Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries
Corresponding Author: Chaopeng Fu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 188
Abstract
Aluminum-ion batteries (AIBs) have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve, light weight, low cost, and good safety of Al. However, the development of AIBs faces challenges due to the usage of AlCl3-based ionic liquid electrolytes, which are expensive, corrosive, and sensitive to humidity. Here, we develop a low-cost, non-corrosive, and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea (MU) ligand. Through optimizing the molar ratio to achieve the unique solvation structure, the formed Al(ClO4)3·9H2O/MU hydrated deep eutectic electrolyte (AMHEE) with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al. When combining with vanadium oxide nanorods positive electrode, the Al-ion full battery delivers a high discharge capacity of 320 mAh g−1 with good capacity retention. The unique solvation structure with a low desolvation energy of the AMHEE enables Al3+ insertion/extraction during charge/discharge processes, which is evidenced by in situ synchrotron radiation X-ray diffraction. This work opens a new pathway of developing low-cost, safe, environmentally friendly and high-performance electrolytes for practical and sustainable AIBs.
Highlights:
1 A non-corrosive and air-stable hydrated eutectic electrolyte is developed.
2 The electrolyte is composed of aluminum perchlorate nonahydrate and methylurea.
3 The unique solvation structure enables reversible deposition/stripping of Al.
4 The Al-ion battery in this electrolyte shows good charge/discharge performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Deng, C. Bae, A. Denlinger, T. Miller, Electric vehicles batteries: requirements and challenges. Joule 4(3), 511–515 (2020). https://doi.org/10.1016/j.joule.2020.01.013
- P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
- H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019). https://doi.org/10.1002/anie.201814031
- Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5(9), 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
- F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14(1), 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
- H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51(59), 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
- X. Zhang, S. Jiao, J. Tu, W.-L. Song, X. Xiao et al., Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy Environ. Sci. 12(6), 1918–1927 (2019). https://doi.org/10.1039/C9EE00862D
- M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
- X. Han, Y. Bai, R. Zhao, Y. Li, F. Wu et al., Electrolytes for rechargeable aluminum batteries. Prog. Mater. Sci. 128, 100960 (2022). https://doi.org/10.1016/j.pmatsci.2022.100960
- N. Zhu, K. Zhang, F. Wu, Y. Bai, C. Wu, Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater. Adv. 2021, 9204217 (2021). https://doi.org/10.34133/2021/9204217
- S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian et al., High-performance aluminum-ion battery with Cus@C microsphere composite cathode. ACS Nano 11(1), 469–477 (2017). https://doi.org/10.1021/acsnano.6b06446
- E. Faegh, B. Ng, D. Hayman, W.E. Mustain, Practical assessment of the performance of aluminium battery technologies. Nat. Energy 6(1), 21–29 (2021). https://doi.org/10.1038/s41560-020-00728-y
- S. Kumar, P. Rama, G. Yang, W.Y. Lieu, D. Chinnadurai et al., Additive-driven interfacial engineering of aluminum metal anode for ultralong cycling life. Nano-Micro Lett. 15(1), 21 (2022). https://doi.org/10.1007/s40820-022-01000-6
- Z. Yu, S. Jiao, S. Li, X. Chen, W.-L. Song et al., Flexible stable solid-state al-ion batteries. Adv. Funct. Mater. 29(1), 1806799 (2019). https://doi.org/10.1002/adfm.201806799
- Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
- C. Zhang, L. Zhang, G. Yu, Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc. Chem. Res. 53(8), 1648–1659 (2020). https://doi.org/10.1021/acs.accounts.0c00360
- J. Wu, Q. Liang, X. Yu, Q.-F. Lü, L. Ma et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater. 31(22), 2011102 (2021). https://doi.org/10.1002/adfm.202011102
- Y. Zhu, X. Guo, Y. Lei, W. Wang, A.-H. Emwas et al., Hydrated eutectic electrolytes for high-performance mg-ion batteries. Energy Environ. Sci. 15(3), 1282–1292 (2022). https://doi.org/10.1039/D1EE03691B
