Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions
Corresponding Author: Sikandar Aftab
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 28
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Highlights:
1 Innovative synthesis method for nanoscale-based perovskites with enhanced stability and efficiency.
2 Novel application of nanoscale-based perovskites in optoelectronics with superior performance metrics.
3 Comprehensive analysis of the structure–property relationships in perovskite nanomaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Paschotta, Photodetectors. RP Photonics Encyclopedia. https://www.rp-photonics.com/encyclopedia.html
- S. Aftab, S. Hussain, F. Kabir, Y. Kuznetsova, A.G. Al-Sehemi, Progress in photodetector devices utilizing transition metal dichalcogenides. J. Mater. Chem. C 12, 1211–1232 (2024). https://doi.org/10.1039/D3TC04253G
- L. Li, S. Ye, J. Qu, F. Zhou, J. Song et al., Recent advances in perovskite photodetectors for image sensing. Small 17, e2005606 (2021). https://doi.org/10.1002/smll.202005606
- M. Ahmadi, T. Wu, B. Hu, A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017). https://doi.org/10.1002/adma.201605242
- F. Wang, X. Zou, M. Xu, H. Wang, H. Wang et al., Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 8, e2100569 (2021). https://doi.org/10.1002/advs.202100569
- Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo et al., Lead-free perovskite photodetectors: progress, challenges, and opportunities. Adv. Mater. 33, 2006691 (2021). https://doi.org/10.1002/adma.202006691
- H. Gu, S.-C. Chen, Q. Zheng, Emerging perovskite materials with different nanostructures for photodetectors. Adv. Opt. Mater. 9, 2001637 (2021). https://doi.org/10.1002/adom.202001637
- C. Xie, C.-K. Liu, H.-L. Loi, F. Yan, Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 30, 1903907 (2020). https://doi.org/10.1002/adfm.201903907
- H.P. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33, 2003309 (2021). https://doi.org/10.1002/adma.202003309
- S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nat. Electron. 7, 216–224 (2024). https://doi.org/10.1038/s41928-024-01129-9
- R. Xing, Z. Li, W. Zhao, D. Wang, R. Xie et al., Waterproof and flexible perovskite photodetector enabled by P-type organic molecular rubrene with high moisture and mechanical stability. Adv. Mater. 36, e2310248 (2024). https://doi.org/10.1002/adma.202310248
- Z. Guo, J. Zhang, X. Liu, L. Wang, L. Xiong et al., Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: materials, devices, and applications. Adv. Funct. Mater. 33, 2305508 (2023). https://doi.org/10.1002/adfm.202305508
- T. Park, D.H. Lee, J. Hur, H. Yoo, Unleashing the power of quantum dots: emerging applications from deep-ultraviolet photodetectors for brighter futures. Adv. Opt. Mater. 12, 2302466 (2024). https://doi.org/10.1002/adom.202302466
- W. Tian, H. Zhou, L. Li, Hybrid organic–inorganic perovskite photodetectors. Small 13, 1702107 (2017). https://doi.org/10.1002/smll.201702107
- X. Lu, J. Li, Y. Zhang, Z. Han, Z. He et al., Recent progress on perovskite photodetectors for narrowband detection. Adv. Photonics Res. 3, 2100335 (2022). https://doi.org/10.1002/adpr.202100335
- G. Chen, J. Feng, H. Gao, Y. Zhao, Y. Pi et al., Stable α-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 29, 1808741 (2019). https://doi.org/10.1002/adfm.201808741
- J. Li, H. Li, L. Liu, H. Yao, B. Tian et al., Post-treatment of CH3NH3PbI3/PbI2 composite films with methylamine to realize high-performance photoconductor devices. Chem 14, 2861–2868 (2019). https://doi.org/10.1002/asia.201900644
- H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017). https://doi.org/10.1039/c6cs00896h
- Z. Li, T. Yan, X. Fang, Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 8, 587–603 (2023). https://doi.org/10.1038/s41578-023-00583-9
- L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404
- Y. Lu, Z. Zhan, J. Tan, H. Lai, P. Liu et al., High-performance MoS2 homojunction photodiode enabled by facile van der waals contacts with 2D perovskite. Laser Photonics Rev. 18, 2300941 (2024). https://doi.org/10.1002/lpor.202300941
- G. Li, Y. Wang, L. Huang, W. Sun, Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4, 1485–1505 (2022). https://doi.org/10.1021/acsaelm.1c01349
- Y. Tang, P. Jin, Y. Wang, D. Li, Y. Chen et al., Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat. Commun. 14, 4961 (2023). https://doi.org/10.1038/s41467-023-40711-1
- A. Cherepakhin, A. Zhizhchenko, D. Khmelevskaia, L. Logunov, A. Kuchmizhak et al., Advanced laser nanofabrication technologies for perovskite photonics. Adv. Opt. Mater. 12, 2302782 (2024). https://doi.org/10.1002/adom.202302782
- Q. Wang, J. Bao, Y. Zhang, Y. Wang, D. Qiu et al., High-performance organic narrow dual-band circular polarized light detection for encrypted communications and color imaging. Adv. Mater. 36, e2312396 (2024). https://doi.org/10.1002/adma.202312396
- Y. Wang, Y. Zha, C. Bao, F. Hu, Y. Di et al., Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater. 36, e2311524 (2024). https://doi.org/10.1002/adma.202311524
- J. Ghosh, S. Parveen, P.J. Sellin, P.K. Giri, Recent advances and opportunities in low-dimensional layered perovskites for emergent applications beyond photovoltaics. Adv. Mater. Technol. 8, 2300400 (2023). https://doi.org/10.1002/admt.202300400
- Z. Cao, B. Sun, G. Zhou, S. Mao, S. Zhu et al., Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horiz. 8, 716–745 (2023). https://doi.org/10.1039/d2nh00536k
- P.-T. Lai, C.-Y. Chen, H.-C. Lin, B.-Y. Chuang, K.-H. Kuo et al., Harnessing 2D Ruddlesden–Popper perovskite with polar organic cation for ultrasensitive multibit nonvolatile transistor-type photomemristors. ACS Nano 17, 25552–25564 (2023). https://doi.org/10.1021/acsnano.3c09595
- T. Ozturk, E. Akman, B. Surucu, H. Dursun, V. Ozkaya et al., The role of pioneering hole transporting materials in new generation perovskite solar cells. Eur. J. Inorg. Chem. 2021, 4251–4264 (2021). https://doi.org/10.1002/ejic.202100267
- W. Xu, W. Huang, X. Wu, X. Wei, F. Meng et al., 2D perovskite single crystals for photodetectors: from macro- to microscale. Phys. Status Solidi RRL 15, 2100183 (2021). https://doi.org/10.1002/pssr.202100183
- W. Deng, J. Jie, X. Xu, Y. Xiao, B. Lu et al., A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 32, e1908340 (2020). https://doi.org/10.1002/adma.201908340
- W. Deng, L. Huang, X. Xu, X. Zhang, X. Jin et al., Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17, 2482–2489 (2017). https://doi.org/10.1021/acs.nanolett.7b00166
- A. Ali Ayaz Pirzado, C. Wang, X. Zhang, S. Chen, R. Jia et al., Room-temperature growth of perovskite single crystals via antisolvent-assisted confinement for high-performance electroluminescent devices. Nano Energy 118, 108951 (2023). https://doi.org/10.1016/j.nanoen.2023.108951
- Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
- S. Aftab, X. Li, S. Hussain, M. Aslam, A.H. Rajpar et al., Nanoscale enhancements in perovskite-based photovoltaics. Chem. Eng. J. 480, 148143 (2024). https://doi.org/10.1016/j.cej.2023.148143
- X. Li, S. Aftab, S. Hussain, F. Kabir, A.M.A. Henaish et al., Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations. J. Mater. Chem. A 12, 4421–4440 (2024). https://doi.org/10.1039/d3ta06953b
- M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16, 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
- X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16, 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
- R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16, 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
- N. Yu, I.T. Bello, X. Chen, T. Liu, Z. Li et al., Rational design of Ruddlesden–Popper perovskite ferrites as air electrode for highly active and durable reversible protonic ceramic cells. Nano-Micro Lett. 16, 177 (2024). https://doi.org/10.1007/s40820-024-01397-2
- G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
- J.W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15, 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
- X. Shi, C. Liu, X. Zhang, G. Zhan, Y. Cai et al., Vapor phase growth of air-stable hybrid perovskite FAPbBr3 single-crystalline nanosheets. Nano Lett. 24, 2299–2307 (2024). https://doi.org/10.1021/acs.nanolett.3c04604
- G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
- H.-C. Cheng, G. Wang, D. Li, Q. He, A. Yin et al., Van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016). https://doi.org/10.1021/acs.nanolett.5b03944
- J.-Y. Zheng, H.G. Manning, Y. Zhang, J.J. Wang, F. Purcell-Milton et al., Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Sci. Rep. 9, 11738 (2019). https://doi.org/10.1038/s41598-019-47902-1
- Y. Cho, H.R. Jung, W. Jo, Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. Nanoscale 14, 9248–9277 (2022). https://doi.org/10.1039/d2nr00513a
- Z. Liang, C. Tian, X. Li, L. Cheng, S. Feng et al., Organic-inorganic lead halide perovskite single crystal: from synthesis to applications. Nanomaterials 12, 4235 (2022). https://doi.org/10.3390/nano12234235
- C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2, 1247–1256 (2020). https://doi.org/10.1002/inf2.12141
- C. Li, J. Li, Z. Li, H. Zhang, Y. Dang et al., High-performance photodetectors based on nanostructured perovskites. Nanomaterials 11, 1038 (2021). https://doi.org/10.3390/nano11041038
- F. Mei, D. Sun, S. Mei, J. Feng, Y. Zhou et al., Recent progress in perovskite-based photodetectors: the design of materials and structures. Adv. Phys. X 4, 1592709 (2019). https://doi.org/10.1080/23746149.2019.1592709
- R. Wang, Z. Li, S. Li, P. Wang, J. Xiu et al., All-inorganic perovskite CsPb2Br5 nanosheets for photodetector application based on rapid growth in aqueous phase. ACS Appl. Mater. Interfaces 12, 41919–41931 (2020). https://doi.org/10.1021/acsami.0c05754
- J. Tao, Z. Xiao, J. Wang, C. Li, X. Sun et al., A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. J. Alloys Compd. 845, 155311 (2020). https://doi.org/10.1016/j.jallcom.2020.155311
- M.I. Saleem, S. Yang, A. Batool, M. Sulaman, C.P. Veeramalai et al., CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors. J. Mater. Sci. Technol. 75, 196–204 (2021). https://doi.org/10.1016/j.jmst.2020.07.049
- Z. Zhang, N. Lamers, C. Sun, C. Hetherington, I.G. Scheblykin et al., Free-standing metal halide perovskite nanowire arrays with blue-green heterostructures. Nano Lett. 22, 2941–2947 (2022). https://doi.org/10.1021/acs.nanolett.2c00137
- J. Cha, M.K. Kim, W. Lee, H. Jin, H. Na et al., Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells. Chem. Eng. J. 451, 138920 (2023). https://doi.org/10.1016/j.cej.2022.138920
- C.-H. Lin, T.-Y. Li, J. Zhang, Z.-Y. Chiao, P.-C. Wei et al., Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020). https://doi.org/10.1016/j.nanoen.2020.104801
- Q.A. Akkerman, T.P. Nguyen, S.C. Boehme, F. Montanarella, D.N. Dirin et al., Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022). https://doi.org/10.1126/science.abq3616
- J. Zou, M. Li, X. Zhang, W. Zheng, Perovskite quantum dots: synthesis, applications, prospects, and challenges. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0126496
- C. Bi, S. Wang, W. Wen, J. Yuan, G. Cao et al., Room-temperature construction of mixed-halide perovskite quantum dots with high photoluminescence quantum yield. J. Phys.: Chem. C 122, 5151–5160 (2018). https://doi.org/10.1021/acs.jpcc.7b12607
- G.B. Nair, S. Tamboli, R. Kroon, S. Dhoble, H.C. Swart, Facile room-temperature colloidal synthesis of CsPbBr3 perovskite nanocrystals by the emulsion-based ligand-assisted reprecipitation approach: tuning the color-emission by the demulsification process. J. Alloys Compounds 928, 167249 (2022). https://doi.org/10.1016/j.jallcom.2022.167249
- E. Akman, T. Ozturk, W. Xiang, F. Sadegh, D. Prochowicz et al., The effect of B-site doping in all-inorganic CsPbIxBr3–x absorbers on the performance and stability of perovskite photovoltaics. Energy Environ. Sci. 16, 372–403 (2023). https://doi.org/10.1039/d2ee01070d
- H. Wang, Y. Sun, J. Chen, F. Wang, R. Han et al., A review of perovskite-based photodetectors and their applications. Nanomaterials 12, 4390 (2022). https://doi.org/10.3390/nano12244390
- D. Liu, Y. Guo, M. Que, X. Yin, J. Liu et al., Metal halide perovskite nanocrystals: application in high-performance photodetectors. Mater. Adv. 2, 856–879 (2021). https://doi.org/10.1039/d0ma00796j
- M. Tan, M. Li, W. Pan, X. Feng, Y. He et al., Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light Sci. Appl. 11, 304 (2022). https://doi.org/10.1038/s41377-022-01000-6
- J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15, 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
- H.-Y. Hou, S. Tian, H.-R. Ge, J.-D. Chen, Y.-Q. Li et al., Recent progress of polarization-sensitive perovskite photodetectors. Adv. Funct. Mater. 32, 2209324 (2022). https://doi.org/10.1002/adfm.202209324
- J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, An assessment of wide bandgap semiconductors for power devices. IEEE T. Power Electron. 18, 907–914 (2003). https://doi.org/10.1109/TPEL.2003.810840
- B. Ozpineci, Comparison of wide-bandgap semiconductors for power electronics applications (2004). https://doi.org/10.2172/885849
- A. Weidenkaff, Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709–714 (2004). https://doi.org/10.1002/adem.200400098
- K. Wang, G. Xing, Q. Song, S. Xiao, Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 33, e2000306 (2021). https://doi.org/10.1002/adma.202000306
- J. Chen, Y. Zhou, Y. Fu, J. Pan, O.F. Mohammed et al., Oriented halide perovskite nanostructures and thin films for optoelectronics. Chem. Rev. 121, 12112–12180 (2021). https://doi.org/10.1021/acs.chemrev.1c00181
- G. Iannaccone, C. Sbrana, I. Morelli, S. Strangio, Power electronics based on wide-bandgap semiconductors: Opportunities and challenges. IEEE Access 9, 139446–139456 (2021)
- M. Higashiwaki, R. Kaplar, J. Pernot, H. Zhao, Ultrawide bandgap semiconductors. Appl. Phys. Lett. 118, 200401 (2021). https://doi.org/10.1063/5.0055292
