CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries
Corresponding Author: Guanghui Yue
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 22
Abstract
Rechargeable lithium–oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium–oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g−1 at a current density of 200 mA g−1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.
Highlights:
1 CuCr2O4@rGO nanocomposites were facilely synthesized using the hydrothermal method.
2 The CuCr2O4@rGO nanocomposites demonstrated an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g−1 at a current density of 200 mA g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22), 7746–7786 (2014). https://doi.org/10.1039/C3CS60248F
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- G.H. Yue, Y.D. Lin, X. Wen, L.S. Wang, D.L. Peng, SnS homojunction nanowire-based solar cells. J. Mater. Chem. 22(32), 16437–16441 (2012). https://doi.org/10.1039/c2jm32116e
- M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Lett. 5(1), 1–6 (2012). https://doi.org/10.1007/BF03353724
- B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011). https://doi.org/10.1039/c1ee01388b
- F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat. Commun. 6, 7843 (2015). https://doi.org/10.1038/ncomms8843
- J. Xu, Z. Chang, Y. Yin, X.B. Zhang, Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium–oxygen batteries. ACS Cent. Sci. 3(6), 598–604 (2017). https://doi.org/10.1021/acscentsci.7b00120
- H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1(6), 1036–1039 (2011). https://doi.org/10.1002/aenm.201500633
- J. Xu, X.B. Zhang, Li–air batteries: decouple to stabilize. Nat. Energy 2(9), 17133 (2017). https://doi.org/10.1038/nenergy.2017.133
- J. Xu, Z. Chang, Y. Wang, D. Liu, Y. Zhang, X.B. Zhang, Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li–O2 batteries. Adv. Mater. 28(43), 9620–9628 (2016). https://doi.org/10.1002/adma.201603454
- T. Zhang, H. Zhou, A reversible long-life lithium–air battery in ambient air. Nat. Commun. 4(5), 1813 (2013). https://doi.org/10.1038/ncomms2855
- Y. Chen, J. Li, G.H. Yue, X.T. Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9(3), 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
- Y.-C. Lu, H.A. Gasteiger, Y. Shao-Horn, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J. Am. Chem. Soc. 133(47), 19048–19051 (2011). https://doi.org/10.1021/ja208608s
- D. Kundu, R. Black, E.J. Berg, L.F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8(4), 1292–1298 (2015). https://doi.org/10.1039/C4EE02587C
- Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu, X. Wu, Rational design of WO3 nanostructures as the anode materials for lithium ion batteries with enhanced electrochemical performance. Nano-Micro Lett. 7(1), 12–16 (2015). https://doi.org/10.1007/s40820-014-0013-5
- X.-Z. Zhang, D. Han, Y.-B. He, D.-Y. Zhai, D. Liu, H. Du, B. Li, F. Kang, Mesoporous Cr2O3 nanotubes as an efficient catalyst for Li–O2 batteries with low charge potential and enhanced cyclic performance. J. Mater. Chem. A 4(20), 7727–7735 (2016). https://doi.org/10.1039/C6TA00331A
- X.Q. Zhang, Y.C. Zhao, C.G. Wang, X. Li, J.D. Liu, G.H. Yue, Z.D. Zhou, Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. J. Mater. Sci. 51(20), 9296–9305 (2016). https://doi.org/10.1007/s10853-016-0176-1
- M. He, P. Zhang, S. Xu, X. Yan, Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(36), 23713–23720 (2016). https://doi.org/10.1021/acsami.6b07092
- Y.-G. Huang, J. Chen, X.-H. Zhang, Y.-H. Zan, X.-M. Wu, Z.-Q. He, H.-Q. Wang, Q.-Y. Li, Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li–O2 batteries. Chem. Eng. J. 296, 28–34 (2016). https://doi.org/10.1016/j.cej.2016.03.081