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- Q. Dou, N. Yao, W.K. Pang, Y. Park, P. Xiong et al., Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy Environ. Sci. 15(11), 4572–4583 (2022). https://doi.org/10.1039/D2EE02453E
- L. Geng, X. Wang, K. Han, P. Hu, L. Zhou et al., Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 7(1), 247–260 (2022). https://doi.org/10.1021/acsenergylett.1c02088
- L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), 1202206717 (2022). https://doi.org/10.1002/anie.202206717
- R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 6(2), 399–417 (2022). https://doi.org/10.1016/j.joule.2022.01.002
- X. Lu, E.J. Hansen, G. He, J. Liu, Eutectic electrolytes chemistry for rechargeable zn batteries. Small 18(21), 2200550 (2022). https://doi.org/10.1002/smll.202200550
- J. Song, Y. Si, W. Guo, D. Wang, Y. Fu, Organosulfide-based deep eutectic electrolyte for lithium batteries. Angew. Chem. Int. Ed. 60(18), 9881–9885 (2021). https://doi.org/10.1002/anie.202016875
- P. Xiong, Y. Zhang, J. Zhang, S.H. Baek, L. Zeng et al., Recent progress of artificial interfacial layers in aqueous zn metal batteries. EnergyChem 4(4), 100076 (2022). https://doi.org/10.1016/j.enchem.2022.100076
- M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin et al., High coulombic efficiency aluminum-ion battery using an alcl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114(5), 834–839 (2017). https://doi.org/10.1073/pnas.1619795114
- M. Angell, G. Zhu, M.-C. Lin, Y. Rong, H. Dai, Ionic liquid analogs of alcl3 with urea derivatives as electrolytes for aluminum batteries. Adv. Funct. Mater. 30(4), 1901928 (2020). https://doi.org/10.1002/adfm.201901928
- Y. Fang, K. Yoshii, X. Jiang, X.-G. Sun, T. Tsuda et al., An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum. Electrochim. Acta 160, 82–88 (2015). https://doi.org/10.1016/j.electacta.2015.02.020
- P. Meng, J. Huang, Z. Yang, F. Wang, T. Lv et al., A low-cost and air-stable rechargeable aluminum-ion battery. Adv. Mater. 34(8), 2106511 (2022). https://doi.org/10.1002/adma.202106511
- X. Liu, Z. Yu, E. Sarnello, K. Qian, S. Seifert et al., Microscopic understanding of the ionic networks of “water-in-salt” electrolytes. Energy Mater. Adv. 2021, 7368420 (2021). https://doi.org/10.34133/2021/7368420
- Z. Hu, F. Xian, Z. Guo, C. Lu, X. Du et al., Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem. Mater. 32(8), 3405–3413 (2020). https://doi.org/10.1021/acs.chemmater.9b05003
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
- O.S. Hammond, D.T. Bowron, K.J. Edler, The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56(33), 9782–9785 (2017). https://doi.org/10.1002/anie.201702486
- Y. Saito, K. Machida, T. Uno, Vibrational spectra of methylurea. Spectrochim. Acta A 31(9), 1237–1244 (1975). https://doi.org/10.1016/0584-8539(75)80179-6
- M.S. Ghazvini, G. Pulletikurthi, A. Lahiri, F. Endres, Electrochemical and spectroscopic studies of zinc acetate in 1-ethyl-3-methylimidazolium acetate for zinc electrodeposition. ChemElectroChem 3(4), 598–604 (2016). https://doi.org/10.1002/celc.201500444
- M. Haouas, F. Taulelle, C. Martineau, Recent advances in application of 27al nmr spectroscopy to materials science. Prog. Nucl. Mag. Res. Sp. 94–95, 11–36 (2016). https://doi.org/10.1016/j.pnmrs.2016.01.003
- C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144(25), 11444–11455 (2022). https://doi.org/10.1021/jacs.2c04820
- P.M.A. Sherwood, Introduction to studies of aluminum and its compounds by XPS. Surf. Sci. Spectra. 5(1), 1–3 (1998). https://doi.org/10.1116/1.1247880
- M. Bou, J.M. Martin, T. Le Mogne, L. Vovelle, Chemistry of the interface between aluminium and polyethyleneterephthalate by XPS. Appl. Surf. Sci. 47(2), 149–161 (1991). https://doi.org/10.1016/0169-4332(91)90029-J
- Q. Zhao, L. Liu, J. Yin, J. Zheng, D. Zhang et al., Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells. Angew. Chem. Int. Ed. 59(8), 3048–3052 (2020). https://doi.org/10.1002/anie.201912634
- S. Gu, H. Wang, C. Wu, Y. Bai, H. Li et al., Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017). https://doi.org/10.1016/j.ensm.2016.09.001
- D.-J. Yoo, M. Heeney, F. Glöcklhofer, J.W. Choi, Tetradiketone macrocycle for divalent aluminium ion batteries. Nat. Commun. 12(1), 2386 (2021). https://doi.org/10.1038/s41467-021-22633-y