- S. Aftab, X. Li, F. Kabir, E. Akman, M. Aslam et al., Lighting the future: Perovskite nanorods and their advances across applications. Nano Energy 124, 109504 (2024). https://doi.org/10.1016/j.nanoen.2024.109504
- R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan et al., Wide band gap chalcogenide semiconductors. Chem. Rev. 120, 4007–4055 (2020). https://doi.org/10.1021/acs.chemrev.9b00600
- B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv. 6, 38079–38091 (2016). https://doi.org/10.1039/C5RA27424A
- X. Wu, B. Zhou, J. Zhou, Y. Chen, Y. Chu et al., Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 14, e1800527 (2018). https://doi.org/10.1002/smll.201800527
- A. Farooq, I.M. Hossain, S. Moghadamzadeh, J.A. Schwenzer, T. Abzieher et al., Spectral dependence of degradation under ultraviolet light in perovskite solar cells. ACS Appl. Mater. Interfaces 10, 21985–21990 (2018). https://doi.org/10.1021/acsami.8b03024
- M. Sulaman, S. Yang, A. Bukhtiar, P. Tang, Z. Zhang et al., Hybrid bulk-heterojunction of colloidal quantum dots and mixed-halide perovskite nanocrystals for high-performance self-powered broadband photodetectors. Adv. Funct. Mater. 32, 2201527 (2022). https://doi.org/10.1002/adfm.202201527
- G. Yang, C. Zheng, Y. Zhu, X. Li, J. Huang et al., Efficient quantum cutting of lanthanum and ytterbium ions Co-doped perovskite quantum dots towards improving the ultraviolet response of silicon-based photodetectors. J. Alloys Compd. 921, 166097 (2022). https://doi.org/10.1016/j.jallcom.2022.166097
- Y. Wu, S. Yang, F. Sun, X. Liu, Z. Zhang et al., On the mechanism to suppress dark current via blending with an all-inorganic perovskite precursor in colloidal quantum dot photodetectors. J. Mater. Chem. C 11, 16094–16102 (2023). https://doi.org/10.1039/d3tc02894a
- E. Moyen, H. Jun, H.-M. Kim, J. Jang, Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes. ACS Appl. Mater. Interfaces 10, 42647–42656 (2018). https://doi.org/10.1021/acsami.8b15212
- D.E. Lee, S.Y. Kim, H.W. Jang, Lead-free all-inorganic halide perovskite quantum dots: review and outlook. J. Korean Ceram. Soc. 57, 455–479 (2020). https://doi.org/10.1007/s43207-020-00058-5
- S. Premkumar, D. Liu, Y. Zhang, D. Nataraj, S. Ramya et al., Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater. 3, 9141–9150 (2020). https://doi.org/10.1021/acsanm.0c01787
- Z. Xu, Synthesis of CsPbBr3 quantum dots for photodetectors. (University of Washington; 2020), https://digital.lib.washington.edu/researchworks/handle/1773/45881
- C.-Y. Huang, H. Li, Y. Wu, C.-H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15, 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
- W. Zhai, J. Lin, C. Li, S. Hu, Y. Huang et al., Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale 10, 21451–21458 (2018). https://doi.org/10.1039/C8NR05683H
- S. Dias, K. Kumawat, S. Biswas, S.B. Krupanidhi, Solvothermal synthesis of Cu2SnS3 quantum dots and their application in near-infrared photodetectors. Inorg. Chem. 56, 2198–2203 (2017). https://doi.org/10.1021/acs.inorgchem.6b02832
- H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang et al., Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Appl. Mater. Today 20, 100765 (2020). https://doi.org/10.1016/j.apmt.2020.100765
- C. Li, W. Huang, L. Gao, H. Wang, L. Hu et al., Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale 12, 2201–2227 (2020). https://doi.org/10.1039/c9nr07799e
- D. Zhou, Y. Wang, P. Tian, P. Jing, M. Sun et al., Microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces 10, 27160–27170 (2018). https://doi.org/10.1021/acsami.8b06323
- S. Cho, S. Hong, A. Jana, I. Han, H. Kim et al., Gram-scale microwave-assisted synthesis of high-quality CsPbBr3 nanocrystals for optoelectronic applications. J. Alloys Compd. 993, 174700 (2024). https://doi.org/10.1016/j.jallcom.2024.174700
- L. Sinatra, J. Pan, O.M. Bakr, Methods of synthesizing monodisperse colloidal quantum dots. Mater. Matters 12, 3–7 (2017)
- D. Shen, T. Lan, D. Qiao, M. Guo, J. Zuo et al., Tunable photoluminescent nitrogen-doped graphene quantum dots at the interface for high-efficiency perovskite solar cells. ACS Appl. Nano Mater. 7, 2232–2243 (2024). https://doi.org/10.1021/acsanm.3c05672
- D. Yu, C. Yin, F. Cao, Y. Zhu, J. Ji et al., Enhancing optoelectronic properties of low-dimensional halide perovskite via ultrasonic-assisted template refinement. ACS Appl. Mater. Interfaces 9, 39602–39609 (2017). https://doi.org/10.1021/acsami.7b12048
- S. Wang, J. Song, Photodetectors based on perovskite quantum dots, in Quantum dot photodetectors. ed. by X. Tong, J. Wu, Z.M. Wang (Springer, Cham, 2021), pp.75–117. https://doi.org/10.1007/978-3-030-74270-6_2
- D. Zhang, D. Zhao, Z. Wang, J. Yu, Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2, 2188–2195 (2020). https://doi.org/10.1021/acsaelm.0c00378
- Y. Wang, L. Song, Y. Chen, W. Huang, Emerging new-generation photodetectors based on low-dimensional halide perovskites. ACS Photonics 7, 10–28 (2020). https://doi.org/10.1021/acsphotonics.9b01233
- J. Wang, Y. Zhang, J. Chen, Y. Wei, D. Yu et al., Strong polarized photoluminescence CsPbBr3 nanowire composite films for UV spectral conversion polarization photodetector enhancement. ACS Appl. Mater. Interfaces 13, 36147–36156 (2021). https://doi.org/10.1021/acsami.1c07681
- X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang et al., Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 12, 2884–2891 (2020). https://doi.org/10.1021/acsami.9b18826
- Y. Zhang, J. Yao, Y. Teng, Z. Zhang, L. Wang et al., Two-dimensional perovskite NdNb2O7 for high-performance UV photodetectors by a general exfoliation and assembly strategy. Nano Energy 117, 108915 (2023). https://doi.org/10.1016/j.nanoen.2023.108915
- Y. Zhang, J. Yao, Z. Zhang, R. Zhang, L. Li et al., Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol. 164, 95–101 (2023). https://doi.org/10.1016/j.jmst.2023.05.011
- J. Chen, Y. Shi, Y. He, T. Zhai, Two-dimensional Ruddlesden-Popper perovskite nanosheets: synthesis, optoelectronic properties and miniaturized optoelectronic devices. FlatChem 17, 100116 (2019). https://doi.org/10.1016/j.flatc.2019.100116
- X.-D. Wang, N.-H. Miao, J.-F. Liao, W.-Q. Li, Y. Xie et al., The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application. Nanoscale 11, 5180–5187 (2019). https://doi.org/10.1039/c9nr00375d
- L. Shooshtari, A. Esfandiar, Y. Orooji, M. Samadpour, R. Rahighi, Ultrafast and stable planar photodetector based on SnS2 nanosheets/perovskite structure. Sci. Rep. 11, 19353 (2021). https://doi.org/10.1038/s41598-021-98788-x
- Y. Zhang, S. Li, Z. Li, H. Liu, X. Liu et al., High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 21, 382–388 (2021). https://doi.org/10.1021/acs.nanolett.0c03759
- S. Parveen, K.K. Paul, P.K. Giri, Precise tuning of the thickness and optical properties of highly stable 2D organometal halide perovskite nanosheets through a solvothermal process and their applications as a white LED and a fast photodetector. ACS Appl. Mater. Interfaces 12, 6283–6297 (2020). https://doi.org/10.1021/acsami.9b20896
- S. Liu, H. Li, H. Lu, Y. Wang, X. Wen et al., High performance 0D ZnO quantum dot/2D (PEA)2PbI4 nanosheet hybrid photodetectors fabricated via a facile antisolvent method. Nanomaterials 12, 4217 (2022). https://doi.org/10.3390/nano12234217
- W. Cai, H. Li, M. Li, M. Wang, H. Wang et al., Opportunities and challenges of inorganic perovskites in high-performance photodetectors. J. Phys. D: Appl. Phys. 54, 293002 (2021). https://doi.org/10.1088/1361-6463/abf709/meta
- S. Parveen, M. Das, S. Ghosh, P.K. Giri, Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response. Nanoscale 14, 6402–6416 (2022). https://doi.org/10.1039/D2NR01063A
- P. Li, B. Shivananju, Y. Zhang, S. Li, Q. Bao, High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. J. Phys. D: Appl. Phys. 50, 094002 (2017). https://doi.org/10.1088/1361-6463/aa5623/meta
- L. Lv, Y. Xu, H. Fang, W. Luo, F. Xu et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8, 13589–13596 (2016). https://doi.org/10.1039/c6nr03428d
- A. Mandal, A. Ghosh, D. Ghosh, S. Bhattacharyya, Photodetectors with high responsivity by thickness tunable mixed halide perovskite nanosheets. ACS Appl. Mater. Interfaces 13, 43104–43114 (2021). https://doi.org/10.1021/acsami.1c13452
- K. Xia, W. Wu, M. Zhu, X. Shen, Z. Yin et al., CVD growth of perovskite/graphene films for high-performance flexible image sensor. Sci. Bull. 65, 343–349 (2020). https://doi.org/10.1016/j.scib.2019.12.015
- Z. Zhang, Solution-processed Perovskite/MXene Heterostructures: Synthesis and Applications (2022).
- P.R. Varma, Low-dimensional perovskites, in Perovskite photovoltaics: basic to advanced concepts and implementation. ed. by A. Thankappan, S. Thomas (Elsevier, Amsterdam, 2018), pp.197–229. https://doi.org/10.1016/B978-0-12-812915-9.00007-1
- M. Liu, H. Zhang, D. Gedamu, P. Fourmont, H. Rekola et al., Halide perovskite nanocrystals for next-generation optoelectronics. Small 15, 1900801 (2019). https://doi.org/10.1002/smll.201900801
- Y. Han, X. Chang, X. Cheng, Y. Lin, B.-B. Cui, Recent progress of organic–inorganic hybrid perovskite quantum dots: preparation, optical regulation, and application in light-emitting diodes. Laser Photonics Rev. 17, 2300383 (2023). https://doi.org/10.1002/lpor.202300383
- X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou et al., All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 8, 15158–15161 (2016). https://doi.org/10.1039/c6nr01828a
- S.L. Choon, H.N. Lim, I. Ibrahim, Z. Zainal, K.B. Tan et al., New potential materials in advancement of photovoltaic and optoelectronic applications: Metal halide perovskite nanorods. Renew. Sustain. Energy Rev. 171, 113037 (2023). https://doi.org/10.1016/j.rser.2022.113037
- T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang et al., Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 12, 1611–1617 (2018). https://doi.org/10.1021/acsnano.7b08201
- P. Lu, M. Lu, H. Wang, N. Sui, Z. Shi et al., Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InfoMat 1, 430–459 (2019). https://doi.org/10.1002/inf2.12031
- C. Shen, Stabilization of organo-halide perovskites and their application as photodetectors. (Drexel University; 2020), https://drexel.primo.exlibrisgroup.com/discovery/fulldisplay/alma991014695139004721/01DRXU_INST:01DRXU
- A. Kostopoulou, I. Konidakis, E. Stratakis, Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. Nanophotonics 12, 1643–1710 (2023). https://doi.org/10.1515/nanoph-2022-0797
- A. Zhang, Q. Lv, Organic-inorganic hybrid perovskite nanomaterials: synthesis and application. ChemistrySelect 5, 12641–12659 (2020). https://doi.org/10.1002/slct.202003659
- M. Yu, D. Zhang, Y. Xu, J. Lin, C. Yu et al., Surface ligand engineering of CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Colloid Interface Sci. 608, 2367–2376 (2022). https://doi.org/10.1016/j.jcis.2021.10.141
- M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang et al., Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27, 1701121 (2017). https://doi.org/10.1002/adfm.201701121
- M.I. Saleem, S. Yang, R. Zhi, H. Li, M. Sulaman et al., Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology 31, 254001 (2020). https://doi.org/10.1088/1361-6528/ab7de7/meta
- S. Lim, M. Ha, Y. Lee, H. Ko, Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater. 6, 1800615 (2018). https://doi.org/10.1002/adom.201800615
- S. Wang, K. Wang, Z. Gu, Y. Wang, C. Huang et al., Solution-phase synthesis of cesium lead halide perovskite microrods for high-quality microlasers and photodetectors. Adv. Opt. Mater. 5, 1700023 (2017). https://doi.org/10.1002/adom.201700023
- P.V. Chandrasekar, S. Yang, J. Hu, M. Sulaman, Y. Shi et al., Solution-phase, template-free synthesis of PbI2 and MAPbI3 nano/microtubes for high-sensitivity photodetectors. Nanoscale 11, 5188–5196 (2019). https://doi.org/10.1039/c9nr00452a
- Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji et al., High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C 5, 8355–8360 (2017). https://doi.org/10.1039/c7tc02137b
- J. Zeng, H. Zhou, R. Liu, H. Wang, Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector. Sci. China Mater. 62, 65–73 (2019). https://doi.org/10.1007/s40843-018-9278-6
- Q. Zhou, J.G. Park, R. Nie, A.K. Thokchom, D. Ha et al., Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications. ACS Nano 12, 8406–8414 (2018). https://doi.org/10.1021/acsnano.8b03826
- Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang et al., Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors. ACS Photonics 5, 2524–2532 (2018). https://doi.org/10.1021/acsphotonics.8b00348
- J.K. Meyers, S. Kim, D.J. Hill, E.E.M. Cating, L.J. Williams et al., Self-catalyzed vapor–liquid–solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 17, 7561–7568 (2017). https://doi.org/10.1021/acs.nanolett.7b03514
- T. Qiu, Y. Hu, F. Xu, Z. Yan, F. Bai et al., Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale 10, 20963–20989 (2018). https://doi.org/10.1039/C8NR05862H
- B. Sarwat, Flexible and substrate-free optoelectronic devices based on III-V semiconductor nanowires (University of Cambridge, Cambridge, East of England, 2019)
- X. Li, X. Liu, Y. Li, D. Gao, L. Cao, Using novel semiconductor features to construct advanced zno nanowires-based ultraviolet photodetectors: a brief review. IEEE Access 9, 11954–11973 (2021). https://doi.org/10.1109/ACCESS.2021.3051187
- A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang et al., Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 17, 523–530 (2017). https://doi.org/10.1021/acs.nanolett.6b04587
- A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang et al., All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17, 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
- G.S. Kumar, R.R. Sumukam, R.K. Rajaboina, R.N. Savu, M. Srinivas et al., Perovskite nanowires for next-generation optoelectronic devices: lab to fab. ACS Appl. Energy Mater. 5, 1342–1377 (2022). https://doi.org/10.1021/acsaem.1c03284
- K. Ren, J. Wang, K. Liu, Y. Huang, Y. Sun et al., Multiple-engineering controlled growth of tunable-bandgap perovskite nanowires for high performance photodetectors. RSC Adv. 9, 19772–19779 (2019). https://doi.org/10.1039/C9RA01689A
- Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang et al., A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10, 11249–11257 (2016). https://doi.org/10.1021/acsnano.6b06326
- F. Ma, Z. Huang, M. Ziółek, S. Yue, X. Han et al., Template-assisted synthesis of a large-area ordered perovskite nanowire array for a high-performance photodetector. ACS Appl. Mater. Interfaces 15, 12024–12031 (2023). https://doi.org/10.1021/acsami.2c20887
- S.-X. Li, Y.-S. Xu, C.-L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32, e2001998 (2020). https://doi.org/10.1002/adma.202001998
- D. Zhang, Q. Zhang, Y. Zhu, S. Poddar, Y. Zhang et al., Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics. Adv. Energy Mater. 13, 2201735 (2023). https://doi.org/10.1002/aenm.202201735
- Y. Li, P. Gui, S. Wei, Y. Sun, L. Yang et al., Template-assisted synthesis of 2D perovskite grating single crystal films at low temperatures for UV polarization-sensitive photodetectors. Small 20, e2305207 (2024). https://doi.org/10.1002/smll.202305207
- L. Ren, K. Gao, Q. Tan, C. Qing, Q. Wang et al., High-performance perovskite photodetectors based on CsPbBr3 microwire arrays. Appl. Opt. 60, 8896–8903 (2021). https://doi.org/10.1364/AO.437478
- I.M. Asuo, D. Gedamu, I. Ka, L.F. Gerlein, F.-X. Fortier et al., High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy 51, 324–332 (2018). https://doi.org/10.1016/j.nanoen.2018.06.057
- J. Miao, F. Zhang, Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 7, 1741–1791 (2019). https://doi.org/10.1039/c8tc06089d
- F. Cao, L. Li, Progress of lead-free halide perovskites: from material synthesis to photodetector application. Adv. Funct. Mater. 31, 2008275 (2021). https://doi.org/10.1002/adfm.202008275
- M. Xue, H. Zhou, G. Ma, L. Yang, Z. Song et al., Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure. Sol. Energy Mater. Sol. Cells 187, 69–75 (2018). https://doi.org/10.1016/j.solmat.2018.07.023
- H. Zhang, Z. Zhang, C. Ma, Y. Liu, H. Xie et al., Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. J. Mater. Chem. C 7, 5488–5496 (2019). https://doi.org/10.1039/c9tc00761j
- K. Vighnesh, S. Wang, H. Liu, A.L. Rogach, Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano 16, 19618–19625 (2022). https://doi.org/10.1021/acsnano.2c11689
- A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang et al., Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28, 8132–8140 (2016). https://doi.org/10.1021/acs.chemmater.6b01329
- C.K. Ng, W. Yin, H. Li, J.J. Jasieniak, Scalable synthesis of colloidal CsPbBr3 perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale 12, 4859–4867 (2020). https://doi.org/10.1039/c9nr10726f
- A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
- W. Zhai, J. Lin, Q. Li, K. Zheng, Y. Huang et al., Solvothermal synthesis of ultrathin cesium lead halide perovskite nanoplatelets with tunable lateral sizes and their reversible transformation into Cs4PbBr6 nanocrystals. Chem. Mater. 30, 3714–3721 (2018). https://doi.org/10.1021/acs.chemmater.8b00612
- Y. Li, X. Zhang, H. Huang, S.V. Kershaw, A.L. Rogach, Advances in metal halide perovskite nanocrystals: synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 32, 204–221 (2020). https://doi.org/10.1016/j.mattod.2019.06.007
- Y. Li, H. Huang, Y. Xiong, S.V. Kershaw, A.L. Rogach, Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis. Angew. Chem. Int. Ed. 57, 5833–5837 (2018). https://doi.org/10.1002/anie.201713332
- C.H. Lin, Z. Lyu, Y. Zhuo, C. Zhao, J. Yang et al., Microwave synthesis and high-mobility charge transport of carbon-nanotube-in-perovskite single crystals. Adv. Opt. Mater. 8, 2001740 (2020). https://doi.org/10.1002/adom.202001740
- B. Kumar, S.V. Singh, A. Chattopadhyay, S. Biring, B.N. Pal, Scalable synthesis of a sub-10 nm chalcopyrite (CuFeS2) nanocrystal by the microwave-assisted synthesis technique and its application in a heavy-metal-free broad-band photodetector. ACS Omega 5, 25947–25953 (2020). https://doi.org/10.1021/acsomega.0c03336
- S. Dahiya, S.V. Singh, U. Pandey, S. Hazra, B.N. Pal, Microwave-assisted synthesis of CuZnS nanocrystals for spectrally flat visible light photodetector application using a ZnO/CuZnS heterojunction. ACS Appl. Optical Mater. 2, 776–783 (2024). https://doi.org/10.1021/acsaom.4c00056
- F. Ely, K.O. Vieira, M.G. Reyes-Banda, M. Quevedo-Lopez, Broadband photodetectors from silane-passivated CsPbBr3 nanocrystals by ultrasound-mediated synthesis. Nanoscale 16, 10833–10840 (2024). https://doi.org/10.1039/d3nr06564b
- D.M. Jang, D.H. Kim, K. Park, J. Park, J.W. Lee et al., Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4, 10625–10629 (2016). https://doi.org/10.1039/c6tc04213a
- L. Rao, X. Ding, X. Du, G. Liang, Y. Tang et al., Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation. Beilstein J. Nanotechnol. 10, 666–676 (2019). https://doi.org/10.3762/bjnano.10.66
- M.-M. Liu, L.-L. Zhou, S.-F. Li, F.-X. Liang, Y. Xing et al., A sensitive UV photodetector based on non-wide bandgap MAPbBr3 nanosheet. IEEE Trans. Electron Devices 69, 5590–5594 (2022). https://doi.org/10.1109/TED.2022.3195689
- Y. Lu, X. Sun, H. Zhou, H. Lai, R. Liu et al., A high-performance and broadband two-dimensional perovskite-based photodetector via van der Waals integration. Appl. Phys. Lett. 121, 161104 (2022). https://doi.org/10.1063/5.0116505
- R. Wang, H. Zhou, B. Wu, D. Wu, L. Tao et al., Self-powered CsPbBr3 perovskite nanonet photodetector with a hollow vertical structure. J. Phys. Chem. Lett. 12, 7519–7525 (2021). https://doi.org/10.1021/acs.jpclett.1c02177
- H. Algadi, C. Mahata, J. Woo, M. Lee, M. Kim et al., Enhanced photoresponsivity of all-inorganic (CsPbBr3) perovskite nanosheets photodetector with carbon nanodots (CDs). Electronics 8, 678 (2019). https://doi.org/10.3390/electronics8060678
- X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29, 1604431 (2017). https://doi.org/10.1002/adma.201604431
- W. Dou, Z. Yin, Y. Zhang, H. Deng, N. Dai, Two-dimensional perovskite (PEA)2PbI4 two-color blue-green photodetector. Nanomaterials 12, 2556 (2022). https://doi.org/10.3390/nano12152556
- F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35, e2304550 (2023). https://doi.org/10.1002/adma.202304550
- A.H. Howlader, F. Li, R. Zheng, Nanorod-like nanocrystalline CsSnI3 and CNT composite thin film–based hybrid photodetector. Emergent Mater. 5, 1925–1943 (2022). https://doi.org/10.1007/s42247-022-00394-8
- R. Grisorio, D. Conelli, R. Giannelli, E. Fanizza, M. Striccoli et al., A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield. Nanoscale 12, 17053–17063 (2020). https://doi.org/10.1039/D0NR04246C
- Z.-J. Li, E. Hofman, A.H. Davis, M.M. Maye, W. Zheng, General strategy for the growth of CsPbX3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem. Mater. 30, 3854–3860 (2018). https://doi.org/10.1021/acs.chemmater.8b01283
- J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao et al., Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017). https://doi.org/10.1021/acs.nanolett.6b04450
- A.A. Bhat, M.B. Zaman, J.H. Malik, K.A. Malik, I. Assadullah et al., Facile way of making hydrothermally synthesized crystalline SrSnO3 perovskite nanorods suitable for blue LEDs and spintronic applications. ACS Omega 6, 16356–16363 (2021). https://doi.org/10.1021/acsomega.1c00831
- S. Wang, J. Yu, M. Zhang, D. Chen, C. Li et al., Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 19, 6315–6322 (2019). https://doi.org/10.1021/acs.nanolett.9b02436
- Y. Dong, H. Hu, X. Xu, Y. Gu, C.-C. Chueh et al., Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J. Phys. Chem. Lett. 10, 4149–4156 (2019). https://doi.org/10.1021/acs.jpclett.9b01673
- Z. Zhang, P. Zheng, S.S. Yan, B.S. Qiao, K.W. Ng et al., Ultrasensitive perovskite photodetector for filter-free color single-pixel imaging. Adv. Opt. Mater. 11, 2201847 (2023). https://doi.org/10.1002/adom.202201847
- A.R. Beisenbayev, Z.T. Sadirkhanov, Y. Yerlanuly, M.I. Kaikanov, A.N. Jumabekov, Self-powered organometal halide perovskite photodetector with embedded silver nanowires. Nanomaterials 12, 1034 (2022). https://doi.org/10.3390/nano12071034
- R. Huang, D.-H. Lin, J.-Y. Liu, C.-Y. Wu, D. Wu et al., Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application. Sci. China Mater. 64, 2497–2506 (2021). https://doi.org/10.1007/s40843-021-1654-5
- D. Lin, J. Liu, R. Haroldson, J. Moon, Z. Li et al., High-performance directly patterned nanograting perovskite photodetector with interdigitated electrodes. Adv. Opt. Mater. 10, 2201516 (2022). https://doi.org/10.1002/adom.202201516
- Q. Li, S. Yan, S. Tang, X. Zhang, W. Lei et al., Photodetector based on all-inorganic perovskite quantum dots with ring electrode, in 2019 IEEE international flexible electronics technology conference (IFETC) (2019) pp. 1–3. https://ieeexplore.ieee.org/abstract/document/9073761
- Y. Yang, H. Dai, F. Yang, Y. Zhang, D. Luo et al., All-perovskite photodetector with fast response. Nanoscale Res. Lett. 14, 291 (2019). https://doi.org/10.1186/s11671-019-3082-z
- H. Zhang, Y.T. Zhang, Field-effect phototransistors based on graphene-quantum dot hybrids. MATEC Web Conf. 44, 01033 (2016). https://doi.org/10.1051/matecconf/20164401033
- X. Ma, Y. Xu, S. Li, T.W. Lo, B. Zhang et al., A flexible plasmonic-membrane-enhanced broadband tin-based perovskite photodetector. Nano Lett. 21, 9195–9202 (2021). https://doi.org/10.1021/acs.nanolett.1c03050
- A.A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley et al., Compound quantum dot–perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano 11, 5547–5557 (2017). https://doi.org/10.1021/acsnano.7b00760
- A. Subramanian, J. Akram, S. Hussain, J. Chen, K. Qasim et al., High-performance photodetector based on a graphene quantum dot/CH3NH3PbI3 perovskite hybrid. ACS Appl. Electron. Mater. 2, 230–237 (2020). https://doi.org/10.1021/acsaelm.9b00705
- X. Gong, C. Liu, Photodetector utilizing quantum dots and perovskite hybrids as light harvesters. (2018). https://patents.google.com/patent/US10038156B2/en
- X. Liu, T. Liu, D. Chen, Y. Yang, Z. Ye et al., Broad-spectrum germanium photodetector based on the ytterbium-doped perovskite nanocrystal downshifting effect. ACS Appl. Optical Mater. 1, 507–512 (2022). https://doi.org/10.1021/acsaom.2c00139
- X. Liu, Z.-W. Tang, X.-C. An, Y.-L. Huang, Z.-H. Liu et al., Infrared trace gas sensing with a fast perovskite nano-structure laser photodetector. IEEE Photonics Techn. Lett. 35, 19–22 (2022). https://ieeexplore.ieee.org/abstract/document/9932599
- M.K. Kim, Z. Munkhsaikhan, S.G. Han, S.M. Park, H. Jin et al., Structural engineering of single-crystal-like perovskite nanocrystals for ultrasensitive photodetector applications. J. Mater. Chem. C 10, 11401–11411 (2022). https://doi.org/10.1039/d2tc01854c
- W. Wu, Y. Liu, J. Yao, X. Ouyang, Mixed-cation halide perovskite doped with Rb+ for highly efficient photodetector. Materials 16, 3796 (2023). https://doi.org/10.3390/ma16103796
- Y.H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
- B. Zhang, M. Jia, Q. Liang, J. Wu, J. Zhai et al., Ultraviolet photodetector based on Sr2Nb3O10 perovskite nanosheets. J. Wuhan Univ. Technol. Mater Sci. Ed. 39, 282–287 (2024). https://doi.org/10.1007/s11595-024-2881-y
- J. Wei, Y. Rong, C. Wang, M. Lv, Y. Yang et al., The controllable growth of CsPb2Cl5 nanosheets and their application as a stable photodetector for ultraviolet. Appl. Surf. Sci. 645, 158868 (2024). https://doi.org/10.1016/j.apsusc.2023.158868
- J. Ding, X. Liu, S. Zhou, J. Huang, Y. Li et al., In-situ free-standing inorganic 2D Cs2PbI2Cl2 nanosheets for efficient self-powered photodetectors with carbon electrode. J. Colloid Interface Sci. 654, 1356–1364 (2024). https://doi.org/10.1016/j.jcis.2023.10.126
- T. Yan, X. Liu, X. Zhang, E. Hong, L. Wu et al., Large-area 2D perovskite oxides/organic heterojunction enables highly-sensitive self-powered photodetector for ultraviolet light communication. Adv. Funct. Mater. 34, 2311042 (2024). https://doi.org/10.1002/adfm.202311042
- P. Song, Y. Zhang, J. Wang, H. Liu, L. Tian, Novel two-dimensional NbWO6 nanosheets for high performance UV photodetectors. Adv. Electron. Mater. 10, 2300462 (2024). https://doi.org/10.1002/aelm.202300462
- L. Mei, K. Zhang, N. Cui, W. Yu, Y. Li et al., Ultraviolet-visible-short-wavelength infrared broadband and fast-response photodetectors enabled by individual monocrystalline perovskite nanoplate. Small 19, e2301386 (2023). https://doi.org/10.1002/smll.202301386
- H. Wang, Z. Du, X. Jiang, S. Cao, B. Zou et al., Ultrastable photodetectors based on blue CsPbBr3 perovskite nanoplatelets via a surface engineering strategy. ACS Appl. Mater. Interfaces 16, 11694–11703 (2024). https://doi.org/10.1021/acsami.3c18659
- C.-Y. Wu, Y.-X. Le, L.-Y. Liang, J.-Y. Li, F.-X. Liang et al., Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection. J. Mater. Sci. Technol. 159, 251–257 (2023). https://doi.org/10.1016/j.jmst.2023.03.032
- R. Sun, D. Zhou, P. Lu, X. Jing, X. Zhuang et al., In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy 93, 106815 (2022). https://doi.org/10.1016/j.nanoen.2021.106815
- B. Yang, W. Bi, F. Jin, X. Ma, S.-Q. Guo, Surface molecular engineering of CsPbBr3 perovskite nanosheets for high-performance photodetector. Compos. Commun. 29, 101032 (2022). https://doi.org/10.1016/j.coco.2021.101032
- C.-Y. Li, J. He, Y. Zhou, D.-X. Qi, H. Jing et al., Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Appl. Phys. Lett. 119, 251105 (2021). https://doi.org/10.1063/5.0073706
- M. Peng, Y. Ma, L. Zhang, S. Cong, X. Hong et al., All-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide for high-performance photodetectors by energy band alignment engineering. Adv. Funct. Mater. 31, 2105051 (2021). https://doi.org/10.1002/adfm.202105051
- X. Liu, S. Li, Z. Li, Y. Zhang, W. Yang et al., Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3–xTaxO10 perovskite photodetectors. Adv. Funct. Mater. 31, 2101480 (2021). https://doi.org/10.1002/adfm.202101480
- Y. Dong, L. Xu, Y. Zhao, S. Wang, J. Song et al., The synergy of plasmonic enhancement and hot-electron effect on CsPbBr3 nanosheets photodetector. Adv. Mater. Interfaces 8, 2002053 (2021). https://doi.org/10.1002/admi.202002053