- Y.C. Zhao, X. Li, J.D. Liu, C.G. Wang, Y.Y. Zhao, G.H. Yue, MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk-shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8(10), 6472–6480 (2016). https://doi.org/10.1021/acsami.5b12562
- C. Wang, Y. Zhao, J. Liu, P. Gong, X. Li, Y. Zhao, G. Yue, Z. Zhou, Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O2 pathways in long cycle life, rechargeable Li–O2 batteries. Chem. Commun. 52, 11772–11774 (2016). https://doi.org/10.1039/C6CC05349A
- J. Xu, D. Xu, Z. Wang, H. Wang, L. Zhang, X.B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew. Chem. Int. Ed. 52(79), 3887–3890 (2013). https://doi.org/10.1002/anie.201210057
- J. Xu, Z. Wang, D. Xu, F. Meng, X.B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7(7), 2213–2219 (2014). https://doi.org/10.1039/c3ee42934b
- D. Mei, X. Yuan, Z. Ma, P. Wei, X. Yu, J. Yang, Z.-F. Ma, A SnO2-based cathode catalyst for lithium–air batteries. ACS Appl. Mater. Interfaces 8(20), 12804–12811 (2016). https://doi.org/10.1021/acsami.6b02402
- Y. Liu, L.-J. Cao, C.-W. Cao, M. Wang, K.-L. Leung, S.-S. Zeng, T.F. Hung, C.Y. Chung, Z.-G. Lu, Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li–air batteries. Chem. Commun. 50(93), 14635–14638 (2014). https://doi.org/10.1039/C4CC04682J
- Q.-C. Liu, J.-J. Xu, Z.-W. Chang, D. Xu, Y.-B. Yin et al., Growth of Ru-modified Co3O4 nanosheets on carbon textiles toward flexible and efficient cathodes for flexible Li–O2 batteries. Part. Part. Syst. Charact. 33(8), 500–505 (2016). https://doi.org/10.1002/ppsc.201500193
- X. Han, F. Cheng, C. Chen, F. Li, J. Chen, A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li–O2 batteries. Inorg. Chem. Front. 3(6), 866–871 (2016). https://doi.org/10.1039/C6QI00066E
- Y.L. Cao, F.C. Lv, S.C. Yu, J. Xu, X. Yang, Z.G. Lu, Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li–O2 batteries. Nanotechnology 27(13), 135703 (2016). https://doi.org/10.1088/0957-4484/27/13/135703
- S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 9(4), 1320–1326 (2016). https://doi.org/10.1039/C6EE00054A
- L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/C5CC09173J
- F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci.: Mater. Electron. 26(7), 5043–5051 (2015). https://doi.org/10.1007/s10854-015-3024-1
- S.S. Acharyya, S. Ghosh, R. Tiwari, C. Pendem, T. Sasaki, R. Bal, Synergistic effect between ultrasmall Cu(II) oxide and CuCr2O4 spinel nanops in selective hydroxylation of benzene to phenol with air as oxidant. ACS Catal. 5(5), 2850–2858 (2015). https://doi.org/10.1021/cs5020699
- W. Yuan, X. Liu, L. Li, Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl. Surf. Sci. 319(1), 350–357 (2014). https://doi.org/10.1016/j.apsusc.2014.07.158
- R. Bajaj, M. Sharma, D. Bahadur, Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans. 42(19), 6736–6744 (2013). https://doi.org/10.1039/c2dt32753h
- J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, M. Yao, CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol. Energy 83(9), 1534–1539 (2009). https://doi.org/10.1016/j.solener.2009.05.004
- C.G. Wang, J.D. Liu, X. Li, Z.C. Wang, Y.C. Zhao, Z.D. Zhou, Q. Chen, G.H. Yue, Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. J. Mater. Sci. 52(4), 2131–2141 (2017). https://doi.org/10.1007/s10853-016-0501-8
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- Z. Niu, L. Liu, L. Zhang, Q. Shao, W. Zhou, X. Chen, S. Xie, A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater. 26(22), 3681–3687 (2014). https://doi.org/10.1002/adma.201400143
- S. De, S. Mandal, Surfactant-assisted shape control of copper nanostructures. Colloids Surf. A 421(11), 72–83 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.035