- S. Wang, S. Huang, M. Yao, Y. Zhang, Z. Niu, Engineering active sites of polyaniline for alcl2+ storage in an aluminum-ion battery. Angew. Chem. Int. Ed. 59(29), 11800–11807 (2020). https://doi.org/10.1002/anie.202002132
- C.V. Ramana, R.J. Smith, O.M. Hussain, M. Massot, C.M. Julien, Surface analysis of pulsed laser-deposited v2o5 thin films and their lithium intercalated products studied by raman spectroscopy. Surf. Interface Anal. 37(4), 406–411 (2005). https://doi.org/10.1002/sia.2018
- Y. Li, L. Liu, Y. Lu, R. Shi, Y. Ma et al., High-energy-density quinone-based electrodes with [Al(OTF)]2+ storage mechanism for rechargeable aqueous aluminum batteries. Adv. Funct. Mater. 31(26), 2102063 (2021). https://doi.org/10.1002/adfm.202102063
References
J. Deng, C. Bae, A. Denlinger, T. Miller, Electric vehicles batteries: requirements and challenges. Joule 4(3), 511–515 (2020). https://doi.org/10.1016/j.joule.2020.01.013
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
H. Yang, H. Li, J. Li, Z. Sun, K. He et al., The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019). https://doi.org/10.1002/anie.201814031
Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5(9), 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0
F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14(1), 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang et al., A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51(59), 11892–11895 (2015). https://doi.org/10.1039/C5CC00542F
X. Zhang, S. Jiao, J. Tu, W.-L. Song, X. Xiao et al., Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy Environ. Sci. 12(6), 1918–1927 (2019). https://doi.org/10.1039/C9EE00862D
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 324–328 (2015). https://doi.org/10.1038/nature14340
X. Han, Y. Bai, R. Zhao, Y. Li, F. Wu et al., Electrolytes for rechargeable aluminum batteries. Prog. Mater. Sci. 128, 100960 (2022). https://doi.org/10.1016/j.pmatsci.2022.100960
N. Zhu, K. Zhang, F. Wu, Y. Bai, C. Wu, Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater. Adv. 2021, 9204217 (2021). https://doi.org/10.34133/2021/9204217
S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian et al., High-performance aluminum-ion battery with Cus@C microsphere composite cathode. ACS Nano 11(1), 469–477 (2017). https://doi.org/10.1021/acsnano.6b06446
E. Faegh, B. Ng, D. Hayman, W.E. Mustain, Practical assessment of the performance of aluminium battery technologies. Nat. Energy 6(1), 21–29 (2021). https://doi.org/10.1038/s41560-020-00728-y
S. Kumar, P. Rama, G. Yang, W.Y. Lieu, D. Chinnadurai et al., Additive-driven interfacial engineering of aluminum metal anode for ultralong cycling life. Nano-Micro Lett. 15(1), 21 (2022). https://doi.org/10.1007/s40820-022-01000-6
Z. Yu, S. Jiao, S. Li, X. Chen, W.-L. Song et al., Flexible stable solid-state al-ion batteries. Adv. Funct. Mater. 29(1), 1806799 (2019). https://doi.org/10.1002/adfm.201806799
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30(38), 1706310 (2018). https://doi.org/10.1002/adma.201706310
C. Zhang, L. Zhang, G. Yu, Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc. Chem. Res. 53(8), 1648–1659 (2020). https://doi.org/10.1021/acs.accounts.0c00360
J. Wu, Q. Liang, X. Yu, Q.-F. Lü, L. Ma et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater. 31(22), 2011102 (2021). https://doi.org/10.1002/adfm.202011102
Y. Zhu, X. Guo, Y. Lei, W. Wang, A.-H. Emwas et al., Hydrated eutectic electrolytes for high-performance mg-ion batteries. Energy Environ. Sci. 15(3), 1282–1292 (2022). https://doi.org/10.1039/D1EE03691B
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
Q. Dou, N. Yao, W.K. Pang, Y. Park, P. Xiong et al., Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy Environ. Sci. 15(11), 4572–4583 (2022). https://doi.org/10.1039/D2EE02453E
L. Geng, X. Wang, K. Han, P. Hu, L. Zhou et al., Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 7(1), 247–260 (2022). https://doi.org/10.1021/acsenergylett.1c02088
L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), 1202206717 (2022). https://doi.org/10.1002/anie.202206717
R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 6(2), 399–417 (2022). https://doi.org/10.1016/j.joule.2022.01.002
X. Lu, E.J. Hansen, G. He, J. Liu, Eutectic electrolytes chemistry for rechargeable zn batteries. Small 18(21), 2200550 (2022). https://doi.org/10.1002/smll.202200550
