Engineering Leaf-Like UiO-66-SO3H Membranes for Selective Transport of Cations
Corresponding Author: Tongwen Xu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 51
Abstract
Metal–organic frameworks (MOFs) with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes (MOF-CPMs). However, only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs, such as arduous self-assembly, poor water resistance, and tedious fabrication strategies. Besides, low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue, which limits their widespread use in membrane technology. Therefore, it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation. In this context, we report a facile in situ smart growth strategy to successfully produce ultrathin (< 600 nm) and leaf-like UiO-66-SO3H membranes at the surface of anodic alumina oxide. The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes, which accelerate the cation permeation (~ 3× faster than non-functionalized UiO-66 membrane) and achieve a high ion selectivity (Na+/Mg2+ > 140). The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs.
Highlights:
1 Ultrathin (< 600 nm) and defect-free leaf-like UiO-66-SO3H membranes were fabricated via in situ smart growth.
2 The sulfonated angstrom-sized ion transport channels in the membranes could accelerate the cation permeation (~ 3× faster than non-functionalized UiO-66 membrane) and achieve a high ion selectivity (Na+/Mg2+ > 140).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Betard, R.A. Fischer, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112(2), 1055–1083 (2011). https://doi.org/10.1021/cr200167v
- H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1(12), 16078 (2016). https://doi.org/10.1038/natrevmats2016.78
- J. Xu, W. Xing, H. Wang, W. Xu, Q. Ding, L. Zhao, W. Guo, Z. Yan, Monte carlo simulation study of the halogenated MILl-47 (V) frameworks: influence of functionalization on H2S adsorption and separation properties. J. Membr. Sci. 51(5), 2307–2319 (2016). https://doi.org/10.1039/c6ta09570d
- E. Shamsaei, X. Lin, Z.-X. Low, Z. Abbasi, Y. Hu, J.Z. Liu, H. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 8(9), 6236–6244 (2016). https://doi.org/10.1021/acsami.5b12684
- F.C. Wu, L. Lin, H.O. Liu, H.T. Wang, J.S. Qiu, X.F. Zhang, Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. J. Membr. Sci. 544, 342–350 (2017). https://doi.org/10.1016/j.memsci.2017.09.047
- X. Liu, C. Wang, B. Wang, K. Li, Novel organic-dehydration membranes prepared from zirconium metal–organic frameworks. Adv. Funct. Mater. 27(3), 1604311 (2017). https://doi.org/10.1002/adfm.201604311
- S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135(40), 15201–15208 (2013). https://doi.org/10.1021/ja407665w
- R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angew. Chem. Int. Ed. 53(37), 9775–9779 (2014). https://doi.org/10.1002/anie.201403978
- L.B. Yang, Z. Wang, J.L. Zhang, Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. J. Mater. Chem. A 5(29), 15342–15355 (2017). https://doi.org/10.1039/c7ta03244g
- E. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
- Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 128(48), 15344–15348 (2016). https://doi.org/10.1002/anie.201607329
- H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou et al., Ultrafast selective transport of alkali metal ions in metal–organic frameworks with subnanometer pores. Sci. Adv. 4(2), eaaq0066 (2018). https://doi.org/10.1126/sciadv.aaq0066
- T. Xu, M.A. Shehzad, D. Yu, Q. Li, B. Wu, X. Ren, L. Ge, T. Xu, Highly cation permselective metal–organic framework membranes with leaf-like morphology. Chemsuschem 12, 2593–2597 (2019). https://doi.org/10.1002/cssc.201900706
- X. Li, H. Zhang, P. Wang, J. Hou, J. Lu et al., Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10(1), 2490 (2019). https://doi.org/10.1038/s41467-019-10420-9
- K.M. Gupta, K. Zhang, J. Jiang, Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir 31(48), 13230–13237 (2015). https://doi.org/10.1021/acs.langmuir.5b03593
