023). https://doi.org/10.1016/j.joule.2023.07.010
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- Q. Fan, X. Zhang, X. Ge, L. Bai, D. He et al., Manipulating Cu nanop surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 11, 2101424 (2021). https://doi.org/10.1002/aenm.202101424
- Q. Fan, P. Gao, S. Ren, Y. Qu, C. Kong et al., Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 16, 2003–2010 (2023). https://doi.org/10.1007/s12274-022-4472-6
- J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo et al., Bi-Based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10, 2001709 (2020). https://doi.org/10.1002/aenm.202001709
- Q. Hao, H.-X. Zhong, J.-Z. Wang, K.-H. Liu, J.-M. Yan et al., Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022). https://doi.org/10.1038/s44160-022-00138-w
- L. Lin, X. He, X.-G. Zhang, W. Ma, B. Zhang et al., A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem. Int. Ed. 62, e202214959 (2023). https://doi.org/10.1002/anie.202214959
- T.-J. Wang, W.-S. Fang, Y.-M. Liu, F.-M. Li, P. Chen et al., Heterostructured Pd/PdO nanowires for selective and efficient CO2 electroreduction to CO. J. Energy Chem. 70, 407–413 (2022). https://doi.org/10.1016/j.jechem.2022.03.001
- H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
- B.-Q. Miao, W.-S. Fang, B. Sun, F.-M. Li, X.-C. Wang et al., Defect-rich bismuth metallene for efficient CO2 electroconversion. Chin. J. Struct. Chem. 42, 100095 (2023). https://doi.org/10.1016/j.cjsc.2023.100095
- G. Lee, A.S. Rasouli, B.-H. Lee, J. Zhang, D.H. Won et al., CO2 electroreduction to multicarbon products from carbonate capture liquid. Joule 7, 1277–1288 (2023). https://doi.org/10.1016/j.joule.2023.05.003
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- X. Li, Y. Chen, X. Zhan, Y. Xu, L. Hao et al., Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. Innov. Mater. 1, 100014 (2023). https://doi.org/10.59717/j.xinn-mater.2023.100014
- J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 (2023). https://doi.org/10.1007/s40820-023-01146-x
- Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989). https://doi.org/10.1039/F19898502309
- M. Li, Y. Hu, T. Wu, A. Sumboja, D. Geng, How to enhance the C2 products selectivity of copper-based catalysts towards electrochemical CO2 reduction?—a review. Mater. Today 67, 320–343 (2023). https://doi.org/10.1016/j.mattod.2023.05.028
- X. Cao, S. Ren, X. Zhang, Q. Fan, Q. Chen et al., Identification of Cu0/Cu+/Cu0 interface as superior active sites for CO2 electroreduction to C2+ in neutral condition. Chem (2024). https://doi.org/10.1016/j.chempr.2024.02.014
- X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
- J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
- Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
- C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
- Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- W. Ma, S. Xie, B. Zhang, X. He, X. Liu et al., Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem 9, 2161–2177 (2023). https://doi.org/10.1016/j.chempr.2023.03.022
- X.Y. Zhang, Z.X. Lou, J. Chen, Y. Liu, X. Wu et al., Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface. Nat. Commun. 14, 7681 (2023). https://doi.org/10.1038/s41467-023-43182-6
- C. Peng, G. Luo, J. Zhang, M. Chen, Z. Wang et al., Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021). https://doi.org/10.1038/s41467-021-21901-1
- Z. Liu, X. Lv, S. Kong, M. Liu, K. Liu et al., Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 62, e202309319 (2023). https://doi.org/10.1002/anie.202309319
- C.E. Creissen, J.G. Rivera de la Cruz, D. Karapinar, D. Taverna, M.W. Schreiber et al., Molecular inhibition for selective CO2 conversion. Angew. Chem. Int. Ed. 61, e202206279 (2022). https://doi.org/10.1002/ange.202206279
- J. Li, X. Han, D. Wang, L. Zhu, M.-H. Ha-Thi et al., A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanops. Angew. Chem. Int. Ed. 61, e202210242 (2022). https://doi.org/10.1002/anie.202210242
- J. He, N. Wang, Z. Cui, H. Du, L. Fu et al., Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017). https://doi.org/10.1038/s41467-017-01202-2