- L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li et al., 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7, 5353–5358 (2019). https://doi.org/10.1039/c9tc00138g
- K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12, 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
- C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li et al., Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv. Mater. 29, 1702759 (2017). https://doi.org/10.1002/adma.201702759
- T. Wang, S. Hou, H. Zhang, Y. Yang, W. Xu et al., Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors. J. Alloys Compd. 872, 159589 (2021). https://doi.org/10.1016/j.jallcom.2021.159589
- R. Hu, C. Ge, L. Chu, Y. Feng, S. Xiao et al., Novel photoelectric material of perovskite-like (CH3)3SpbI3 nanorod arrays with high stability. J. Energy Chem. 59, 581–588 (2021). https://doi.org/10.1016/j.jechem.2020.12.003
- Y. Wang, X. Liu, Q. He, G. Chen, D. Xu et al., Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 31, 2011251 (2021). https://doi.org/10.1002/adfm.202011251
- J. Gong, X. Li, P. Guo, I. Zhang, W. Huang et al., Energy-distinguishable bipolar UV photoelectron injection from LiCl-promoted FAPbCl3 perovskite nanorods. J. Mater. Chem. A 7, 13043–13049 (2019). https://doi.org/10.1039/c9ta01160a
- Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou et al., Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10, 57 (2018). https://doi.org/10.1007/s40820-018-0210-8
- Z. Sun, Y. Wang, Y. Liu, R. Liu, T. Chen et al., Nanometer-thick CsPbBr3 films with embedded CsPb2Br5 nanowires for photodetector applications. ACS Appl. Nano Mater. 7, 11785–11793 (2024). https://doi.org/10.1021/acsanm.4c01381
- Y. Xiong, X. Xu, B. Chen, X. Xu, Highly crystalized MAPbX3 perovskite triangular nanowire arrays for optoelectronic applications. Adv. Mater. 36, e2310427 (2024). https://doi.org/10.1002/adma.202310427
- M.K. Kim, S.M. Park, H. Jin, J. Cha, D. Baek et al., Uniaxial alignment of perovskite nanowires via brush painting technique for efficient flexible polarized photodetectors. J. Mater. Sci. Technol. 207, 24–33 (2025). https://doi.org/10.1016/j.jmst.2024.04.031
- T. Gao, Y. Jiang, S. Yang, J. Hu, Z. Zhang et al., Template-free synthesis of perovskite (PEA)2PbI4 nanowires by ion-intercalation processing for single-nanowire photodetectors. J. Alloys Compd. 940, 168894 (2023). https://doi.org/10.1016/j.jallcom.2023.168894
- X. Lu, J. Li, Y. Zhang, L. Zhang, H. Chen et al., Template-confined oriented perovskite nanowire arrays enable polarization detection and imaging. ACS Appl. Mater. Interfaces 16, 24976–24986 (2024). https://doi.org/10.1021/acsami.4c04455
- Q. Lv, X. Shen, X. Li, Y. Meng, K.M. Yu et al., On-wire design of axial periodic halide perovskite superlattices for high-performance photodetection. ACS Nano 18, 18022–18035 (2024). https://doi.org/10.1021/acsnano.4c05205
- C. Lu, Q. Dai, C. Tang, X. Wang, S. Xu, L. Sun, Y. Peng, W. Lv, Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector. Nanotechnology 34, 495201 (2023). https://doi.org/10.1088/1361-6528/acf502/meta
- Y. Guan, C. Zhang, Z. Liu, Y. Zhao, A. Ren et al., Single-crystalline perovskite p-n junction nanowire arrays for ultrasensitive photodetection. Adv. Mater. 34, e2203201 (2022). https://doi.org/10.1002/adma.202203201
- D. Wu, Y. Xu, H. Zhou, X. Feng, J. Zhang et al., Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat 4, e12320 (2022). https://doi.org/10.1002/inf2.12320
- D. Zhang, Y. Zhu, Q. Zhang, B. Ren, B. Cao et al., Vertical heterogeneous integration of metal halide perovskite quantum-wires/nanowires for flexible narrowband photodetectors. Nano Lett. 22, 3062–3070 (2022). https://doi.org/10.1021/acs.nanolett.2c00383
- Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14, 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
- G. Wang, B. Han, C.H. Mak, J. Liu, B. Liu et al., Mixed-dimensional van der waals heterostructure for high-performance and air-stable perovskite nanowire photodetectors. ACS Appl. Mater. Interfaces 14, 55183–55191 (2022). https://doi.org/10.1021/acsami.2c15139
- M. Yuan, Y. Zhao, J. Feng, H. Gao, J. Zhao et al., Ultrasensitive photodetectors based on strongly interacted layered-perovskite nanowires. ACS Appl. Mater. Interfaces 14, 1601–1608 (2022). https://doi.org/10.1021/acsami.1c20851
- Y. Zhao, Y. Qiu, J. Feng, J. Zhao, G. Chen et al., Chiral 2D-perovskite nanowires for stokes photodetectors. J. Am. Chem. Soc. 143, 8437–8445 (2021). https://doi.org/10.1021/jacs.1c02675
- Y. Zhao, Y. Qiu, H. Gao, J. Feng, G. Chen et al., Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors. Adv. Mater. 32, e1905298 (2020). https://doi.org/10.1002/adma.201905298
- G. Li, R. Gao, Y. Han, A. Zhai, Y. Liu et al., High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon. Res. 8, 1862 (2020). https://doi.org/10.1364/prj.403030
- M. Han, J. Sun, M. Peng, N. Han, Z. Chen et al., Controllable growth of lead-free all-inorganic perovskite nanowire array with fast and stable near-infrared photodetection. J. Phys. Chem. C 123, 17566–17573 (2019). https://doi.org/10.1021/acs.jpcc.9b03289
- F. Cao, W. Tian, M. Wang, H. Cao, L. Li, Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 29, 1901280 (2019). https://doi.org/10.1002/adfm.201901280
- I.M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi et al., Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small 15, e1804150 (2019). https://doi.org/10.1002/smll.201804150
- J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong et al., Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018). https://doi.org/10.1038/s41928-018-0101-5
- L. Gao, K. Zeng, J. Guo, C. Ge, J. Du et al., Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16, 7446–7454 (2016). https://doi.org/10.1021/acs.nanolett.6b03119
- W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang et al., Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201–2208 (2016). https://doi.org/10.1002/adma.201505126
- E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal et al., Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014). https://doi.org/10.1021/nl5020684
- K.S.R. Bapathi, M.F. Abdelbar, W. Jevasuwan, Q. Zhang, P.H. Borse et al., Enhancing silicon photodetector performance through spectral downshifting using core-shell CdZnS/ZnS and perovskite CsPbBr3 quantum dots. Nano Energy 128, 109832 (2024). https://doi.org/10.1016/j.nanoen.2024.109832
- Y. Wu, S. Dai, X. Liu, P. Guo, J. Zhang et al., Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv. Funct. Mater. 34, 2315175 (2024). https://doi.org/10.1002/adfm.202315175
- M. Jeong, S.G. Han, B. Park, J. Choi, S. Chung et al., Enhancing photocurrent efficiency in filter-less NIR organic photodetectors through a photomultiplication-inducing perovskite quantum dot interlayer. Adv. Optical Mater. 12, 2303308 (2024). https://doi.org/10.1002/adom.202303308
- X. Guan, C.-Y. Huang, L. Hu, D. Periyanagounder, Z. Lei et al., Perovskite quantum dots embedded paper photodetectors with high flexibility and self-powered operation. J. Mater. Chem. C 12, 5784–5792 (2024). https://doi.org/10.1039/d4tc00508b
- S. Liao, M. Chen, J. Li, R. Zhang, Y. Yang, High-performance photodetectors based on low-defect CsPb1-xZnxBr3 quantum dots. J. Mater. Sci. Mater. Electron. 35, 715 (2024). https://doi.org/10.1007/s10854-024-12488-6
- H. Zhou, M. Chen, C. Liu, R. Zhang, J. Li et al., Interfacial passivation of CsPbI3 quantum dots improves the performance of hole-transport-layer-free perovskite photodetectors. Discov. Nano 18, 11 (2023). https://doi.org/10.1186/s11671-023-03793-w
- S.-J. Jeong, S. Cho, B. Moon, J.A. Teku, M.-H. Jeong et al., Zero dimensional–two dimensional hybrid photodetectors using multilayer MoS2 and lead halide perovskite quantum dots with a tunable bandgap. ACS Appl. Mater. Interfaces 15, 5432–5438 (2023). https://doi.org/10.1021/acsami.2c17200
- Y. Wang, S. Bai, H. Liang, C. Li, J. Sun et al., Cesium tin halide perovskite quantum dots for high-performance ultraviolet photodetectors. J. Lumin. 257, 119700 (2023). https://doi.org/10.1016/j.jlumin.2023.119700
- B. Yang, P. Guo, D. Hao, Y. Wang, L. Li et al., Self-powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci. China Mater. 66, 716–723 (2023). https://doi.org/10.1007/s40843-022-2155-0
- M. Jeong, S.G. Han, W. Sung, S. Kim, J. Min et al., Photomultiplication-type organic photodetectors with high EQE-bandwidth product by introducing a perovskite quantum dot interlayer. Adv. Funct. Mater. 33, 2300695 (2023). https://doi.org/10.1002/adfm.202300695
- M. Kim, G. Bae, K.N. Kim, H.-K. Jo, D.S. Song et al., Perovskite quantum dot-induced monochromatization for broadband photodetection of wafer-scale molybdenum disulfide. npg Asia Mater. 14, 89 (2022). https://doi.org/10.1038/s41427-022-00435-y
- K. Chen, X. Zhang, P.-A. Chen, J. Guo, M. He et al., Solution-processed CsPbBr3 quantum dots/organic semiconductor planar heterojunctions for high-performance photodetectors. Adv. Sci. 9, e2105856 (2022). https://doi.org/10.1002/advs.202105856
- J.-F. Tang, Y.-D. Sie, Z.-L. Tseng, J.-H. Lin, L.-C. Chen et al., Perovskite quantum dot–ZnO nanowire composites for ultraviolet–visible photodetectors. ACS Appl. Nano Mater. 5, 7237–7245 (2022). https://doi.org/10.1021/acsanm.2c01145
- H. Li, Z. Li, S. Liu, M. Li, X. Wen et al., High performance hybrid MXene nanosheet/CsPbBr3 quantum dot photodetectors with an excellent stability. J. Alloys Compd. 895, 162570 (2022). https://doi.org/10.1016/j.jallcom.2021.162570
- J. Zheng, J. Jiang, W. Di, Q. Xie, X. Wu et al., Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response. IEEE Photonics Techn. Lett. 34, 101–104 (2021). https://ieeexplore.ieee.org/abstract/document/9658565
- J. Qiao, F. Feng, S. Song, T. Wang, M. Shen et al., Perovskite quantum dot-Ta2NiSe5 mixed-dimensional van der Waals heterostructures for high-performance near-infrared photodetection. Adv. Funct. Mater. 32, 2110706 (2022). https://doi.org/10.1002/adfm.202110706
- F.A. Chowdhury, B. Pradhan, Y. Ding, A. Towers, A. Gesquiere et al., Perovskite quantum dot-reduced graphene oxide superstructure for efficient photodetection. ACS Appl. Mater. Interfaces 12, 45165–45173 (2020). https://doi.org/10.1021/acsami.0c11966
- S. Yan, Q. Li, X. Zhang, S. Tang, W. Lei et al., A vertical structure photodetector based on all-inorganic perovskite quantum dots. J. Soc. Inf. Disp. 28, 9–15 (2020). https://doi.org/10.1002/jsid.853
- M.I. Saleem, S. Yang, R. Zhi, M. Sulaman, P.V. Chandrasekar et al., Surface engineering of all-inorganic perovskite quantum dots with quasi Core−Shell technique for high-performance photodetectors. Adv. Mater. Interfaces 7, 2000360 (2020). https://doi.org/10.1002/admi.202000360
- K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam et al., Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Adv. Mater. 32, 2000004 (2020). https://doi.org/10.1002/adma.202000004
- C. Bi, S.V. Kershaw, A.L. Rogach, J. Tian, Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019). https://doi.org/10.1002/adfm.201902446
- T. Zou, X. Liu, R. Qiu, Y. Wang, S. Huang et al., Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer. Adv. Opt. Mater. 7, 1801812 (2019). https://doi.org/10.1002/adom.201801812
- T. Noh, H.S. Shin, C. Seo, J.Y. Kim, J. Youn et al., Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res. 12, 405–412 (2019). https://doi.org/10.1007/s12274-018-2230-6
- R. Pan, H. Li, J. Wang, X. Jin, Q. Li et al., High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot–graphene hybrid. Part. Part. Syst. Charact. 35, 1700304 (2018). https://doi.org/10.1002/ppsc.201700304
- H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5, 1801219 (2018). https://doi.org/10.1002/advs.201801219
- H. Wu, Z. Kang, Z. Zhang, Z. Zhang, H. Si et al., Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D–2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 28, 1802015 (2018). https://doi.org/10.1002/adfm.201802015
- C. Zou, Y. Xi, C.-Y. Huang, E.G. Keeler, T. Feng et al., A highly sensitive UV–vis–NIR all-inorganic perovskite quantum dot phototransistor based on a layered heterojunction. Adv. Opt. Mater. 6, 1800324 (2018). https://doi.org/10.1002/adom.201800324
- Z. Zheng, F. Zhuge, Y. Wang, J. Zhang, L. Gan et al., Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv. Funct. Mater. 27, 1703115 (2017). https://doi.org/10.1002/adfm.201703115
- T.-T. Duong, P.-N. Tran, T.-P. Van, D.-H. Nguyen, V.-D. Tran, A dense, Pinholes-free pure cubic phase CsPbBr3 nanocrystals film for high-performance photodetector. Electron. Mater. Lett. 20, 217–223 (2024). https://doi.org/10.1007/s13391-023-00448-x
- A. Lalita, H. Yadav, G. Sharma, R.A. Gupta et al., Bismuth sulfide quantum dots-CsPbBr3 perovskite nanocrystals heterojunction for enhanced broadband photodetection. Nano Ex. 5, 025028 (2024). https://doi.org/10.1088/2632-959x/ad52b2
- S. Mamgain, A. Yella, Dynamics of interfacial charge transfer between CsPbBr3 perovskite nanocrystals and molecular acceptors for photodetection application. Nanotechnology 35, 165202 (2024). https://doi.org/10.1088/1361-6528/ad1afe/meta
- A. Suhail, A. Saini, S. Beniwal, M. Bag, Tunable optoelectronic properties of CsPbBr3 perovskite nanocrystals for photodetectors applications. J. Phys. Chem. C 127, 17298–17306 (2023). https://doi.org/10.1021/acs.jpcc.3c04856
- H. Lee, H. Han, C. Park, J.W. Oh, H.H. Kim et al., Halide perovskite nanocrystal-enabled stabilization of transition metal dichalcogenide nanosheets. Small 18, e2106035 (2022). https://doi.org/10.1002/smll.202106035
- Y. Liu, W. Gong, F. Xiang, Y. Li, H. Guo et al., High-performance self-powered photodetectors with space-confined hybrid lead halide perovskite nanocrystals. Adv. Optical Mater. 11, 2202215 (2023). https://doi.org/10.1002/adom.202202215
- S. Liu, S. Jiao, H. Lu, S. Yang, Y. Zhao et al., A hole transport layer-free, more thermally stable, self-powered CH3NH3PbBr3-based multiband imaging photodetector with novel topological insulator Bi2Te3 electrodes. Adv. Opt. Mater. 10, 2201018 (2022). https://doi.org/10.1002/adom.202201018