- M. Hashempour, H. Razavizadeh, H.-R. Rezaie, M. Hashempour, M. Ardestani, Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W–Cu nanocomposite powders. Mater. Chem. Phys. 123(1), 83–90 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.029
- B.T. Heaton, C. Jacob, P. Page, Transition metal complexes containing hydrazine and substituted hydrazines. Coord. Chem. Rev. 154(96), 193–229 (1996). https://doi.org/10.1016/0010-8545(96)01285-4
- S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
- S.S. Acharyya, S. Ghosh, R. Bal, Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl. Mater. Interfaces 6(16), 14451–14459 (2014). https://doi.org/10.1021/am503722t
- Y. Jiang, L. Zou, J. Cheng, Y. Huang, L. Jia, B. Chi, J. Pu, J. Li, Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium–oxygen batteries. ChemElectroChem 4, 1–9 (2017). https://doi.org/10.1002/celc.201700864
- W. Ryu, T. Yoon, S.H. Song, S. Jeon, Y. Park, I.I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li–O2 batteries. Nano Lett. 13(9), 4190–4197 (2013). https://doi.org/10.1021/nl401868q
- Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 batteries. Angew. Chem. Int. Ed. 53(2), 442–446 (2014). https://doi.org/10.1002/anie.201307976
- G.H. Yue, Y.C. Zhao, C.G. Wang, X.X. Zhang, X.Q. Zhang, Q.S. Xie, Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim. Acta 152, 315–322 (2015). https://doi.org/10.1016/j.electacta.2014.11.177
- P. Moni, S. Hyun, A. Vignesh, S. Shanmugam, Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries. Chem. Commun. 53(55), 7836–7839 (2017). https://doi.org/10.1039/C7CC03826G
- Z. Guo, D. Zhou, H. Liu, X. Dong, S. Yuan, A. Yu, Y. Wang, Y. Xia, Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. J. Power Sources 276, 181–188 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.145
- T. Yao, X. Guo, S. Qin, F. Xia, Q. Li, Y. Li, Q. Chen, J.S. Li, D. He, Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
- X.X. Zhang, Q.S. Xie, G.H. Yue, Y. Zhang, X.Q. Zhang, A.L. Lu, D.L. Peng, A novel hierarchical network-like Co3O4 anode material for lithium batteries. Electrochim. Acta 111(6), 746–754 (2013). https://doi.org/10.1016/j.electacta.2013.08.062
References
Z.L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22), 7746–7786 (2014). https://doi.org/10.1039/C3CS60248F
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
G.H. Yue, Y.D. Lin, X. Wen, L.S. Wang, D.L. Peng, SnS homojunction nanowire-based solar cells. J. Mater. Chem. 22(32), 16437–16441 (2012). https://doi.org/10.1039/c2jm32116e
M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Lett. 5(1), 1–6 (2012). https://doi.org/10.1007/BF03353724
B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011). https://doi.org/10.1039/c1ee01388b
F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat. Commun. 6, 7843 (2015). https://doi.org/10.1038/ncomms8843
J. Xu, Z. Chang, Y. Yin, X.B. Zhang, Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium–oxygen batteries. ACS Cent. Sci. 3(6), 598–604 (2017). https://doi.org/10.1021/acscentsci.7b00120
H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1(6), 1036–1039 (2011). https://doi.org/10.1002/aenm.201500633
J. Xu, X.B. Zhang, Li–air batteries: decouple to stabilize. Nat. Energy 2(9), 17133 (2017). https://doi.org/10.1038/nenergy.2017.133
J. Xu, Z. Chang, Y. Wang, D. Liu, Y. Zhang, X.B. Zhang, Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li–O2 batteries. Adv. Mater. 28(43), 9620–9628 (2016). https://doi.org/10.1002/adma.201603454
T. Zhang, H. Zhou, A reversible long-life lithium–air battery in ambient air. Nat. Commun. 4(5), 1813 (2013). https://doi.org/10.1038/ncomms2855
Y. Chen, J. Li, G.H. Yue, X.T. Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9(3), 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
Y.-C. Lu, H.A. Gasteiger, Y. Shao-Horn, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li–air batteries. J. Am. Chem. Soc. 133(47), 19048–19051 (2011). https://doi.org/10.1021/ja208608s
