Atomically Dispersed Iron Active Sites Promoting Reversible Redox Kinetics and Suppressing Shuttle Effect in Aluminum–Sulfur Batteries
Corresponding Author: Chaopeng Fu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 169
Abstract
Rechargeable aluminum–sulfur (Al–S) batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity, good safety, abundant natural reserves, and low cost of Al and S. However, the research progress of Al–S batteries is limited by the slow kinetics and shuttle effect of soluble polysulfides intermediates. Herein, an interconnected free-standing interlayer of iron single atoms supported on porous nitrogen-doped carbon nanofibers (FeSAs-NCF) on the separator is developed and used as both catalyst and chemical barrier for Al–S batteries. The atomically dispersed iron active sites (Fe–N4) are clearly identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption near-edge structure. The Al–S battery with the FeSAs-NCF shows an improved specific capacity of 780 mAh g−1 and enhanced cycle stability. As evidenced by experimental and theoretical results, the atomically dispersed iron active centers on the separator can chemically adsorb the polysulfides and accelerate reaction kinetics to inhibit the shuttle effect and promote the reversible conversion between aluminum polysulfides, thus improving the electrochemical performance of the Al–S battery. This work provides a new way that can not only promote the conversion of aluminum sulfides but also suppress the shuttle effect in Al–S batteries.
Highlights:
1 Fe single atoms supported on porous carbon nanofiber are prepared by spatial confinement.
2 The iron single atoms supported on porous nitrogen-doped carbon nanofibers (FeSAs-NCF) can promote the reversible conversion between aluminum polysulfides.
3 The FeSAs-NCF can chemically anchor the polysulfides to suppress shuttle effect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Chung, A. Manthiram, Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31(27), 1125–1175 (2019). https://doi.org/10.1002/adma.201901125
- M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium-sulfur batteries. ACS. Cent. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
- X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020). https://doi.org/10.1039/C9CS00838A
- X. Yu, M.J. Boyer, G.S. Hwang, A. Manthiram, Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem 4, 586–598 (2018). https://doi.org/10.1016/j.chempr.2017.12.029
- S. He, D. Zhang, X. Zhang, S. Liu, W. Chu et al., Rechargeable Al-chalcogen batteries: status, challenges, and perspectives. Adv. Energy Mater. 11(29), 769–783 (2021). https://doi.org/10.1002/aenm.202100769
- X. Yu, A. Manthiram, Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv. Energy Mater. 7(18), 561–570 (2017). https://doi.org/10.1002/aenm.201700561
- H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 978–996 (2019). https://doi.org/10.1002/anie.201814031
- T. Gao, X. Li, X. Wang, J. Hu, F. Han et al., A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Ed. 128(34), 10052–10055 (2016). https://doi.org/10.1002/ange.201603531
- G. Cohn, L. Ma, L.A. Archer, A novel non-aqueous aluminum sulfur battery. J. Power Sources 283, 416–422 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.131
- G.A. Elia, K.V. Kravchyk, M.V. Kovalenko, J. Chacón, A. Holland et al., An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 870–892 (2021). https://doi.org/10.1016/j.jpowsour.2020.228870
- H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang et al., An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 130(7), 1916–1920 (2018). https://doi.org/10.1002/ange.201711328
- Y. Bian, Y. Li, Z. Yu, H. Chen, K. Du et al., Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries. ChemElectroChem 5, 3607–3611 (2018). https://doi.org/10.1002/celc.201801198
- W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu et al., A low-cost deep eutectic solvent electrolyte for rechargeable aluminum-sulfur battery. Energy Storage Mater. 22, 418–423 (2019). https://doi.org/10.1016/j.ensm.2019.01.025
- Y. Zhang, L. Ma, R. Tang, X. Zheng, X. Wang et al., The host hollow carbon nanospheres as cathode material for nonaqueous room-temperature Al–S batteries. Int. J. Hydro. Energy 46, 4936–4946 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.076