- S. Qiao, Y. Liu, J. Liu, G. Fu, S. Wang, High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region. ACS Appl. Mater. Interfaces 13, 34625–34636 (2021). https://doi.org/10.1021/acsami.1c09642
- Y. Han, R. Wen, F. Zhang, L. Shi, W. Wang et al., Photodetector based on CsPbBr3/Cs4PbB
References
R. Paschotta, Photodetectors. RP Photonics Encyclopedia. https://www.rp-photonics.com/encyclopedia.html
S. Aftab, S. Hussain, F. Kabir, Y. Kuznetsova, A.G. Al-Sehemi, Progress in photodetector devices utilizing transition metal dichalcogenides. J. Mater. Chem. C 12, 1211–1232 (2024). https://doi.org/10.1039/D3TC04253G
L. Li, S. Ye, J. Qu, F. Zhou, J. Song et al., Recent advances in perovskite photodetectors for image sensing. Small 17, e2005606 (2021). https://doi.org/10.1002/smll.202005606
M. Ahmadi, T. Wu, B. Hu, A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29, 1605242 (2017). https://doi.org/10.1002/adma.201605242
F. Wang, X. Zou, M. Xu, H. Wang, H. Wang et al., Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 8, e2100569 (2021). https://doi.org/10.1002/advs.202100569
Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo et al., Lead-free perovskite photodetectors: progress, challenges, and opportunities. Adv. Mater. 33, 2006691 (2021). https://doi.org/10.1002/adma.202006691
H. Gu, S.-C. Chen, Q. Zheng, Emerging perovskite materials with different nanostructures for photodetectors. Adv. Opt. Mater. 9, 2001637 (2021). https://doi.org/10.1002/adom.202001637
C. Xie, C.-K. Liu, H.-L. Loi, F. Yan, Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 30, 1903907 (2020). https://doi.org/10.1002/adfm.201903907
H.P. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33, 2003309 (2021). https://doi.org/10.1002/adma.202003309
S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nat. Electron. 7, 216–224 (2024). https://doi.org/10.1038/s41928-024-01129-9
R. Xing, Z. Li, W. Zhao, D. Wang, R. Xie et al., Waterproof and flexible perovskite photodetector enabled by P-type organic molecular rubrene with high moisture and mechanical stability. Adv. Mater. 36, e2310248 (2024). https://doi.org/10.1002/adma.202310248
Z. Guo, J. Zhang, X. Liu, L. Wang, L. Xiong et al., Optoelectronic synapses and photodetectors based on organic semiconductor/halide perovskite heterojunctions: materials, devices, and applications. Adv. Funct. Mater. 33, 2305508 (2023). https://doi.org/10.1002/adfm.202305508
T. Park, D.H. Lee, J. Hur, H. Yoo, Unleashing the power of quantum dots: emerging applications from deep-ultraviolet photodetectors for brighter futures. Adv. Opt. Mater. 12, 2302466 (2024). https://doi.org/10.1002/adom.202302466
W. Tian, H. Zhou, L. Li, Hybrid organic–inorganic perovskite photodetectors. Small 13, 1702107 (2017). https://doi.org/10.1002/smll.201702107
X. Lu, J. Li, Y. Zhang, Z. Han, Z. He et al., Recent progress on perovskite photodetectors for narrowband detection. Adv. Photonics Res. 3, 2100335 (2022). https://doi.org/10.1002/adpr.202100335
G. Chen, J. Feng, H. Gao, Y. Zhao, Y. Pi et al., Stable α-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 29, 1808741 (2019). https://doi.org/10.1002/adfm.201808741
J. Li, H. Li, L. Liu, H. Yao, B. Tian et al., Post-treatment of CH3NH3PbI3/PbI2 composite films with methylamine to realize high-performance photoconductor devices. Chem 14, 2861–2868 (2019). https://doi.org/10.1002/asia.201900644
H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017). https://doi.org/10.1039/c6cs00896h
Z. Li, T. Yan, X. Fang, Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 8, 587–603 (2023). https://doi.org/10.1038/s41578-023-00583-9
L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). https://doi.org/10.1038/ncomms6404
Y. Lu, Z. Zhan, J. Tan, H. Lai, P. Liu et al., High-performance MoS2 homojunction photodiode enabled by facile van der waals contacts with 2D perovskite. Laser Photonics Rev. 18, 2300941 (2024). https://doi.org/10.1002/lpor.202300941
G. Li, Y. Wang, L. Huang, W. Sun, Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4, 1485–1505 (2022). https://doi.org/10.1021/acsaelm.1c01349
Y. Tang, P. Jin, Y. Wang, D. Li, Y. Chen et al., Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat. Commun. 14, 4961 (2023). https://doi.org/10.1038/s41467-023-40711-1
A. Cherepakhin, A. Zhizhchenko, D. Khmelevskaia, L. Logunov, A. Kuchmizhak et al., Advanced laser nanofabrication technologies for perovskite photonics. Adv. Opt. Mater. 12, 2302782 (2024). https://doi.org/10.1002/adom.202302782
Q. Wang, J. Bao, Y. Zhang, Y. Wang, D. Qiu et al., High-performance organic narrow dual-band circular polarized light detection for encrypted communications and color imaging. Adv. Mater. 36, e2312396 (2024). https://doi.org/10.1002/adma.202312396
Y. Wang, Y. Zha, C. Bao, F. Hu, Y. Di et al., Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors. Adv. Mater. 36, e2311524 (2024). https://doi.org/10.1002/adma.202311524
J. Ghosh, S. Parveen, P.J. Sellin, P.K. Giri, Recent advances and opportunities in low-dimensional layered perovskites for emergent applications beyond photovoltaics. Adv. Mater. Technol. 8, 2300400 (2023). https://doi.org/10.1002/admt.202300400
Z. Cao, B. Sun, G. Zhou, S. Mao, S. Zhu et al., Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horiz. 8, 716–745 (2023). https://doi.org/10.1039/d2nh00536k
P.-T. Lai, C.-Y. Chen, H.-C. Lin, B.-Y. Chuang, K.-H. Kuo et al., Harnessing 2D Ruddlesden–Popper perovskite with polar organic cation for ultrasensitive multibit nonvolatile transistor-type photomemristors. ACS Nano 17, 25552–25564 (2023). https://doi.org/10.1021/acsnano.3c09595
T. Ozturk, E. Akman, B. Surucu, H. Dursun, V. Ozkaya et al., The role of pioneering hole transporting materials in new generation perovskite solar cells. Eur. J. Inorg. Chem. 2021, 4251–4264 (2021). https://doi.org/10.1002/ejic.202100267
W. Xu, W. Huang, X. Wu, X. Wei, F. Meng et al., 2D perovskite single crystals for photodetectors: from macro- to microscale. Phys. Status Solidi RRL 15, 2100183 (2021). https://doi.org/10.1002/pssr.202100183
W. Deng, J. Jie, X. Xu, Y. Xiao, B. Lu et al., A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 32, e1908340 (2020). https://doi.org/10.1002/adma.201908340
W. Deng, L. Huang, X. Xu, X. Zhang, X. Jin et al., Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17, 2482–2489 (2017). https://doi.org/10.1021/acs.nanolett.7b00166
A. Ali Ayaz Pirzado, C. Wang, X. Zhang, S. Chen, R. Jia et al., Room-temperature growth of perovskite single crystals via antisolvent-assisted confinement for high-performance electroluminescent devices. Nano Energy 118, 108951 (2023). https://doi.org/10.1016/j.nanoen.2023.108951
Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
S. Aftab, X. Li, S. Hussain, M. Aslam, A.H. Rajpar et al., Nanoscale enhancements in perovskite-based photovoltaics. Chem. Eng. J. 480, 148143 (2024). https://doi.org/10.1016/j.cej.2023.148143
X. Li, S. Aftab, S. Hussain, F. Kabir, A.M.A. Henaish et al., Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations. J. Mater. Chem. A 12, 4421–4440 (2024). https://doi.org/10.1039/d3ta06953b
M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16, 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16, 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16, 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
N. Yu, I.T. Bello, X. Chen, T. Liu, Z. Li et al., Rational design of Ruddlesden–Popper perovskite ferrites as air electrode for highly active and durable reversible protonic ceramic cells. Nano-Micro Lett. 16, 177 (2024). https://doi.org/10.1007/s40820-024-01397-2
G.H. Lee, K. Kim, Y. Kim, J. Yang, M.K. Choi, Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2023). https://doi.org/10.1007/s40820-023-01254-8
J.W. Lee, S.M. Kang, Patterning of metal halide perovskite thin films and functional layers for optoelectronic applications. Nano-Micro Lett. 15, 184 (2023). https://doi.org/10.1007/s40820-023-01154-x
X. Shi, C. Liu, X. Zhang, G. Zhan, Y. Cai et al., Vapor phase growth of air-stable hybrid perovskite FAPbBr3 single-crystalline nanosheets. Nano Lett. 24, 2299–2307 (2024). https://doi.org/10.1021/acs.nanolett.3c04604
G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
H.-C. Cheng, G. Wang, D. Li, Q. He, A. Yin et al., Van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016). https://doi.org/10.1021/acs.nanolett.5b03944
J.-Y. Zheng, H.G. Manning, Y. Zhang, J.J. Wang, F. Purcell-Milton et al., Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Sci. Rep. 9, 11738 (2019). https://doi.org/10.1038/s41598-019-47902-1
Y. Cho, H.R. Jung, W. Jo, Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. Nanoscale 14, 9248–9277 (2022). https://doi.org/10.1039/d2nr00513a
Z. Liang, C. Tian, X. Li, L. Cheng, S. Feng et al., Organic-inorganic lead halide perovskite single crystal: from synthesis to applications. Nanomaterials 12, 4235 (2022). https://doi.org/10.3390/nano12234235
C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2, 1247–1256 (2020). https://doi.org/10.1002/inf2.12141
C. Li, J. Li, Z. Li, H. Zhang, Y. Dang et al., High-performance photodetectors based on nanostructured perovskites. Nanomaterials 11, 1038 (2021). https://doi.org/10.3390/nano11041038
F. Mei, D. Sun, S. Mei, J. Feng, Y. Zhou et al., Recent progress in perovskite-based photodetectors: the design of materials and structures. Adv. Phys. X 4, 1592709 (2019). https://doi.org/10.1080/23746149.2019.1592709
R. Wang, Z. Li, S. Li, P. Wang, J. Xiu et al., All-inorganic perovskite CsPb2Br5 nanosheets for photodetector application based on rapid growth in aqueous phase. ACS Appl. Mater. Interfaces 12, 41919–41931 (2020). https://doi.org/10.1021/acsami.0c05754
J. Tao, Z. Xiao, J. Wang, C. Li, X. Sun et al., A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes. J. Alloys Compd. 845, 155311 (2020). https://doi.org/10.1016/j.jallcom.2020.155311
M.I. Saleem, S. Yang, A. Batool, M. Sulaman, C.P. Veeramalai et al., CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors. J. Mater. Sci. Technol. 75, 196–204 (2021). https://doi.org/10.1016/j.jmst.2020.07.049
Z. Zhang, N. Lamers, C. Sun, C. Hetherington, I.G. Scheblykin et al., Free-standing metal halide perovskite nanowire arrays with blue-green heterostructures. Nano Lett. 22, 2941–2947 (2022). https://doi.org/10.1021/acs.nanolett.2c00137
J. Cha, M.K. Kim, W. Lee, H. Jin, H. Na et al., Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells. Chem. Eng. J. 451, 138920 (2023). https://doi.org/10.1016/j.cej.2022.138920
C.-H. Lin, T.-Y. Li, J. Zhang, Z.-Y. Chiao, P.-C. Wei et al., Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020). https://doi.org/10.1016/j.nanoen.2020.104801
Q.A. Akkerman, T.P. Nguyen, S.C. Boehme, F. Montanarella, D.N. Dirin et al., Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022). https://doi.org/10.1126/science.abq3616
J. Zou, M. Li, X. Zhang, W. Zheng, Perovskite quantum dots: synthesis, applications, prospects, and challenges. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0126496
C. Bi, S. Wang, W. Wen, J. Yuan, G. Cao et al., Room-temperature construction of mixed-halide perovskite quantum dots with high photoluminescence quantum yield. J. Phys.: Chem. C 122, 5151–5160 (2018). https://doi.org/10.1021/acs.jpcc.7b12607
G.B. Nair, S. Tamboli, R. Kroon, S. Dhoble, H.C. Swart, Facile room-temperature colloidal synthesis of CsPbBr3 perovskite nanocrystals by the emulsion-based ligand-assisted reprecipitation approach: tuning the color-emission by the demulsification process. J. Alloys Compounds 928, 167249 (2022). https://doi.org/10.1016/j.jallcom.2022.167249
E. Akman, T. Ozturk, W. Xiang, F. Sadegh, D. Prochowicz et al., The effect of B-site doping in all-inorganic CsPbIxBr3–x absorbers on the performance and stability of perovskite photovoltaics. Energy Environ. Sci. 16, 372–403 (2023). https://doi.org/10.1039/d2ee01070d
H. Wang, Y. Sun, J. Chen, F. Wang, R. Han et al., A review of perovskite-based photodetectors and their applications. Nanomaterials 12, 4390 (2022). https://doi.org/10.3390/nano12244390
D. Liu, Y. Guo, M. Que, X. Yin, J. Liu et al., Metal halide perovskite nanocrystals: application in high-performance photodetectors. Mater. Adv. 2, 856–879 (2021). https://doi.org/10.1039/d0ma00796j
M. Tan, M. Li, W. Pan, X. Feng, Y. He et al., Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light Sci. Appl. 11, 304 (2022). https://doi.org/10.1038/s41377-022-01000-6
J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15, 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
H.-Y. Hou, S. Tian, H.-R. Ge, J.-D. Chen, Y.-Q. Li et al., Recent progress of polarization-sensitive perovskite photodetectors. Adv. Funct. Mater. 32, 2209324 (2022). https://doi.org/10.1002/adfm.202209324
J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, An assessment of wide bandgap semiconductors for power devices. IEEE T. Power Electron. 18, 907–914 (2003). https://doi.org/10.1109/TPEL.2003.810840
B. Ozpineci, Comparison of wide-bandgap semiconductors for power electronics applications (2004). https://doi.org/10.2172/885849
A. Weidenkaff, Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709–714 (2004). https://doi.org/10.1002/adem.200400098
K. Wang, G. Xing, Q. Song, S. Xiao, Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 33, e2000306 (2021). https://doi.org/10.1002/adma.202000306
J. Chen, Y. Zhou, Y. Fu, J. Pan, O.F. Mohammed et al., Oriented halide perovskite nanostructures and thin films for optoelectronics. Chem. Rev. 121, 12112–12180 (2021). https://doi.org/10.1021/acs.chemrev.1c00181
G. Iannaccone, C. Sbrana, I. Morelli, S. Strangio, Power electronics based on wide-bandgap semiconductors: Opportunities and challenges. IEEE Access 9, 139446–139456 (2021)
M. Higashiwaki, R. Kaplar, J. Pernot, H. Zhao, Ultrawide bandgap semiconductors. Appl. Phys. Lett. 118, 200401 (2021). https://doi.org/10.1063/5.0055292
S. Aftab, X. Li, F. Kabir, E. Akman, M. Aslam et al., Lighting the future: Perovskite nanorods and their advances across applications. Nano Energy 124, 109504 (2024). https://doi.org/10.1016/j.nanoen.2024.109504
R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan et al., Wide band gap chalcogenide semiconductors. Chem. Rev. 120, 4007–4055 (2020). https://doi.org/10.1021/acs.chemrev.9b00600