- J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang et al., Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic mofs for nanofiltration. ACS Appl. Mater. Interfaces 9(2), 1975–1986 (2017). https://doi.org/10.1021/acsami.6b14412
- H. Ruan, C. Guo, H. Yu, J. Shen, C. Gao, A. Sotto, B. Van der Bruggen, Fabrication of a mil-53 (Al) nanocomposite membrane and potential application in desalination of dye solutions. Ind. Eng. Chem. Res. 55(46), 12099–12110 (2016). https://doi.org/10.1021/acs.iecr.6b03201
- T.-Y. Liu, H.-G. Yuan, Y.-Y. Liu, D. Ren, Y.-C. Su, X. Wang, Metal–organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano 12(9), 9253–9265 (2018). https://doi.org/10.1021/acsnano.8b03994
- X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137(22), 6999–7002 (2015). https://doi.org/10.1021/jacs.5b02276
- L. Ge, L. Wu, B. Wu, G. Wang, T. Xu, Preparation of monovalent cation selective membranes through annealing treatment. J. Membr. Sci. 459, 217–222 (2014). https://doi.org/10.1016/j.memsci.2014.02.025
- Y. Kuwahara, H. Kango, H. Yamashita, Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain. Chem. Eng. 5(1), 1141–1152 (2017). https://doi.org/10.1021/acssuschemeng.6b02464
- M.L. Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, S. Kitagawa, Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6(UiO-66). Dalton Trans. 41(45), 13791–13794 (2012). https://doi.org/10.1039/c2dt31195j
- K.M. Choi, K. Na, G.A. Somorjai, O.M. Yaghi, Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 137(24), 7810–7816 (2015). https://doi.org/10.1021/jacs.5b03540
- L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23(7), 1700–1718 (2011). https://doi.org/10.1021/cm1022882
- Z. Hasan, J.W. Jun, S.H. Jhung, Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J. 278, 265–271 (2015). https://doi.org/10.1016/j.cej.2014.09.025
- M.G. Goesten, J. Juan-Alcañiz, E.V. Ramos-Fernandez, K.S.S. Gupta, E. Stavitski, H. van Bekkum, J. Gascon, F. Kapteijn, Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J. Catal. 281(1), 177–187 (2011). https://doi.org/10.1016/j.jcat.2011.04.015
- J. Juan-Alcañiz, R. Gielisse, A.B. Lago, E.V. Ramos-Fernandez, P. Serra-Crespo et al., Towards acid MOFs-catalytic performance of sulfonic acid functionalized architectures. Catal. Sci. Technol. 3(9), 2311–2318 (2013). https://doi.org/10.1039/C3CY00272A
- J. Yao, D. Dong, D. Li, L. He, G. Xu, H. Wang, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47(9), 2559–2561 (2011). https://doi.org/10.1039/c0cc04734a
- J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21(8), 1410–1412 (2009). https://doi.org/10.1021/cm900166h
- Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 122(3), 558–561 (2010). https://doi.org/10.1002/anie.200905645
- M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49(82), 9449–9451 (2013). https://doi.org/10.1039/c3cc46105j
- F. Vermoortele, B. Bueken, G.L. Le Bars, B. Van de Voorde, M. Vandichel et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). J. Am. Chem. Soc. 135(31), 11465–11468 (2013). https://doi.org/10.1021/ja405078u
- Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y.M. Lee, Metal–organic framework membranes fabricated via reactive seeding. Chem. Commun. 47(2), 737–739 (2011). https://doi.org/10.1039/c0cc03927f
- L. Wan, C. Zhou, K. Xu, B. Feng, A. Huang, Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous Mesoporous Mater. 252, 207–213 (2017). https://doi.org/10.1016/j.micromeso.2017.06.025
- L. Hou, J. Pan, D. Yu, B. Wu, A.N. Mondal, Q. Li, L. Ge, T. Xu, Nanofibrous composite membranes (NFCMS) for mono/divalent cations separation. J. Membr. Sci. 528, 243–250 (2017). https://doi.org/10.1016/j.memsci.2017.01.036
- G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39(1), 1–42 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.001
- H.J. Cassady, E.C. Cimino, M. Kumar, M.A. Hickner, Specific ion effects on the permselectivity of sulfonated poly (ether sulfone) cation exchange membranes. J. Membr. Sci. 508, 146–152 (2016). https://doi.org/10.1016/j.memsci.2016.02.048
- Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A.K. Cheetham, E. Sivaniah, A.I. Cooper, Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28(13), 2629–2637 (2016). https://doi.org/10.1002/adma.201505688
- O. Beckstein, K. Tai, M.S. Sansom, Not ions alone: barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc. 126(45), 14694–14695 (2004). https://doi.org/10.1021/ja045271e
- P. Wang, M. Wang, F. Liu, S. Ding, X. Wang et al., Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 9(1), 569 (2018). https://doi.org/10.1038/s41467-018-02941-6
- Y. Ruan, Y. Zhu, Y. Zhang, Q. Gao, X. Lu, L. Lu, Molecular dynamics study of mg2+/Li+ separation via biomimetic graphene-based nanopores: the role of dehydration in second shell. Langmuir 32(51), 13778–13786 (2016). https://doi.org/10.1021/acs.langmuir.6b03001
References
A. Betard, R.A. Fischer, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112(2), 1055–1083 (2011). https://doi.org/10.1021/cr200167v
H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1(12), 16078 (2016). https://doi.org/10.1038/natrevmats2016.78
J. Xu, W. Xing, H. Wang, W. Xu, Q. Ding, L. Zhao, W. Guo, Z. Yan, Monte carlo simulation study of the halogenated MILl-47 (V) frameworks: influence of functionalization on H2S adsorption and separation properties. J. Membr. Sci. 51(5), 2307–2319 (2016). https://doi.org/10.1039/c6ta09570d
E. Shamsaei, X. Lin, Z.-X. Low, Z. Abbasi, Y. Hu, J.Z. Liu, H. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 8(9), 6236–6244 (2016). https://doi.org/10.1021/acsami.5b12684
F.C. Wu, L. Lin, H.O. Liu, H.T. Wang, J.S. Qiu, X.F. Zhang, Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. J. Membr. Sci. 544, 342–350 (2017). https://doi.org/10.1016/j.memsci.2017.09.047
X. Liu, C. Wang, B. Wang, K. Li, Novel organic-dehydration membranes prepared from zirconium metal–organic frameworks. Adv. Funct. Mater. 27(3), 1604311 (2017). https://doi.org/10.1002/adfm.201604311
S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135(40), 15201–15208 (2013). https://doi.org/10.1021/ja407665w
R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angew. Chem. Int. Ed. 53(37), 9775–9779 (2014). https://doi.org/10.1002/anie.201403978
L.B. Yang, Z. Wang, J.L. Zhang, Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. J. Mater. Chem. A 5(29), 15342–15355 (2017). https://doi.org/10.1039/c7ta03244g
E. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 128(48), 15344–15348 (2016). https://doi.org/10.1002/anie.201607329
H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou et al., Ultrafast selective transport of alkali metal ions in metal–organic frameworks with subnanometer pores. Sci. Adv. 4(2), eaaq0066 (2018). https://doi.org/10.1126/sciadv.aaq0066
T. Xu, M.A. Shehzad, D. Yu, Q. Li, B. Wu, X. Ren, L. Ge, T. Xu, Highly cation permselective metal–organic framework membranes with leaf-like morphology. Chemsuschem 12, 2593–2597 (2019). https://doi.org/10.1002/cssc.201900706
X. Li, H. Zhang, P. Wang, J. Hou, J. Lu et al., Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10(1), 2490 (2019). https://doi.org/10.1038/s41467-019-10420-9
K.M. Gupta, K. Zhang, J. Jiang, Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir 31(48), 13230–13237 (2015). https://doi.org/10.1021/acs.langmuir.5b03593
J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang et al., Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic mofs for nanofiltration. ACS Appl. Mater. Interfaces 9(2), 1975–1986 (2017). https://doi.org/10.1021/acsami.6b14412
H. Ruan, C. Guo, H. Yu, J. Shen, C. Gao, A. Sotto, B. Van der Bruggen, Fabrication of a mil-53 (Al) nanocomposite membrane and potential application in desalination of dye solutions. Ind. Eng. Chem. Res. 55(46), 12099–12110 (2016). https://doi.org/10.1021/acs.iecr.6b03201
T.-Y. Liu, H.-G. Yuan, Y.-Y. Liu, D. Ren, Y.-C. Su, X. Wang, Metal–organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano 12(9), 9253–9265 (2018). https://doi.org/10.1021/acsnano.8b03994
X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137(22), 6999–7002 (2015). https://doi.org/10.1021/jacs.5b02276