- J. Smajic, S. Wee, F.R. Simoes, M.N. Hedhili, N. Wehbe et al., Capacity retention analysis in aluminum-sulfur batteries. ACS Appl. Energy Mater. 3(7), 6805–6814 (2020). https://doi.org/10.1021/acsaem.0c00921
- K.V. Kravchyk, M.V. Kovalenko, Aluminum electrolytes for Al dual-ion batteries. Commun. Chem. 3, 120–129 (2020). https://doi.org/10.1038/s42004-020-00365-2
- H. Zhao, J. Xu, D. Yin, Y. Du, Electrolytes for batteries with earth-abundant metal anodes. Chem 24, 18220–18234 (2018). https://doi.org/10.1002/chem.201802438
- X. Qu, Y. Tang, A. Du, S. Dong, G. Cui, Polymer electrolytes-new opportunities for the development of multivalent ion batteries. Chem. Asian J. 16, 3272–3280 (2021). https://doi.org/10.1002/asia.202100882
- W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8(13), 4490–4511 (2021). https://doi.org/10.1002/advs.202004490
- B. Akgenc, S. Sarikurt, M. Yagmurcukardes, F. Ersan, Aluminum and lithium sulfur batteries: a review of recent progress and future directions. J. Phys. Condens. Matter 33, 253002–253018 (2021). https://doi.org/10.1088/1361-648X/abfa5e
- S. Xia, X.M. Zhang, K. Huang, Y.L. Chen, Y.T. Wu, Ionic liquid electrolytes for aluminium secondary battery: influence of organic solvents. J. Electroanal. Chem. 757, 167–175 (2015). https://doi.org/10.1016/j.jelechem.2015.09.022
- Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji et al., Carbonized-MOF as a sulfur host for aluminum-sulfur batteries with enhanced capacity and cycling life. Adv. Funct. Mater. 29(7), 7676–7682 (2019). https://doi.org/10.1002/adfm.201807676
- Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu et al., Rechargeable aluminium-sulfur battery with improved electrochemical performance by cobalt-containing electrocatalyst. Angew. Chem. Int. Ed. 132(51), 22963–22967 (2020). https://doi.org/10.1002/ange.202008481
- X. Zheng, R. Tang, Y. Zhang, L. Ma, X. Wang et al., Design of a composite cathode and a graphene coated separator for a stable room-temperature aluminum-sulfur battery. Sustain. Energy Fuels 4, 1630–1641 (2020). https://doi.org/10.1039/C9SE00762H
- L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito et al., Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016). https://doi.org/10.1016/j.nanoen.2016.04.053
- J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
- X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang et al., Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. J. Energy Chem. 42, 144–168 (2019). https://doi.org/10.1016/j.jechem.2019.07.001
- M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo et al., Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.020
- M. Ling, W. Yan, A. Kawase, H. Zhao, Y.B. Fu et al., Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interf. 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
- X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff et al., Nonlithium metal–sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019). https://doi.org/10.1002/adma.201802822
- C.C. Hou, H.F. Wang, C. Li, Q. Xu, From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 13, 1658–1693 (2020). https://doi.org/10.1039/C9EE04040D
- Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30(48), 1995–2020 (2018). https://doi.org/10.1002/adma.201801995
- H. Zhong, Y. Zhao, T. Zhang, G. Liu, Controlled lithium deposition on Alq3 coated substrate. Batteries Supercaps 4(1), 98–105 (2021). https://doi.org/10.1002/batt.202000126
- C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I.H. Wang et al., A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- L.F. Chen, Y. Lu, L. Yu, X.W. Lou, Designed formation of hollow p-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10, 1777–1783 (2017). https://doi.org/10.1039/C7EE00488E
- Y. Wang, D. Adekoya, J. Sun, T. Tang, H. Qiu et al., Manipulation of edge-site Fe–N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li–S batteries. Adv. Funct. Mater. 29(5), 7485–7494 (2018). https://doi.org/10.1002/adfm.201807485
- Z. Zhang, J. Sun, F. Wang, L.M. Dai, Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 130(29), 9038–9043 (2018). https://doi.org/10.1002/ange.201804958
- P. Peng, L. Shi, F. Huo, C. Mi, X. Wu et al., A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, 2322–2329 (2019). https://doi.org/10.1126/sciadv.aaw2322
- Y. Wang, M. Wang, Z. Zhang, Q. Wang, Z. Jiang et al., Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 9(7), 6252–6261 (2019). https://doi.org/10.1021/acscatal.9b01617