D. Kundu, R. Black, E.J. Berg, L.F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8(4), 1292–1298 (2015). https://doi.org/10.1039/C4EE02587C
Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu, X. Wu, Rational design of WO3 nanostructures as the anode materials for lithium ion batteries with enhanced electrochemical performance. Nano-Micro Lett. 7(1), 12–16 (2015). https://doi.org/10.1007/s40820-014-0013-5
X.-Z. Zhang, D. Han, Y.-B. He, D.-Y. Zhai, D. Liu, H. Du, B. Li, F. Kang, Mesoporous Cr2O3 nanotubes as an efficient catalyst for Li–O2 batteries with low charge potential and enhanced cyclic performance. J. Mater. Chem. A 4(20), 7727–7735 (2016). https://doi.org/10.1039/C6TA00331A
X.Q. Zhang, Y.C. Zhao, C.G. Wang, X. Li, J.D. Liu, G.H. Yue, Z.D. Zhou, Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. J. Mater. Sci. 51(20), 9296–9305 (2016). https://doi.org/10.1007/s10853-016-0176-1
M. He, P. Zhang, S. Xu, X. Yan, Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium–oxygen batteries. ACS Appl. Mater. Interfaces 8(36), 23713–23720 (2016). https://doi.org/10.1021/acsami.6b07092
Y.-G. Huang, J. Chen, X.-H. Zhang, Y.-H. Zan, X.-M. Wu, Z.-Q. He, H.-Q. Wang, Q.-Y. Li, Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li–O2 batteries. Chem. Eng. J. 296, 28–34 (2016). https://doi.org/10.1016/j.cej.2016.03.081
Y.C. Zhao, X. Li, J.D. Liu, C.G. Wang, Y.Y. Zhao, G.H. Yue, MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk-shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8(10), 6472–6480 (2016). https://doi.org/10.1021/acsami.5b12562
C. Wang, Y. Zhao, J. Liu, P. Gong, X. Li, Y. Zhao, G. Yue, Z. Zhou, Highly hierarchical porous structures constructed from NiO nanosheets act as Li ion and O2 pathways in long cycle life, rechargeable Li–O2 batteries. Chem. Commun. 52, 11772–11774 (2016). https://doi.org/10.1039/C6CC05349A
J. Xu, D. Xu, Z. Wang, H. Wang, L. Zhang, X.B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew. Chem. Int. Ed. 52(79), 3887–3890 (2013). https://doi.org/10.1002/anie.201210057
J. Xu, Z. Wang, D. Xu, F. Meng, X.B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7(7), 2213–2219 (2014). https://doi.org/10.1039/c3ee42934b
D. Mei, X. Yuan, Z. Ma, P. Wei, X. Yu, J. Yang, Z.-F. Ma, A SnO2-based cathode catalyst for lithium–air batteries. ACS Appl. Mater. Interfaces 8(20), 12804–12811 (2016). https://doi.org/10.1021/acsami.6b02402
Y. Liu, L.-J. Cao, C.-W. Cao, M. Wang, K.-L. Leung, S.-S. Zeng, T.F. Hung, C.Y. Chung, Z.-G. Lu, Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li–air batteries. Chem. Commun. 50(93), 14635–14638 (2014). https://doi.org/10.1039/C4CC04682J
Q.-C. Liu, J.-J. Xu, Z.-W. Chang, D. Xu, Y.-B. Yin et al., Growth of Ru-modified Co3O4 nanosheets on carbon textiles toward flexible and efficient cathodes for flexible Li–O2 batteries. Part. Part. Syst. Charact. 33(8), 500–505 (2016). https://doi.org/10.1002/ppsc.201500193
X. Han, F. Cheng, C. Chen, F. Li, J. Chen, A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li–O2 batteries. Inorg. Chem. Front. 3(6), 866–871 (2016). https://doi.org/10.1039/C6QI00066E
Y.L. Cao, F.C. Lv, S.C. Yu, J. Xu, X. Yang, Z.G. Lu, Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li–O2 batteries. Nanotechnology 27(13), 135703 (2016). https://doi.org/10.1088/0957-4484/27/13/135703
S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 9(4), 1320–1326 (2016). https://doi.org/10.1039/C6EE00054A
L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo, S. Wang, L. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52(13), 2764–2767 (2016). https://doi.org/10.1039/C5CC09173J