- P. Zhao, H. Jiang, H. Shen, S. Yang, R. Gao et al., Construction of low-coordination Cu−C2 single-atoms electrocatalyst facilitating the efficient electrochemical CO2 reduction to methane. Angew. Chem. Int. Ed. 62, e202314121 (2023). https://doi.org/10.1002/anie.202314121
- W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny et al., Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019). https://doi.org/10.1038/s41929-019-0269-8
- M. Li, N. Song, W. Luo, J. Chen, W. Jiang et al., Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 10, 2204579 (2023). https://doi.org/10.1002/advs.202204579
- X.-D. Zhang, T. Liu, C. Liu, D.-S. Zheng, J.-M. Huang et al., Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J. Am. Chem. Soc. 145, 2195–2206 (2023). https://doi.org/10.1021/jacs.2c09501
- M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao et al., Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 144, 14936–14944 (2022). https://doi.org/10.1021/jacs.2c06820
- X. Wang, P. Ou, J. Wicks, Y. Xie, Y. Wang et al., Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 12, 3387 (2021). https://doi.org/10.1038/s41467-021-23699-4
- L.F. Scatena, M.G. Brown, G.L. Richmond, Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001). https://doi.org/10.1126/science.1059514
- Q. Zhang, H.J. Tsai, F. Li, Z. Wei, Q. He et al., Boosting the proton-coupled electron transfer via Fe−P atomic pair for enhanced electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202311550 (2023). https://doi.org/10.1002/ange.202311550
- C. Liu, X.-D. Zhang, J.-M. Huang, M.-X. Guan, M. Xu et al., In situ reconstruction of Cu–N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4. ACS Catal. 12, 15230–15240 (2022). https://doi.org/10.1021/acscatal.2c04275
References
L. Xu, X. Tan, Z.-H. He, L. Hao, W. Wang et al., Emerging green catalytic synthesis of biomolecules from CO2 and/or nitrogenous small molecules. Matter 7, 59–81 (2024). https://doi.org/10.1016/j.matt.2023.10.025
E. Dietzenbacher, I. Cazcarro, I. Arto, Towards a more effective climate policy on international trade. Nat. Commun. 11, 1130 (2020). https://doi.org/10.1038/s41467-020-14837-5
Y. Sun, Y. Zhao, Y. Zhou, L. Wang, Z. Wang et al., Engineering the micro-structure for reducing energy consumption in CO2 capture and catalytic conversion process. Mater. Today Energy 37, 101397 (2023). https://doi.org/10.1016/j.mtener.2023.101397
Y. Xu, S. Liu, J.P. Edwards, Y.C. Xiao, Y. Zhao et al., Regeneration of direct air CO2 capture liquid via alternating electrocatalysis. Joule 7, 2107–2117 (2023). https://doi.org/10.1016/j.joule.2023.07.011
P. Zhu, Z.-Y. Wu, A. Elgazzar, C. Dong, T.-U. Wi et al., Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023). https://doi.org/10.1038/s41586-023-06060-1
J. Zhang, J. Ding, Y. Liu, C. Su, H. Yang et al., Molecular tuning for electrochemical CO2 reduction. Joule 7, 1700–1744 (2023). https://doi.org/10.1016/j.joule.2023.07.010
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
Q. Fan, X. Zhang, X. Ge, L. Bai, D. He et al., Manipulating Cu nanop surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 11, 2101424 (2021). https://doi.org/10.1002/aenm.202101424
Q. Fan, P. Gao, S. Ren, Y. Qu, C. Kong et al., Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 16, 2003–2010 (2023). https://doi.org/10.1007/s12274-022-4472-6
J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo et al., Bi-Based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10, 2001709 (2020). https://doi.org/10.1002/aenm.202001709
Q. Hao, H.-X. Zhong, J.-Z. Wang, K.-H. Liu, J.-M. Yan et al., Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022). https://doi.org/10.1038/s44160-022-00138-w
L. Lin, X. He, X.-G. Zhang, W. Ma, B. Zhang et al., A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem. Int. Ed. 62, e202214959 (2023). https://doi.org/10.1002/anie.202214959
T.-J. Wang, W.-S. Fang, Y.-M. Liu, F.-M. Li, P. Chen et al., Heterostructured Pd/PdO nanowires for selective and efficient CO2 electroreduction to CO. J. Energy Chem. 70, 407–413 (2022). https://doi.org/10.1016/j.jechem.2022.03.001
H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
B.-Q. Miao, W.-S. Fang, B. Sun, F.-M. Li, X.-C. Wang et al., Defect-rich bismuth metallene for efficient CO2 electroconversion. Chin. J. Struct. Chem. 42, 100095 (2023). https://doi.org/10.1016/j.cjsc.2023.100095