- H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- T. Yamamoto, Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3D transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom. 37, 572–584 (2008). https://doi.org/10.1002/xrs.1103
- N.S. Manan, L. Aldous, Y. Alias, P. Murray, L.J. Yellowlees et al., Electrochemistry of sulfur and polysulfides in ionic liquids. J. Phys. Chem. B 115, 13873–13882 (2011). https://doi.org/10.1021/jp208159v
- V.A. Matamoros, O. Cespedes, B.R.G. Johnson, T.M. Stawski, U. Terranova et al., A highly reactive precursor in the iron sulfide system. Nat. Commun. 9, 3125–3132 (2018). https://doi.org/10.1038/s41467-018-05493-x
- X. Xiao, J. Tu, Z. Huang, S.Q. Jiao, A cobalt-based metal-organic framework and its derived material as sulfur hosts for aluminum-sulfur batteries with the chemical anchoring effect. Phys. Chem. Chem. Phys. 23(17), 10326–10334 (2021). https://doi.org/10.1039/D1CP01232K
References
S.H. Chung, A. Manthiram, Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31(27), 1125–1175 (2019). https://doi.org/10.1002/adma.201901125
M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium-sulfur batteries. ACS. Cent. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020). https://doi.org/10.1039/C9CS00838A
X. Yu, M.J. Boyer, G.S. Hwang, A. Manthiram, Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem 4, 586–598 (2018). https://doi.org/10.1016/j.chempr.2017.12.029
S. He, D. Zhang, X. Zhang, S. Liu, W. Chu et al., Rechargeable Al-chalcogen batteries: status, challenges, and perspectives. Adv. Energy Mater. 11(29), 769–783 (2021). https://doi.org/10.1002/aenm.202100769
X. Yu, A. Manthiram, Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv. Energy Mater. 7(18), 561–570 (2017). https://doi.org/10.1002/aenm.201700561
H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 978–996 (2019). https://doi.org/10.1002/anie.201814031
T. Gao, X. Li, X. Wang, J. Hu, F. Han et al., A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Ed. 128(34), 10052–10055 (2016). https://doi.org/10.1002/ange.201603531
G. Cohn, L. Ma, L.A. Archer, A novel non-aqueous aluminum sulfur battery. J. Power Sources 283, 416–422 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.131
G.A. Elia, K.V. Kravchyk, M.V. Kovalenko, J. Chacón, A. Holland et al., An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 870–892 (2021). https://doi.org/10.1016/j.jpowsour.2020.228870
H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang et al., An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 130(7), 1916–1920 (2018). https://doi.org/10.1002/ange.201711328
Y. Bian, Y. Li, Z. Yu, H. Chen, K. Du et al., Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries. ChemElectroChem 5, 3607–3611 (2018). https://doi.org/10.1002/celc.201801198
W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu et al., A low-cost deep eutectic solvent electrolyte for rechargeable aluminum-sulfur battery. Energy Storage Mater. 22, 418–423 (2019). https://doi.org/10.1016/j.ensm.2019.01.025
Y. Zhang, L. Ma, R. Tang, X. Zheng, X. Wang et al., The host hollow carbon nanospheres as cathode material for nonaqueous room-temperature Al–S batteries. Int. J. Hydro. Energy 46, 4936–4946 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.076
J. Smajic, S. Wee, F.R. Simoes, M.N. Hedhili, N. Wehbe et al., Capacity retention analysis in aluminum-sulfur batteries. ACS Appl. Energy Mater. 3(7), 6805–6814 (2020). https://doi.org/10.1021/acsaem.0c00921
K.V. Kravchyk, M.V. Kovalenko, Aluminum electrolytes for Al dual-ion batteries. Commun. Chem. 3, 120–129 (2020). https://doi.org/10.1038/s42004-020-00365-2
H. Zhao, J. Xu, D. Yin, Y. Du, Electrolytes for batteries with earth-abundant metal anodes. Chem 24, 18220–18234 (2018). https://doi.org/10.1002/chem.201802438
X. Qu, Y. Tang, A. Du, S. Dong, G. Cui, Polymer electrolytes-new opportunities for the development of multivalent ion batteries. Chem. Asian J. 16, 3272–3280 (2021). https://doi.org/10.1002/asia.202100882
W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8(13), 4490–4511 (2021). https://doi.org/10.1002/advs.202004490
B. Akgenc, S. Sarikurt, M. Yagmurcukardes, F. Ersan, Aluminum and lithium sulfur batteries: a review of recent progress and future directions. J. Phys. Condens. Matter 33, 253002–253018 (2021). https://doi.org/10.1088/1361-648X/abfa5e