J. Song, Y. Si, W. Guo, D. Wang, Y. Fu, Organosulfide-based deep eutectic electrolyte for lithium batteries. Angew. Chem. Int. Ed. 60(18), 9881–9885 (2021). https://doi.org/10.1002/anie.202016875
P. Xiong, Y. Zhang, J. Zhang, S.H. Baek, L. Zeng et al., Recent progress of artificial interfacial layers in aqueous zn metal batteries. EnergyChem 4(4), 100076 (2022). https://doi.org/10.1016/j.enchem.2022.100076
M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin et al., High coulombic efficiency aluminum-ion battery using an alcl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114(5), 834–839 (2017). https://doi.org/10.1073/pnas.1619795114
M. Angell, G. Zhu, M.-C. Lin, Y. Rong, H. Dai, Ionic liquid analogs of alcl3 with urea derivatives as electrolytes for aluminum batteries. Adv. Funct. Mater. 30(4), 1901928 (2020). https://doi.org/10.1002/adfm.201901928
Y. Fang, K. Yoshii, X. Jiang, X.-G. Sun, T. Tsuda et al., An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum. Electrochim. Acta 160, 82–88 (2015). https://doi.org/10.1016/j.electacta.2015.02.020
P. Meng, J. Huang, Z. Yang, F. Wang, T. Lv et al., A low-cost and air-stable rechargeable aluminum-ion battery. Adv. Mater. 34(8), 2106511 (2022). https://doi.org/10.1002/adma.202106511
X. Liu, Z. Yu, E. Sarnello, K. Qian, S. Seifert et al., Microscopic understanding of the ionic networks of “water-in-salt” electrolytes. Energy Mater. Adv. 2021, 7368420 (2021). https://doi.org/10.34133/2021/7368420
Z. Hu, F. Xian, Z. Guo, C. Lu, X. Du et al., Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem. Mater. 32(8), 3405–3413 (2020). https://doi.org/10.1021/acs.chemmater.9b05003
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), 2201207 (2022). https://doi.org/10.1002/advs.202201207
O.S. Hammond, D.T. Bowron, K.J. Edler, The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 56(33), 9782–9785 (2017). https://doi.org/10.1002/anie.201702486
Y. Saito, K. Machida, T. Uno, Vibrational spectra of methylurea. Spectrochim. Acta A 31(9), 1237–1244 (1975). https://doi.org/10.1016/0584-8539(75)80179-6
M.S. Ghazvini, G. Pulletikurthi, A. Lahiri, F. Endres, Electrochemical and spectroscopic studies of zinc acetate in 1-ethyl-3-methylimidazolium acetate for zinc electrodeposition. ChemElectroChem 3(4), 598–604 (2016). https://doi.org/10.1002/celc.201500444
M. Haouas, F. Taulelle, C. Martineau, Recent advances in application of 27al nmr spectroscopy to materials science. Prog. Nucl. Mag. Res. Sp. 94–95, 11–36 (2016). https://doi.org/10.1016/j.pnmrs.2016.01.003
C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144(25), 11444–11455 (2022). https://doi.org/10.1021/jacs.2c04820
P.M.A. Sherwood, Introduction to studies of aluminum and its compounds by XPS. Surf. Sci. Spectra. 5(1), 1–3 (1998). https://doi.org/10.1116/1.1247880
M. Bou, J.M. Martin, T. Le Mogne, L. Vovelle, Chemistry of the interface between aluminium and polyethyleneterephthalate by XPS. Appl. Surf. Sci. 47(2), 149–161 (1991). https://doi.org/10.1016/0169-4332(91)90029-J
Q. Zhao, L. Liu, J. Yin, J. Zheng, D. Zhang et al., Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells. Angew. Chem. Int. Ed. 59(8), 3048–3052 (2020). https://doi.org/10.1002/anie.201912634
S. Gu, H. Wang, C. Wu, Y. Bai, H. Li et al., Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017). https://doi.org/10.1016/j.ensm.2016.09.001
D.-J. Yoo, M. Heeney, F. Glöcklhofer, J.W. Choi, Tetradiketone macrocycle for divalent aluminium ion batteries. Nat. Commun. 12(1), 2386 (2021). https://doi.org/10.1038/s41467-021-22633-y
S. Wang, S. Huang, M. Yao, Y. Zhang, Z. Niu, Engineering active sites of polyaniline for alcl2+ storage in an aluminum-ion battery. Angew. Chem. Int. Ed. 59(29), 11800–11807 (2020). https://doi.org/10.1002/anie.202002132
C.V. Ramana, R.J. Smith, O.M. Hussain, M. Massot, C.M. Julien, Surface analysis of pulsed laser-deposited v2o5 thin films and their lithium intercalated products studied by raman spectroscopy. Surf. Interface Anal. 37(4), 406–411 (2005). https://doi.org/10.1002/sia.2018
Y. Li, L. Liu, Y. Lu, R. Shi, Y. Ma et al., High-energy-density quinone-based electrodes with [Al(OTF)]2+ storage mechanism for rechargeable aqueous aluminum batteries. Adv. Funct. Mater. 31(26), 2102063 (2021). https://doi.org/10.1002/adfm.202102063