L. Ge, L. Wu, B. Wu, G. Wang, T. Xu, Preparation of monovalent cation selective membranes through annealing treatment. J. Membr. Sci. 459, 217–222 (2014). https://doi.org/10.1016/j.memsci.2014.02.025
Y. Kuwahara, H. Kango, H. Yamashita, Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain. Chem. Eng. 5(1), 1141–1152 (2017). https://doi.org/10.1021/acssuschemeng.6b02464
M.L. Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, S. Kitagawa, Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6(UiO-66). Dalton Trans. 41(45), 13791–13794 (2012). https://doi.org/10.1039/c2dt31195j
K.M. Choi, K. Na, G.A. Somorjai, O.M. Yaghi, Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 137(24), 7810–7816 (2015). https://doi.org/10.1021/jacs.5b03540
L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23(7), 1700–1718 (2011). https://doi.org/10.1021/cm1022882
Z. Hasan, J.W. Jun, S.H. Jhung, Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J. 278, 265–271 (2015). https://doi.org/10.1016/j.cej.2014.09.025
M.G. Goesten, J. Juan-Alcañiz, E.V. Ramos-Fernandez, K.S.S. Gupta, E. Stavitski, H. van Bekkum, J. Gascon, F. Kapteijn, Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J. Catal. 281(1), 177–187 (2011). https://doi.org/10.1016/j.jcat.2011.04.015
J. Juan-Alcañiz, R. Gielisse, A.B. Lago, E.V. Ramos-Fernandez, P. Serra-Crespo et al., Towards acid MOFs-catalytic performance of sulfonic acid functionalized architectures. Catal. Sci. Technol. 3(9), 2311–2318 (2013). https://doi.org/10.1039/C3CY00272A
J. Yao, D. Dong, D. Li, L. He, G. Xu, H. Wang, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47(9), 2559–2561 (2011). https://doi.org/10.1039/c0cc04734a
J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21(8), 1410–1412 (2009). https://doi.org/10.1021/cm900166h
Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 122(3), 558–561 (2010). https://doi.org/10.1002/anie.200905645
M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49(82), 9449–9451 (2013). https://doi.org/10.1039/c3cc46105j
F. Vermoortele, B. Bueken, G.L. Le Bars, B. Van de Voorde, M. Vandichel et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). J. Am. Chem. Soc. 135(31), 11465–11468 (2013). https://doi.org/10.1021/ja405078u
Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y.M. Lee, Metal–organic framework membranes fabricated via reactive seeding. Chem. Commun. 47(2), 737–739 (2011). https://doi.org/10.1039/c0cc03927f
L. Wan, C. Zhou, K. Xu, B. Feng, A. Huang, Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous Mesoporous Mater. 252, 207–213 (2017). https://doi.org/10.1016/j.micromeso.2017.06.025
L. Hou, J. Pan, D. Yu, B. Wu, A.N. Mondal, Q. Li, L. Ge, T. Xu, Nanofibrous composite membranes (NFCMS) for mono/divalent cations separation. J. Membr. Sci. 528, 243–250 (2017). https://doi.org/10.1016/j.memsci.2017.01.036
G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39(1), 1–42 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.001
H.J. Cassady, E.C. Cimino, M. Kumar, M.A. Hickner, Specific ion effects on the permselectivity of sulfonated poly (ether sulfone) cation exchange membranes. J. Membr. Sci. 508, 146–152 (2016). https://doi.org/10.1016/j.memsci.2016.02.048
Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A.K. Cheetham, E. Sivaniah, A.I. Cooper, Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28(13), 2629–2637 (2016). https://doi.org/10.1002/adma.201505688
O. Beckstein, K. Tai, M.S. Sansom, Not ions alone: barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc. 126(45), 14694–14695 (2004). https://doi.org/10.1021/ja045271e
P. Wang, M. Wang, F. Liu, S. Ding, X. Wang et al., Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 9(1), 569 (2018). https://doi.org/10.1038/s41467-018-02941-6
Y. Ruan, Y. Zhu, Y. Zhang, Q. Gao, X. Lu, L. Lu, Molecular dynamics study of mg2+/Li+ separation via biomimetic graphene-based nanopores: the role of dehydration in second shell. Langmuir 32(51), 13778–13786 (2016). https://doi.org/10.1021/acs.langmuir.6b03001