S. Xia, X.M. Zhang, K. Huang, Y.L. Chen, Y.T. Wu, Ionic liquid electrolytes for aluminium secondary battery: influence of organic solvents. J. Electroanal. Chem. 757, 167–175 (2015). https://doi.org/10.1016/j.jelechem.2015.09.022
Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji et al., Carbonized-MOF as a sulfur host for aluminum-sulfur batteries with enhanced capacity and cycling life. Adv. Funct. Mater. 29(7), 7676–7682 (2019). https://doi.org/10.1002/adfm.201807676
Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu et al., Rechargeable aluminium-sulfur battery with improved electrochemical performance by cobalt-containing electrocatalyst. Angew. Chem. Int. Ed. 132(51), 22963–22967 (2020). https://doi.org/10.1002/ange.202008481
X. Zheng, R. Tang, Y. Zhang, L. Ma, X. Wang et al., Design of a composite cathode and a graphene coated separator for a stable room-temperature aluminum-sulfur battery. Sustain. Energy Fuels 4, 1630–1641 (2020). https://doi.org/10.1039/C9SE00762H
L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito et al., Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016). https://doi.org/10.1016/j.nanoen.2016.04.053
J. Liang, L. Yin, X. Tang, H. Yang, W. Yan et al., Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(38), 25193–25201 (2016). https://doi.org/10.1021/acsami.6b05647
X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang et al., Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. J. Energy Chem. 42, 144–168 (2019). https://doi.org/10.1016/j.jechem.2019.07.001
M. Ling, L. Zhang, T. Zheng, J. Feng, J. Guo et al., Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.020
M. Ling, W. Yan, A. Kawase, H. Zhao, Y.B. Fu et al., Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interf. 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff et al., Nonlithium metal–sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019). https://doi.org/10.1002/adma.201802822
C.C. Hou, H.F. Wang, C. Li, Q. Xu, From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 13, 1658–1693 (2020). https://doi.org/10.1039/C9EE04040D
Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30(48), 1995–2020 (2018). https://doi.org/10.1002/adma.201801995
H. Zhong, Y. Zhao, T. Zhang, G. Liu, Controlled lithium deposition on Alq3 coated substrate. Batteries Supercaps 4(1), 98–105 (2021). https://doi.org/10.1002/batt.202000126
C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I.H. Wang et al., A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
L.F. Chen, Y. Lu, L. Yu, X.W. Lou, Designed formation of hollow p-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10, 1777–1783 (2017). https://doi.org/10.1039/C7EE00488E
Y. Wang, D. Adekoya, J. Sun, T. Tang, H. Qiu et al., Manipulation of edge-site Fe–N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li–S batteries. Adv. Funct. Mater. 29(5), 7485–7494 (2018). https://doi.org/10.1002/adfm.201807485
Z. Zhang, J. Sun, F. Wang, L.M. Dai, Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 130(29), 9038–9043 (2018). https://doi.org/10.1002/ange.201804958
P. Peng, L. Shi, F. Huo, C. Mi, X. Wu et al., A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, 2322–2329 (2019). https://doi.org/10.1126/sciadv.aaw2322
Y. Wang, M. Wang, Z. Zhang, Q. Wang, Z. Jiang et al., Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 9(7), 6252–6261 (2019). https://doi.org/10.1021/acscatal.9b01617
H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
T. Yamamoto, Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3D transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom. 37, 572–584 (2008). https://doi.org/10.1002/xrs.1103
N.S. Manan, L. Aldous, Y. Alias, P. Murray, L.J. Yellowlees et al., Electrochemistry of sulfur and polysulfides in ionic liquids. J. Phys. Chem. B 115, 13873–13882 (2011). https://doi.org/10.1021/jp208159v
V.A. Matamoros, O. Cespedes, B.R.G. Johnson, T.M. Stawski, U. Terranova et al., A highly reactive precursor in the iron sulfide system. Nat. Commun. 9, 3125–3132 (2018). https://doi.org/10.1038/s41467-018-05493-x
X. Xiao, J. Tu, Z. Huang, S.Q. Jiao, A cobalt-based metal-organic framework and its derived material as sulfur hosts for aluminum-sulfur batteries with the chemical anchoring effect. Phys. Chem. Chem. Phys. 23(17), 10326–10334 (2021). https://doi.org/10.1039/D1CP01232K