B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv. 6, 38079–38091 (2016). https://doi.org/10.1039/C5RA27424A
X. Wu, B. Zhou, J. Zhou, Y. Chen, Y. Chu et al., Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 14, e1800527 (2018). https://doi.org/10.1002/smll.201800527
A. Farooq, I.M. Hossain, S. Moghadamzadeh, J.A. Schwenzer, T. Abzieher et al., Spectral dependence of degradation under ultraviolet light in perovskite solar cells. ACS Appl. Mater. Interfaces 10, 21985–21990 (2018). https://doi.org/10.1021/acsami.8b03024
M. Sulaman, S. Yang, A. Bukhtiar, P. Tang, Z. Zhang et al., Hybrid bulk-heterojunction of colloidal quantum dots and mixed-halide perovskite nanocrystals for high-performance self-powered broadband photodetectors. Adv. Funct. Mater. 32, 2201527 (2022). https://doi.org/10.1002/adfm.202201527
G. Yang, C. Zheng, Y. Zhu, X. Li, J. Huang et al., Efficient quantum cutting of lanthanum and ytterbium ions Co-doped perovskite quantum dots towards improving the ultraviolet response of silicon-based photodetectors. J. Alloys Compd. 921, 166097 (2022). https://doi.org/10.1016/j.jallcom.2022.166097
Y. Wu, S. Yang, F. Sun, X. Liu, Z. Zhang et al., On the mechanism to suppress dark current via blending with an all-inorganic perovskite precursor in colloidal quantum dot photodetectors. J. Mater. Chem. C 11, 16094–16102 (2023). https://doi.org/10.1039/d3tc02894a
E. Moyen, H. Jun, H.-M. Kim, J. Jang, Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes. ACS Appl. Mater. Interfaces 10, 42647–42656 (2018). https://doi.org/10.1021/acsami.8b15212
D.E. Lee, S.Y. Kim, H.W. Jang, Lead-free all-inorganic halide perovskite quantum dots: review and outlook. J. Korean Ceram. Soc. 57, 455–479 (2020). https://doi.org/10.1007/s43207-020-00058-5
S. Premkumar, D. Liu, Y. Zhang, D. Nataraj, S. Ramya et al., Stable lead-free silver bismuth iodide perovskite quantum dots for UV photodetection. ACS Appl. Nano Mater. 3, 9141–9150 (2020). https://doi.org/10.1021/acsanm.0c01787
Z. Xu, Synthesis of CsPbBr3 quantum dots for photodetectors. (University of Washington; 2020), https://digital.lib.washington.edu/researchworks/handle/1773/45881
C.-Y. Huang, H. Li, Y. Wu, C.-H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15, 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
W. Zhai, J. Lin, C. Li, S. Hu, Y. Huang et al., Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale 10, 21451–21458 (2018). https://doi.org/10.1039/C8NR05683H
S. Dias, K. Kumawat, S. Biswas, S.B. Krupanidhi, Solvothermal synthesis of Cu2SnS3 quantum dots and their application in near-infrared photodetectors. Inorg. Chem. 56, 2198–2203 (2017). https://doi.org/10.1021/acs.inorgchem.6b02832
H. Qiao, Z. Li, Z. Huang, X. Ren, J. Kang et al., Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Appl. Mater. Today 20, 100765 (2020). https://doi.org/10.1016/j.apmt.2020.100765
C. Li, W. Huang, L. Gao, H. Wang, L. Hu et al., Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale 12, 2201–2227 (2020). https://doi.org/10.1039/c9nr07799e
D. Zhou, Y. Wang, P. Tian, P. Jing, M. Sun et al., Microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces 10, 27160–27170 (2018). https://doi.org/10.1021/acsami.8b06323
S. Cho, S. Hong, A. Jana, I. Han, H. Kim et al., Gram-scale microwave-assisted synthesis of high-quality CsPbBr3 nanocrystals for optoelectronic applications. J. Alloys Compd. 993, 174700 (2024). https://doi.org/10.1016/j.jallcom.2024.174700
L. Sinatra, J. Pan, O.M. Bakr, Methods of synthesizing monodisperse colloidal quantum dots. Mater. Matters 12, 3–7 (2017)
D. Shen, T. Lan, D. Qiao, M. Guo, J. Zuo et al., Tunable photoluminescent nitrogen-doped graphene quantum dots at the interface for high-efficiency perovskite solar cells. ACS Appl. Nano Mater. 7, 2232–2243 (2024). https://doi.org/10.1021/acsanm.3c05672
D. Yu, C. Yin, F. Cao, Y. Zhu, J. Ji et al., Enhancing optoelectronic properties of low-dimensional halide perovskite via ultrasonic-assisted template refinement. ACS Appl. Mater. Interfaces 9, 39602–39609 (2017). https://doi.org/10.1021/acsami.7b12048
S. Wang, J. Song, Photodetectors based on perovskite quantum dots, in Quantum dot photodetectors. ed. by X. Tong, J. Wu, Z.M. Wang (Springer, Cham, 2021), pp.75–117. https://doi.org/10.1007/978-3-030-74270-6_2
D. Zhang, D. Zhao, Z. Wang, J. Yu, Processes controlling the distribution of vertical organic composition in organic photodetectors by ultrasonic-assisted solvent vapor annealing. ACS Appl. Electron. Mater. 2, 2188–2195 (2020). https://doi.org/10.1021/acsaelm.0c00378
Y. Wang, L. Song, Y. Chen, W. Huang, Emerging new-generation photodetectors based on low-dimensional halide perovskites. ACS Photonics 7, 10–28 (2020). https://doi.org/10.1021/acsphotonics.9b01233
J. Wang, Y. Zhang, J. Chen, Y. Wei, D. Yu et al., Strong polarized photoluminescence CsPbBr3 nanowire composite films for UV spectral conversion polarization photodetector enhancement. ACS Appl. Mater. Interfaces 13, 36147–36156 (2021). https://doi.org/10.1021/acsami.1c07681
X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang et al., Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 12, 2884–2891 (2020). https://doi.org/10.1021/acsami.9b18826
Y. Zhang, J. Yao, Y. Teng, Z. Zhang, L. Wang et al., Two-dimensional perovskite NdNb2O7 for high-performance UV photodetectors by a general exfoliation and assembly strategy. Nano Energy 117, 108915 (2023). https://doi.org/10.1016/j.nanoen.2023.108915
Y. Zhang, J. Yao, Z. Zhang, R. Zhang, L. Li et al., Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol. 164, 95–101 (2023). https://doi.org/10.1016/j.jmst.2023.05.011
J. Chen, Y. Shi, Y. He, T. Zhai, Two-dimensional Ruddlesden-Popper perovskite nanosheets: synthesis, optoelectronic properties and miniaturized optoelectronic devices. FlatChem 17, 100116 (2019). https://doi.org/10.1016/j.flatc.2019.100116
X.-D. Wang, N.-H. Miao, J.-F. Liao, W.-Q. Li, Y. Xie et al., The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application. Nanoscale 11, 5180–5187 (2019). https://doi.org/10.1039/c9nr00375d
L. Shooshtari, A. Esfandiar, Y. Orooji, M. Samadpour, R. Rahighi, Ultrafast and stable planar photodetector based on SnS2 nanosheets/perovskite structure. Sci. Rep. 11, 19353 (2021). https://doi.org/10.1038/s41598-021-98788-x
Y. Zhang, S. Li, Z. Li, H. Liu, X. Liu et al., High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 21, 382–388 (2021). https://doi.org/10.1021/acs.nanolett.0c03759
S. Parveen, K.K. Paul, P.K. Giri, Precise tuning of the thickness and optical properties of highly stable 2D organometal halide perovskite nanosheets through a solvothermal process and their applications as a white LED and a fast photodetector. ACS Appl. Mater. Interfaces 12, 6283–6297 (2020). https://doi.org/10.1021/acsami.9b20896
S. Liu, H. Li, H. Lu, Y. Wang, X. Wen et al., High performance 0D ZnO quantum dot/2D (PEA)2PbI4 nanosheet hybrid photodetectors fabricated via a facile antisolvent method. Nanomaterials 12, 4217 (2022). https://doi.org/10.3390/nano12234217
W. Cai, H. Li, M. Li, M. Wang, H. Wang et al., Opportunities and challenges of inorganic perovskites in high-performance photodetectors. J. Phys. D: Appl. Phys. 54, 293002 (2021). https://doi.org/10.1088/1361-6463/abf709/meta
S. Parveen, M. Das, S. Ghosh, P.K. Giri, Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response. Nanoscale 14, 6402–6416 (2022). https://doi.org/10.1039/D2NR01063A
P. Li, B. Shivananju, Y. Zhang, S. Li, Q. Bao, High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. J. Phys. D: Appl. Phys. 50, 094002 (2017). https://doi.org/10.1088/1361-6463/aa5623/meta
L. Lv, Y. Xu, H. Fang, W. Luo, F. Xu et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8, 13589–13596 (2016). https://doi.org/10.1039/c6nr03428d
A. Mandal, A. Ghosh, D. Ghosh, S. Bhattacharyya, Photodetectors with high responsivity by thickness tunable mixed halide perovskite nanosheets. ACS Appl. Mater. Interfaces 13, 43104–43114 (2021). https://doi.org/10.1021/acsami.1c13452
K. Xia, W. Wu, M. Zhu, X. Shen, Z. Yin et al., CVD growth of perovskite/graphene films for high-performance flexible image sensor. Sci. Bull. 65, 343–349 (2020). https://doi.org/10.1016/j.scib.2019.12.015
Z. Zhang, Solution-processed Perovskite/MXene Heterostructures: Synthesis and Applications (2022).
P.R. Varma, Low-dimensional perovskites, in Perovskite photovoltaics: basic to advanced concepts and implementation. ed. by A. Thankappan, S. Thomas (Elsevier, Amsterdam, 2018), pp.197–229. https://doi.org/10.1016/B978-0-12-812915-9.00007-1
M. Liu, H. Zhang, D. Gedamu, P. Fourmont, H. Rekola et al., Halide perovskite nanocrystals for next-generation optoelectronics. Small 15, 1900801 (2019). https://doi.org/10.1002/smll.201900801
Y. Han, X. Chang, X. Cheng, Y. Lin, B.-B. Cui, Recent progress of organic–inorganic hybrid perovskite quantum dots: preparation, optical regulation, and application in light-emitting diodes. Laser Photonics Rev. 17, 2300383 (2023). https://doi.org/10.1002/lpor.202300383
X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou et al., All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 8, 15158–15161 (2016). https://doi.org/10.1039/c6nr01828a
S.L. Choon, H.N. Lim, I. Ibrahim, Z. Zainal, K.B. Tan et al., New potential materials in advancement of photovoltaic and optoelectronic applications: Metal halide perovskite nanorods. Renew. Sustain. Energy Rev. 171, 113037 (2023). https://doi.org/10.1016/j.rser.2022.113037
T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang et al., Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 12, 1611–1617 (2018). https://doi.org/10.1021/acsnano.7b08201
P. Lu, M. Lu, H. Wang, N. Sui, Z. Shi et al., Metal halide perovskite nanocrystals and their applications in optoelectronic devices. InfoMat 1, 430–459 (2019). https://doi.org/10.1002/inf2.12031
C. Shen, Stabilization of organo-halide perovskites and their application as photodetectors. (Drexel University; 2020), https://drexel.primo.exlibrisgroup.com/discovery/fulldisplay/alma991014695139004721/01DRXU_INST:01DRXU
A. Kostopoulou, I. Konidakis, E. Stratakis, Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. Nanophotonics 12, 1643–1710 (2023). https://doi.org/10.1515/nanoph-2022-0797
A. Zhang, Q. Lv, Organic-inorganic hybrid perovskite nanomaterials: synthesis and application. ChemistrySelect 5, 12641–12659 (2020). https://doi.org/10.1002/slct.202003659
M. Yu, D. Zhang, Y. Xu, J. Lin, C. Yu et al., Surface ligand engineering of CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Colloid Interface Sci. 608, 2367–2376 (2022). https://doi.org/10.1016/j.jcis.2021.10.141
M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang et al., Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27, 1701121 (2017). https://doi.org/10.1002/adfm.201701121
M.I. Saleem, S. Yang, R. Zhi, H. Li, M. Sulaman et al., Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology 31, 254001 (2020). https://doi.org/10.1088/1361-6528/ab7de7/meta
S. Lim, M. Ha, Y. Lee, H. Ko, Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater. 6, 1800615 (2018). https://doi.org/10.1002/adom.201800615
S. Wang, K. Wang, Z. Gu, Y. Wang, C. Huang et al., Solution-phase synthesis of cesium lead halide perovskite microrods for high-quality microlasers and photodetectors. Adv. Opt. Mater. 5, 1700023 (2017). https://doi.org/10.1002/adom.201700023
P.V. Chandrasekar, S. Yang, J. Hu, M. Sulaman, Y. Shi et al., Solution-phase, template-free synthesis of PbI2 and MAPbI3 nano/microtubes for high-sensitivity photodetectors. Nanoscale 11, 5188–5196 (2019). https://doi.org/10.1039/c9nr00452a
Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji et al., High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C 5, 8355–8360 (2017). https://doi.org/10.1039/c7tc02137b
J. Zeng, H. Zhou, R. Liu, H. Wang, Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector. Sci. China Mater. 62, 65–73 (2019). https://doi.org/10.1007/s40843-018-9278-6
Q. Zhou, J.G. Park, R. Nie, A.K. Thokchom, D. Ha et al., Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications. ACS Nano 12, 8406–8414 (2018). https://doi.org/10.1021/acsnano.8b03826
Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang et al., Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors. ACS Photonics 5, 2524–2532 (2018). https://doi.org/10.1021/acsphotonics.8b00348
J.K. Meyers, S. Kim, D.J. Hill, E.E.M. Cating, L.J. Williams et al., Self-catalyzed vapor–liquid–solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 17, 7561–7568 (2017). https://doi.org/10.1021/acs.nanolett.7b03514
T. Qiu, Y. Hu, F. Xu, Z. Yan, F. Bai et al., Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale 10, 20963–20989 (2018). https://doi.org/10.1039/C8NR05862H
B. Sarwat, Flexible and substrate-free optoelectronic devices based on III-V semiconductor nanowires (University of Cambridge, Cambridge, East of England, 2019)
X. Li, X. Liu, Y. Li, D. Gao, L. Cao, Using novel semiconductor features to construct advanced zno nanowires-based ultraviolet photodetectors: a brief review. IEEE Access 9, 11954–11973 (2021). https://doi.org/10.1109/ACCESS.2021.3051187
A. Waleed, M.M. Tavakoli, L. Gu, Z. Wang, D. Zhang et al., Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 17, 523–530 (2017). https://doi.org/10.1021/acs.nanolett.6b04587
A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang et al., All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17, 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
G.S. Kumar, R.R. Sumukam, R.K. Rajaboina, R.N. Savu, M. Srinivas et al., Perovskite nanowires for next-generation optoelectronic devices: lab to fab. ACS Appl. Energy Mater. 5, 1342–1377 (2022). https://doi.org/10.1021/acsaem.1c03284
K. Ren, J. Wang, K. Liu, Y. Huang, Y. Sun et al., Multiple-engineering controlled growth of tunable-bandgap perovskite nanowires for high performance photodetectors. RSC Adv. 9, 19772–19779 (2019). https://doi.org/10.1039/C9RA01689A
Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang et al., A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10, 11249–11257 (2016). https://doi.org/10.1021/acsnano.6b06326