F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci.: Mater. Electron. 26(7), 5043–5051 (2015). https://doi.org/10.1007/s10854-015-3024-1
S.S. Acharyya, S. Ghosh, R. Tiwari, C. Pendem, T. Sasaki, R. Bal, Synergistic effect between ultrasmall Cu(II) oxide and CuCr2O4 spinel nanops in selective hydroxylation of benzene to phenol with air as oxidant. ACS Catal. 5(5), 2850–2858 (2015). https://doi.org/10.1021/cs5020699
W. Yuan, X. Liu, L. Li, Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl. Surf. Sci. 319(1), 350–357 (2014). https://doi.org/10.1016/j.apsusc.2014.07.158
R. Bajaj, M. Sharma, D. Bahadur, Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans. 42(19), 6736–6744 (2013). https://doi.org/10.1039/c2dt32753h
J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, M. Yao, CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol. Energy 83(9), 1534–1539 (2009). https://doi.org/10.1016/j.solener.2009.05.004
C.G. Wang, J.D. Liu, X. Li, Z.C. Wang, Y.C. Zhao, Z.D. Zhou, Q. Chen, G.H. Yue, Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. J. Mater. Sci. 52(4), 2131–2141 (2017). https://doi.org/10.1007/s10853-016-0501-8
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
Z. Niu, L. Liu, L. Zhang, Q. Shao, W. Zhou, X. Chen, S. Xie, A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater. 26(22), 3681–3687 (2014). https://doi.org/10.1002/adma.201400143
S. De, S. Mandal, Surfactant-assisted shape control of copper nanostructures. Colloids Surf. A 421(11), 72–83 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.035
M. Hashempour, H. Razavizadeh, H.-R. Rezaie, M. Hashempour, M. Ardestani, Chemical mechanism of precipitate formation and pH effect on the morphology and thermochemical co-precipitation of W–Cu nanocomposite powders. Mater. Chem. Phys. 123(1), 83–90 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.029
B.T. Heaton, C. Jacob, P. Page, Transition metal complexes containing hydrazine and substituted hydrazines. Coord. Chem. Rev. 154(96), 193–229 (1996). https://doi.org/10.1016/0010-8545(96)01285-4
S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
S.S. Acharyya, S. Ghosh, R. Bal, Fabrication of three-dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol. ACS Appl. Mater. Interfaces 6(16), 14451–14459 (2014). https://doi.org/10.1021/am503722t
Y. Jiang, L. Zou, J. Cheng, Y. Huang, L. Jia, B. Chi, J. Pu, J. Li, Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium–oxygen batteries. ChemElectroChem 4, 1–9 (2017). https://doi.org/10.1002/celc.201700864
W. Ryu, T. Yoon, S.H. Song, S. Jeon, Y. Park, I.I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li–O2 batteries. Nano Lett. 13(9), 4190–4197 (2013). https://doi.org/10.1021/nl401868q
Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 batteries. Angew. Chem. Int. Ed. 53(2), 442–446 (2014). https://doi.org/10.1002/anie.201307976
G.H. Yue, Y.C. Zhao, C.G. Wang, X.X. Zhang, X.Q. Zhang, Q.S. Xie, Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim. Acta 152, 315–322 (2015). https://doi.org/10.1016/j.electacta.2014.11.177
P. Moni, S. Hyun, A. Vignesh, S. Shanmugam, Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium–oxygen and zinc–air batteries. Chem. Commun. 53(55), 7836–7839 (2017). https://doi.org/10.1039/C7CC03826G
Z. Guo, D. Zhou, H. Liu, X. Dong, S. Yuan, A. Yu, Y. Wang, Y. Xia, Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. J. Power Sources 276, 181–188 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.145
T. Yao, X. Guo, S. Qin, F. Xia, Q. Li, Y. Li, Q. Chen, J.S. Li, D. He, Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
X.X. Zhang, Q.S. Xie, G.H. Yue, Y. Zhang, X.Q. Zhang, A.L. Lu, D.L. Peng, A novel hierarchical network-like Co3O4 anode material for lithium batteries. Electrochim. Acta 111(6), 746–754 (2013). https://doi.org/10.1016/j.electacta.2013.08.062