G. Lee, A.S. Rasouli, B.-H. Lee, J. Zhang, D.H. Won et al., CO2 electroreduction to multicarbon products from carbonate capture liquid. Joule 7, 1277–1288 (2023). https://doi.org/10.1016/j.joule.2023.05.003
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
X. Li, Y. Chen, X. Zhan, Y. Xu, L. Hao et al., Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. Innov. Mater. 1, 100014 (2023). https://doi.org/10.59717/j.xinn-mater.2023.100014
J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 (2023). https://doi.org/10.1007/s40820-023-01146-x
Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989). https://doi.org/10.1039/F19898502309
M. Li, Y. Hu, T. Wu, A. Sumboja, D. Geng, How to enhance the C2 products selectivity of copper-based catalysts towards electrochemical CO2 reduction?—a review. Mater. Today 67, 320–343 (2023). https://doi.org/10.1016/j.mattod.2023.05.028
X. Cao, S. Ren, X. Zhang, Q. Fan, Q. Chen et al., Identification of Cu0/Cu+/Cu0 interface as superior active sites for CO2 electroreduction to C2+ in neutral condition. Chem (2024). https://doi.org/10.1016/j.chempr.2024.02.014
X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14, 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
W. Ma, S. Xie, B. Zhang, X. He, X. Liu et al., Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem 9, 2161–2177 (2023). https://doi.org/10.1016/j.chempr.2023.03.022
X.Y. Zhang, Z.X. Lou, J. Chen, Y. Liu, X. Wu et al., Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface. Nat. Commun. 14, 7681 (2023). https://doi.org/10.1038/s41467-023-43182-6
C. Peng, G. Luo, J. Zhang, M. Chen, Z. Wang et al., Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021). https://doi.org/10.1038/s41467-021-21901-1
Z. Liu, X. Lv, S. Kong, M. Liu, K. Liu et al., Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 62, e202309319 (2023). https://doi.org/10.1002/anie.202309319
C.E. Creissen, J.G. Rivera de la Cruz, D. Karapinar, D. Taverna, M.W. Schreiber et al., Molecular inhibition for selective CO2 conversion. Angew. Chem. Int. Ed. 61, e202206279 (2022). https://doi.org/10.1002/ange.202206279
J. Li, X. Han, D. Wang, L. Zhu, M.-H. Ha-Thi et al., A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanops. Angew. Chem. Int. Ed. 61, e202210242 (2022). https://doi.org/10.1002/anie.202210242
J. He, N. Wang, Z. Cui, H. Du, L. Fu et al., Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017). https://doi.org/10.1038/s41467-017-01202-2
P. Zhao, H. Jiang, H. Shen, S. Yang, R. Gao et al., Construction of low-coordination Cu−C2 single-atoms electrocatalyst facilitating the efficient electrochemical CO2 reduction to methane. Angew. Chem. Int. Ed. 62, e202314121 (2023). https://doi.org/10.1002/anie.202314121
W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny et al., Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019). https://doi.org/10.1038/s41929-019-0269-8
M. Li, N. Song, W. Luo, J. Chen, W. Jiang et al., Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 10, 2204579 (2023). https://doi.org/10.1002/advs.202204579
X.-D. Zhang, T. Liu, C. Liu, D.-S. Zheng, J.-M. Huang et al., Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J. Am. Chem. Soc. 145, 2195–2206 (2023). https://doi.org/10.1021/jacs.2c09501
M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao et al., Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 144, 14936–14944 (2022). https://doi.org/10.1021/jacs.2c06820
X. Wang, P. Ou, J. Wicks, Y. Xie, Y. Wang et al., Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 12, 3387 (2021). https://doi.org/10.1038/s41467-021-23699-4
L.F. Scatena, M.G. Brown, G.L. Richmond, Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001). https://doi.org/10.1126/science.1059514
Q. Zhang, H.J. Tsai, F. Li, Z. Wei, Q. He et al., Boosting the proton-coupled electron transfer via Fe−P atomic pair for enhanced electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202311550 (2023). https://doi.org/10.1002/ange.202311550
C. Liu, X.-D. Zhang, J.-M. Huang, M.-X. Guan, M. Xu et al., In situ reconstruction of Cu–N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4. ACS Catal. 12, 15230–15240 (2022). https://doi.org/10.1021/acscatal.2c04275