F. Ma, Z. Huang, M. Ziółek, S. Yue, X. Han et al., Template-assisted synthesis of a large-area ordered perovskite nanowire array for a high-performance photodetector. ACS Appl. Mater. Interfaces 15, 12024–12031 (2023). https://doi.org/10.1021/acsami.2c20887
S.-X. Li, Y.-S. Xu, C.-L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32, e2001998 (2020). https://doi.org/10.1002/adma.202001998
D. Zhang, Q. Zhang, Y. Zhu, S. Poddar, Y. Zhang et al., Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics. Adv. Energy Mater. 13, 2201735 (2023). https://doi.org/10.1002/aenm.202201735
Y. Li, P. Gui, S. Wei, Y. Sun, L. Yang et al., Template-assisted synthesis of 2D perovskite grating single crystal films at low temperatures for UV polarization-sensitive photodetectors. Small 20, e2305207 (2024). https://doi.org/10.1002/smll.202305207
L. Ren, K. Gao, Q. Tan, C. Qing, Q. Wang et al., High-performance perovskite photodetectors based on CsPbBr3 microwire arrays. Appl. Opt. 60, 8896–8903 (2021). https://doi.org/10.1364/AO.437478
I.M. Asuo, D. Gedamu, I. Ka, L.F. Gerlein, F.-X. Fortier et al., High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy 51, 324–332 (2018). https://doi.org/10.1016/j.nanoen.2018.06.057
J. Miao, F. Zhang, Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 7, 1741–1791 (2019). https://doi.org/10.1039/c8tc06089d
F. Cao, L. Li, Progress of lead-free halide perovskites: from material synthesis to photodetector application. Adv. Funct. Mater. 31, 2008275 (2021). https://doi.org/10.1002/adfm.202008275
M. Xue, H. Zhou, G. Ma, L. Yang, Z. Song et al., Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure. Sol. Energy Mater. Sol. Cells 187, 69–75 (2018). https://doi.org/10.1016/j.solmat.2018.07.023
H. Zhang, Z. Zhang, C. Ma, Y. Liu, H. Xie et al., Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. J. Mater. Chem. C 7, 5488–5496 (2019). https://doi.org/10.1039/c9tc00761j
K. Vighnesh, S. Wang, H. Liu, A.L. Rogach, Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano 16, 19618–19625 (2022). https://doi.org/10.1021/acsnano.2c11689
A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang et al., Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process. Chem. Mater. 28, 8132–8140 (2016). https://doi.org/10.1021/acs.chemmater.6b01329
C.K. Ng, W. Yin, H. Li, J.J. Jasieniak, Scalable synthesis of colloidal CsPbBr3 perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale 12, 4859–4867 (2020). https://doi.org/10.1039/c9nr10726f
A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
W. Zhai, J. Lin, Q. Li, K. Zheng, Y. Huang et al., Solvothermal synthesis of ultrathin cesium lead halide perovskite nanoplatelets with tunable lateral sizes and their reversible transformation into Cs4PbBr6 nanocrystals. Chem. Mater. 30, 3714–3721 (2018). https://doi.org/10.1021/acs.chemmater.8b00612
Y. Li, X. Zhang, H. Huang, S.V. Kershaw, A.L. Rogach, Advances in metal halide perovskite nanocrystals: synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 32, 204–221 (2020). https://doi.org/10.1016/j.mattod.2019.06.007
Y. Li, H. Huang, Y. Xiong, S.V. Kershaw, A.L. Rogach, Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis. Angew. Chem. Int. Ed. 57, 5833–5837 (2018). https://doi.org/10.1002/anie.201713332
C.H. Lin, Z. Lyu, Y. Zhuo, C. Zhao, J. Yang et al., Microwave synthesis and high-mobility charge transport of carbon-nanotube-in-perovskite single crystals. Adv. Opt. Mater. 8, 2001740 (2020). https://doi.org/10.1002/adom.202001740
B. Kumar, S.V. Singh, A. Chattopadhyay, S. Biring, B.N. Pal, Scalable synthesis of a sub-10 nm chalcopyrite (CuFeS2) nanocrystal by the microwave-assisted synthesis technique and its application in a heavy-metal-free broad-band photodetector. ACS Omega 5, 25947–25953 (2020). https://doi.org/10.1021/acsomega.0c03336
S. Dahiya, S.V. Singh, U. Pandey, S. Hazra, B.N. Pal, Microwave-assisted synthesis of CuZnS nanocrystals for spectrally flat visible light photodetector application using a ZnO/CuZnS heterojunction. ACS Appl. Optical Mater. 2, 776–783 (2024). https://doi.org/10.1021/acsaom.4c00056
F. Ely, K.O. Vieira, M.G. Reyes-Banda, M. Quevedo-Lopez, Broadband photodetectors from silane-passivated CsPbBr3 nanocrystals by ultrasound-mediated synthesis. Nanoscale 16, 10833–10840 (2024). https://doi.org/10.1039/d3nr06564b
D.M. Jang, D.H. Kim, K. Park, J. Park, J.W. Lee et al., Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4, 10625–10629 (2016). https://doi.org/10.1039/c6tc04213a
L. Rao, X. Ding, X. Du, G. Liang, Y. Tang et al., Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation. Beilstein J. Nanotechnol. 10, 666–676 (2019). https://doi.org/10.3762/bjnano.10.66
M.-M. Liu, L.-L. Zhou, S.-F. Li, F.-X. Liang, Y. Xing et al., A sensitive UV photodetector based on non-wide bandgap MAPbBr3 nanosheet. IEEE Trans. Electron Devices 69, 5590–5594 (2022). https://doi.org/10.1109/TED.2022.3195689
Y. Lu, X. Sun, H. Zhou, H. Lai, R. Liu et al., A high-performance and broadband two-dimensional perovskite-based photodetector via van der Waals integration. Appl. Phys. Lett. 121, 161104 (2022). https://doi.org/10.1063/5.0116505
R. Wang, H. Zhou, B. Wu, D. Wu, L. Tao et al., Self-powered CsPbBr3 perovskite nanonet photodetector with a hollow vertical structure. J. Phys. Chem. Lett. 12, 7519–7525 (2021). https://doi.org/10.1021/acs.jpclett.1c02177
H. Algadi, C. Mahata, J. Woo, M. Lee, M. Kim et al., Enhanced photoresponsivity of all-inorganic (CsPbBr3) perovskite nanosheets photodetector with carbon nanodots (CDs). Electronics 8, 678 (2019). https://doi.org/10.3390/electronics8060678
X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29, 1604431 (2017). https://doi.org/10.1002/adma.201604431
W. Dou, Z. Yin, Y. Zhang, H. Deng, N. Dai, Two-dimensional perovskite (PEA)2PbI4 two-color blue-green photodetector. Nanomaterials 12, 2556 (2022). https://doi.org/10.3390/nano12152556
F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35, e2304550 (2023). https://doi.org/10.1002/adma.202304550
A.H. Howlader, F. Li, R. Zheng, Nanorod-like nanocrystalline CsSnI3 and CNT composite thin film–based hybrid photodetector. Emergent Mater. 5, 1925–1943 (2022). https://doi.org/10.1007/s42247-022-00394-8
R. Grisorio, D. Conelli, R. Giannelli, E. Fanizza, M. Striccoli et al., A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield. Nanoscale 12, 17053–17063 (2020). https://doi.org/10.1039/D0NR04246C
Z.-J. Li, E. Hofman, A.H. Davis, M.M. Maye, W. Zheng, General strategy for the growth of CsPbX3 (X = Cl, Br, I) perovskite nanosheets from the assembly of nanorods. Chem. Mater. 30, 3854–3860 (2018). https://doi.org/10.1021/acs.chemmater.8b01283
J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao et al., Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017). https://doi.org/10.1021/acs.nanolett.6b04450
A.A. Bhat, M.B. Zaman, J.H. Malik, K.A. Malik, I. Assadullah et al., Facile way of making hydrothermally synthesized crystalline SrSnO3 perovskite nanorods suitable for blue LEDs and spintronic applications. ACS Omega 6, 16356–16363 (2021). https://doi.org/10.1021/acsomega.1c00831
S. Wang, J. Yu, M. Zhang, D. Chen, C. Li et al., Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 19, 6315–6322 (2019). https://doi.org/10.1021/acs.nanolett.9b02436
Y. Dong, H. Hu, X. Xu, Y. Gu, C.-C. Chueh et al., Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J. Phys. Chem. Lett. 10, 4149–4156 (2019). https://doi.org/10.1021/acs.jpclett.9b01673
Z. Zhang, P. Zheng, S.S. Yan, B.S. Qiao, K.W. Ng et al., Ultrasensitive perovskite photodetector for filter-free color single-pixel imaging. Adv. Opt. Mater. 11, 2201847 (2023). https://doi.org/10.1002/adom.202201847
A.R. Beisenbayev, Z.T. Sadirkhanov, Y. Yerlanuly, M.I. Kaikanov, A.N. Jumabekov, Self-powered organometal halide perovskite photodetector with embedded silver nanowires. Nanomaterials 12, 1034 (2022). https://doi.org/10.3390/nano12071034
R. Huang, D.-H. Lin, J.-Y. Liu, C.-Y. Wu, D. Wu et al., Nanochannel-confined growth of crystallographically orientated perovskite nanowire arrays for polarization-sensitive photodetector application. Sci. China Mater. 64, 2497–2506 (2021). https://doi.org/10.1007/s40843-021-1654-5
D. Lin, J. Liu, R. Haroldson, J. Moon, Z. Li et al., High-performance directly patterned nanograting perovskite photodetector with interdigitated electrodes. Adv. Opt. Mater. 10, 2201516 (2022). https://doi.org/10.1002/adom.202201516
Q. Li, S. Yan, S. Tang, X. Zhang, W. Lei et al., Photodetector based on all-inorganic perovskite quantum dots with ring electrode, in 2019 IEEE international flexible electronics technology conference (IFETC) (2019) pp. 1–3. https://ieeexplore.ieee.org/abstract/document/9073761
Y. Yang, H. Dai, F. Yang, Y. Zhang, D. Luo et al., All-perovskite photodetector with fast response. Nanoscale Res. Lett. 14, 291 (2019). https://doi.org/10.1186/s11671-019-3082-z
H. Zhang, Y.T. Zhang, Field-effect phototransistors based on graphene-quantum dot hybrids. MATEC Web Conf. 44, 01033 (2016). https://doi.org/10.1051/matecconf/20164401033
X. Ma, Y. Xu, S. Li, T.W. Lo, B. Zhang et al., A flexible plasmonic-membrane-enhanced broadband tin-based perovskite photodetector. Nano Lett. 21, 9195–9202 (2021). https://doi.org/10.1021/acs.nanolett.1c03050
A.A. Bessonov, M. Allen, Y. Liu, S. Malik, J. Bottomley et al., Compound quantum dot–perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano 11, 5547–5557 (2017). https://doi.org/10.1021/acsnano.7b00760
A. Subramanian, J. Akram, S. Hussain, J. Chen, K. Qasim et al., High-performance photodetector based on a graphene quantum dot/CH3NH3PbI3 perovskite hybrid. ACS Appl. Electron. Mater. 2, 230–237 (2020). https://doi.org/10.1021/acsaelm.9b00705
X. Gong, C. Liu, Photodetector utilizing quantum dots and perovskite hybrids as light harvesters. (2018). https://patents.google.com/patent/US10038156B2/en
X. Liu, T. Liu, D. Chen, Y. Yang, Z. Ye et al., Broad-spectrum germanium photodetector based on the ytterbium-doped perovskite nanocrystal downshifting effect. ACS Appl. Optical Mater. 1, 507–512 (2022). https://doi.org/10.1021/acsaom.2c00139
X. Liu, Z.-W. Tang, X.-C. An, Y.-L. Huang, Z.-H. Liu et al., Infrared trace gas sensing with a fast perovskite nano-structure laser photodetector. IEEE Photonics Techn. Lett. 35, 19–22 (2022). https://ieeexplore.ieee.org/abstract/document/9932599
M.K. Kim, Z. Munkhsaikhan, S.G. Han, S.M. Park, H. Jin et al., Structural engineering of single-crystal-like perovskite nanocrystals for ultrasensitive photodetector applications. J. Mater. Chem. C 10, 11401–11411 (2022). https://doi.org/10.1039/d2tc01854c
W. Wu, Y. Liu, J. Yao, X. Ouyang, Mixed-cation halide perovskite doped with Rb+ for highly efficient photodetector. Materials 16, 3796 (2023). https://doi.org/10.3390/ma16103796
Y.H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
B. Zhang, M. Jia, Q. Liang, J. Wu, J. Zhai et al., Ultraviolet photodetector based on Sr2Nb3O10 perovskite nanosheets. J. Wuhan Univ. Technol. Mater Sci. Ed. 39, 282–287 (2024). https://doi.org/10.1007/s11595-024-2881-y
J. Wei, Y. Rong, C. Wang, M. Lv, Y. Yang et al., The controllable growth of CsPb2Cl5 nanosheets and their application as a stable photodetector for ultraviolet. Appl. Surf. Sci. 645, 158868 (2024). https://doi.org/10.1016/j.apsusc.2023.158868
J. Ding, X. Liu, S. Zhou, J. Huang, Y. Li et al., In-situ free-standing inorganic 2D Cs2PbI2Cl2 nanosheets for efficient self-powered photodetectors with carbon electrode. J. Colloid Interface Sci. 654, 1356–1364 (2024). https://doi.org/10.1016/j.jcis.2023.10.126
T. Yan, X. Liu, X. Zhang, E. Hong, L. Wu et al., Large-area 2D perovskite oxides/organic heterojunction enables highly-sensitive self-powered photodetector for ultraviolet light communication. Adv. Funct. Mater. 34, 2311042 (2024). https://doi.org/10.1002/adfm.202311042
P. Song, Y. Zhang, J. Wang, H. Liu, L. Tian, Novel two-dimensional NbWO6 nanosheets for high performance UV photodetectors. Adv. Electron. Mater. 10, 2300462 (2024). https://doi.org/10.1002/aelm.202300462
L. Mei, K. Zhang, N. Cui, W. Yu, Y. Li et al., Ultraviolet-visible-short-wavelength infrared broadband and fast-response photodetectors enabled by individual monocrystalline perovskite nanoplate. Small 19, e2301386 (2023). https://doi.org/10.1002/smll.202301386
H. Wang, Z. Du, X. Jiang, S. Cao, B. Zou et al., Ultrastable photodetectors based on blue CsPbBr3 perovskite nanoplatelets via a surface engineering strategy. ACS Appl. Mater. Interfaces 16, 11694–11703 (2024). https://doi.org/10.1021/acsami.3c18659
C.-Y. Wu, Y.-X. Le, L.-Y. Liang, J.-Y. Li, F.-X. Liang et al., Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection. J. Mater. Sci. Technol. 159, 251–257 (2023). https://doi.org/10.1016/j.jmst.2023.03.032
R. Sun, D. Zhou, P. Lu, X. Jing, X. Zhuang et al., In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy 93, 106815 (2022). https://doi.org/10.1016/j.nanoen.2021.106815
B. Yang, W. Bi, F. Jin, X. Ma, S.-Q. Guo, Surface molecular engineering of CsPbBr3 perovskite nanosheets for high-performance photodetector. Compos. Commun. 29, 101032 (2022). https://doi.org/10.1016/j.coco.2021.101032
C.-Y. Li, J. He, Y. Zhou, D.-X. Qi, H. Jing et al., Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Appl. Phys. Lett. 119, 251105 (2021). https://doi.org/10.1063/5.0073706
M. Peng, Y. Ma, L. Zhang, S. Cong, X. Hong et al., All-inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide for high-performance photodetectors by energy band alignment engineering. Adv. Funct. Mater. 31, 2105051 (2021). https://doi.org/10.1002/adfm.202105051
X. Liu, S. Li, Z. Li, Y. Zhang, W. Yang et al., Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3–xTaxO10 perovskite photodetectors. Adv. Funct. Mater. 31, 2101480 (2021). https://doi.org/10.1002/adfm.202101480
Y. Dong, L. Xu, Y. Zhao, S. Wang, J. Song et al., The synergy of plasmonic enhancement and hot-electron effect on CsPbBr3 nanosheets photodetector. Adv. Mater. Interfaces 8, 2002053 (2021). https://doi.org/10.1002/admi.202002053
L. Qian, Y. Sun, M. Sun, Z. Fang, L. Li et al., 2D perovskite microsheets for high-performance photodetectors. J. Mater. Chem. C 7, 5353–5358 (2019). https://doi.org/10.1039/c9tc00138g
K. Wang, C. Wu, D. Yang, Y. Jiang, S. Priya, Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12, 4919–4929 (2018). https://doi.org/10.1021/acsnano.8b01999
C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li et al., Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv. Mater. 29, 1702759 (2017). https://doi.org/10.1002/adma.201702759
T. Wang, S. Hou, H. Zhang, Y. Yang, W. Xu et al., Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors. J. Alloys Compd. 872, 159589 (2021). https://doi.org/10.1016/j.jallcom.2021.159589
R. Hu, C. Ge, L. Chu, Y. Feng, S. Xiao et al., Novel photoelectric material of perovskite-like (CH3)3SpbI3 nanorod arrays with high stability. J. Energy Chem. 59, 581–588 (2021). https://doi.org/10.1016/j.jechem.2020.12.003
Y. Wang, X. Liu, Q. He, G. Chen, D. Xu et al., Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties. Adv. Funct. Mater. 31, 2011251 (2021). https://doi.org/10.1002/adfm.202011251
J. Gong, X. Li, P. Guo, I. Zhang, W. Huang et al., Energy-distinguishable bipolar UV photoelectron injection from LiCl-promoted FAPbCl3 perovskite nanorods. J. Mater. Chem. A 7, 13043–13049 (2019). https://doi.org/10.1039/c9ta01160a
Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou et al., Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10, 57 (2018). https://doi.org/10.1007/s40820-018-0210-8
Z. Sun, Y. Wang, Y. Liu, R. Liu, T. Chen et al., Nanometer-thick CsPbBr3 films with embedded CsPb2Br5 nanowires for photodetector applications. ACS Appl. Nano Mater. 7, 11785–11793 (2024). https://doi.org/10.1021/acsanm.4c01381
Y. Xiong, X. Xu, B. Chen, X. Xu, Highly crystalized MAPbX3 perovskite triangular nanowire arrays for optoelectronic applications. Adv. Mater. 36, e2310427 (2024). https://doi.org/10.1002/adma.202310427
M.K. Kim, S.M. Park, H. Jin, J. Cha, D. Baek et al., Uniaxial alignment of perovskite nanowires via brush painting technique for efficient flexible polarized photodetectors. J. Mater. Sci. Technol. 207, 24–33 (2025). https://doi.org/10.1016/j.jmst.2024.04.031
T. Gao, Y. Jiang, S. Yang, J. Hu, Z. Zhang et al., Template-free synthesis of perovskite (PEA)2PbI4 nanowires by ion-intercalation processing for single-nanowire photodetectors. J. Alloys Compd. 940, 168894 (2023). https://doi.org/10.1016/j.jallcom.2023.168894
X. Lu, J. Li, Y. Zhang, L. Zhang, H. Chen et al., Template-confined oriented perovskite nanowire arrays enable polarization detection and imaging. ACS Appl. Mater. Interfaces 16, 24976–24986 (2024). https://doi.org/10.1021/acsami.4c04455
Q. Lv, X. Shen, X. Li, Y. Meng, K.M. Yu et al., On-wire design of axial periodic halide perovskite superlattices for high-performance photodetection. ACS Nano 18, 18022–18035 (2024). https://doi.org/10.1021/acsnano.4c05205
C. Lu, Q. Dai, C. Tang, X. Wang, S. Xu, L. Sun, Y. Peng, W. Lv, Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector. Nanotechnology 34, 495201 (2023). https://doi.org/10.1088/1361-6528/acf502/meta
Y. Guan, C. Zhang, Z. Liu, Y. Zhao, A. Ren et al., Single-crystalline perovskite p-n junction nanowire arrays for ultrasensitive photodetection. Adv. Mater. 34, e2203201 (2022). https://doi.org/10.1002/adma.202203201
D. Wu, Y. Xu, H. Zhou, X. Feng, J. Zhang et al., Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat 4, e12320 (2022). https://doi.org/10.1002/inf2.12320
D. Zhang, Y. Zhu, Q. Zhang, B. Ren, B. Cao et al., Vertical heterogeneous integration of metal halide perovskite quantum-wires/nanowires for flexible narrowband photodetectors. Nano Lett. 22, 3062–3070 (2022). https://doi.org/10.1021/acs.nanolett.2c00383
Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14, 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
G. Wang, B. Han, C.H. Mak, J. Liu, B. Liu et al., Mixed-dimensional van der waals heterostructure for high-performance and air-stable perovskite nanowire photodetectors. ACS Appl. Mater. Interfaces 14, 55183–55191 (2022). https://doi.org/10.1021/acsami.2c15139
M. Yuan, Y. Zhao, J. Feng, H. Gao, J. Zhao et al., Ultrasensitive photodetectors based on strongly interacted layered-perovskite nanowires. ACS Appl. Mater. Interfaces 14, 1601–1608 (2022). https://doi.org/10.1021/acsami.1c20851
Y. Zhao, Y. Qiu, J. Feng, J. Zhao, G. Chen et al., Chiral 2D-perovskite nanowires for stokes photodetectors. J. Am. Chem. Soc. 143, 8437–8445 (2021). https://doi.org/10.1021/jacs.1c02675
Y. Zhao, Y. Qiu, H. Gao, J. Feng, G. Chen et al., Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors. Adv. Mater. 32, e1905298 (2020). https://doi.org/10.1002/adma.201905298
G. Li, R. Gao, Y. Han, A. Zhai, Y. Liu et al., High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon. Res. 8, 1862 (2020). https://doi.org/10.1364/prj.403030
M. Han, J. Sun, M. Peng, N. Han, Z. Chen et al., Controllable growth of lead-free all-inorganic perovskite nanowire array with fast and stable near-infrared photodetection. J. Phys. Chem. C 123, 17566–17573 (2019). https://doi.org/10.1021/acs.jpcc.9b03289
F. Cao, W. Tian, M. Wang, H. Cao, L. Li, Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 29, 1901280 (2019). https://doi.org/10.1002/adfm.201901280
I.M. Asuo, P. Fourmont, I. Ka, D. Gedamu, S. Bouzidi et al., Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small 15, e1804150 (2019). https://doi.org/10.1002/smll.201804150
J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong et al., Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 1, 404–410 (2018). https://doi.org/10.1038/s41928-018-0101-5
L. Gao, K. Zeng, J. Guo, C. Ge, J. Du et al., Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16, 7446–7454 (2016). https://doi.org/10.1021/acs.nanolett.6b03119
W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang et al., Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201–2208 (2016). https://doi.org/10.1002/adma.201505126
E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal et al., Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014). https://doi.org/10.1021/nl5020684
K.S.R. Bapathi, M.F. Abdelbar, W. Jevasuwan, Q. Zhang, P.H. Borse et al., Enhancing silicon photodetector performance through spectral downshifting using core-shell CdZnS/ZnS and perovskite CsPbBr3 quantum dots. Nano Energy 128, 109832 (2024). https://doi.org/10.1016/j.nanoen.2024.109832
Y. Wu, S. Dai, X. Liu, P. Guo, J. Zhang et al., Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv. Funct. Mater. 34, 2315175 (2024). https://doi.org/10.1002/adfm.202315175
M. Jeong, S.G. Han, B. Park, J. Choi, S. Chung et al., Enhancing photocurrent efficiency in filter-less NIR organic photodetectors through a photomultiplication-inducing perovskite quantum dot interlayer. Adv. Optical Mater. 12, 2303308 (2024). https://doi.org/10.1002/adom.202303308
X. Guan, C.-Y. Huang, L. Hu, D. Periyanagounder, Z. Lei et al., Perovskite quantum dots embedded paper photodetectors with high flexibility and self-powered operation. J. Mater. Chem. C 12, 5784–5792 (2024). https://doi.org/10.1039/d4tc00508b
S. Liao, M. Chen, J. Li, R. Zhang, Y. Yang, High-performance photodetectors based on low-defect CsPb1-xZnxBr3 quantum dots. J. Mater. Sci. Mater. Electron. 35, 715 (2024). https://doi.org/10.1007/s10854-024-12488-6
H. Zhou, M. Chen, C. Liu, R. Zhang, J. Li et al., Interfacial passivation of CsPbI3 quantum dots improves the performance of hole-transport-layer-free perovskite photodetectors. Discov. Nano 18, 11 (2023). https://doi.org/10.1186/s11671-023-03793-w
S.-J. Jeong, S. Cho, B. Moon, J.A. Teku, M.-H. Jeong et al., Zero dimensional–two dimensional hybrid photodetectors using multilayer MoS2 and lead halide perovskite quantum dots with a tunable bandgap. ACS Appl. Mater. Interfaces 15, 5432–5438 (2023). https://doi.org/10.1021/acsami.2c17200
Y. Wang, S. Bai, H. Liang, C. Li, J. Sun et al., Cesium tin halide perovskite quantum dots for high-performance ultraviolet photodetectors. J. Lumin. 257, 119700 (2023). https://doi.org/10.1016/j.jlumin.2023.119700
B. Yang, P. Guo, D. Hao, Y. Wang, L. Li et al., Self-powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci. China Mater. 66, 716–723 (2023). https://doi.org/10.1007/s40843-022-2155-0
M. Jeong, S.G. Han, W. Sung, S. Kim, J. Min et al., Photomultiplication-type organic photodetectors with high EQE-bandwidth product by introducing a perovskite quantum dot interlayer. Adv. Funct. Mater. 33, 2300695 (2023). https://doi.org/10.1002/adfm.202300695
M. Kim, G. Bae, K.N. Kim, H.-K. Jo, D.S. Song et al., Perovskite quantum dot-induced monochromatization for broadband photodetection of wafer-scale molybdenum disulfide. npg Asia Mater. 14, 89 (2022). https://doi.org/10.1038/s41427-022-00435-y
K. Chen, X. Zhang, P.-A. Chen, J. Guo, M. He et al., Solution-processed CsPbBr3 quantum dots/organic semiconductor planar heterojunctions for high-performance photodetectors. Adv. Sci. 9, e2105856 (2022). https://doi.org/10.1002/advs.202105856
J.-F. Tang, Y.-D. Sie, Z.-L. Tseng, J.-H. Lin, L.-C. Chen et al., Perovskite quantum dot–ZnO nanowire composites for ultraviolet–visible photodetectors. ACS Appl. Nano Mater. 5, 7237–7245 (2022). https://doi.org/10.1021/acsanm.2c01145
H. Li, Z. Li, S. Liu, M. Li, X. Wen et al., High performance hybrid MXene nanosheet/CsPbBr3 quantum dot photodetectors with an excellent stability. J. Alloys Compd. 895, 162570 (2022). https://doi.org/10.1016/j.jallcom.2021.162570
J. Zheng, J. Jiang, W. Di, Q. Xie, X. Wu et al., Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response. IEEE Photonics Techn. Lett. 34, 101–104 (2021). https://ieeexplore.ieee.org/abstract/document/9658565
J. Qiao, F. Feng, S. Song, T. Wang, M. Shen et al., Perovskite quantum dot-Ta2NiSe5 mixed-dimensional van der Waals heterostructures for high-performance near-infrared photodetection. Adv. Funct. Mater. 32, 2110706 (2022). https://doi.org/10.1002/adfm.202110706
F.A. Chowdhury, B. Pradhan, Y. Ding, A. Towers, A. Gesquiere et al., Perovskite quantum dot-reduced graphene oxide superstructure for efficient photodetection. ACS Appl. Mater. Interfaces 12, 45165–45173 (2020). https://doi.org/10.1021/acsami.0c11966
S. Yan, Q. Li, X. Zhang, S. Tang, W. Lei et al., A vertical structure photodetector based on all-inorganic perovskite quantum dots. J. Soc. Inf. Disp. 28, 9–15 (2020). https://doi.org/10.1002/jsid.853
M.I. Saleem, S. Yang, R. Zhi, M. Sulaman, P.V. Chandrasekar et al., Surface engineering of all-inorganic perovskite quantum dots with quasi Core−Shell technique for high-performance photodetectors. Adv. Mater. Interfaces 7, 2000360 (2020). https://doi.org/10.1002/admi.202000360
K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam et al., Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Adv. Mater. 32, 2000004 (2020). https://doi.org/10.1002/adma.202000004
C. Bi, S.V. Kershaw, A.L. Rogach, J. Tian, Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019). https://doi.org/10.1002/adfm.201902446
T. Zou, X. Liu, R. Qiu, Y. Wang, S. Huang et al., Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer. Adv. Opt. Mater. 7, 1801812 (2019). https://doi.org/10.1002/adom.201801812
T. Noh, H.S. Shin, C. Seo, J.Y. Kim, J. Youn et al., Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Res. 12, 405–412 (2019). https://doi.org/10.1007/s12274-018-2230-6
R. Pan, H. Li, J. Wang, X. Jin, Q. Li et al., High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot–graphene hybrid. Part. Part. Syst. Charact. 35, 1700304 (2018). https://doi.org/10.1002/ppsc.201700304
H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5, 1801219 (2018). https://doi.org/10.1002/advs.201801219
H. Wu, Z. Kang, Z. Zhang, Z. Zhang, H. Si et al., Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D–2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 28, 1802015 (2018). https://doi.org/10.1002/adfm.201802015
C. Zou, Y. Xi, C.-Y. Huang, E.G. Keeler, T. Feng et al., A highly sensitive UV–vis–NIR all-inorganic perovskite quantum dot phototransistor based on a layered heterojunction. Adv. Opt. Mater. 6, 1800324 (2018). https://doi.org/10.1002/adom.201800324
Z. Zheng, F. Zhuge, Y. Wang, J. Zhang, L. Gan et al., Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv. Funct. Mater. 27, 1703115 (2017). https://doi.org/10.1002/adfm.201703115
T.-T. Duong, P.-N. Tran, T.-P. Van, D.-H. Nguyen, V.-D. Tran, A dense, Pinholes-free pure cubic phase CsPbBr3 nanocrystals film for high-performance photodetector. Electron. Mater. Lett. 20, 217–223 (2024). https://doi.org/10.1007/s13391-023-00448-x
A. Lalita, H. Yadav, G. Sharma, R.A. Gupta et al., Bismuth sulfide quantum dots-CsPbBr3 perovskite nanocrystals heterojunction for enhanced broadband photodetection. Nano Ex. 5, 025028 (2024). https://doi.org/10.1088/2632-959x/ad52b2
S. Mamgain, A. Yella, Dynamics of interfacial charge transfer between CsPbBr3 perovskite nanocrystals and molecular acceptors for photodetection application. Nanotechnology 35, 165202 (2024). https://doi.org/10.1088/1361-6528/ad1afe/meta
A. Suhail, A. Saini, S. Beniwal, M. Bag, Tunable optoelectronic properties of CsPbBr3 perovskite nanocrystals for photodetectors applications. J. Phys. Chem. C 127, 17298–17306 (2023). https://doi.org/10.1021/acs.jpcc.3c04856
H. Lee, H. Han, C. Park, J.W. Oh, H.H. Kim et al., Halide perovskite nanocrystal-enabled stabilization of transition metal dichalcogenide nanosheets. Small 18, e2106035 (2022). https://doi.org/10.1002/smll.202106035
Y. Liu, W. Gong, F. Xiang, Y. Li, H. Guo et al., High-performance self-powered photodetectors with space-confined hybrid lead halide perovskite nanocrystals. Adv. Optical Mater. 11, 2202215 (2023). https://doi.org/10.1002/adom.202202215
S. Liu, S. Jiao, H. Lu, S. Yang, Y. Zhao et al., A hole transport layer-free, more thermally stable, self-powered CH3NH3PbBr3-based multiband imaging photodetector with novel topological insulator Bi2Te3 electrodes. Adv. Opt. Mater. 10, 2201018 (2022). https://doi.org/10.1002/adom.202201018
S. Qiao, Y. Liu, J. Liu, G. Fu, S. Wang, High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region. ACS Appl. Mater. Interfaces 13, 34625–34636 (2021). https://doi.org/10.1021/acsami.1c09642
Y. Han, R. Wen, F. Zhang, L. Shi, W. Wang et al., Photodetector based on CsPbBr3/Cs4PbB