Stabilizing the Anode and Cathode Interface Synchronously via Electrolyte-Triggered Hydrogel Interphase for Zinc Metal Batteries
Corresponding Author: Jiangqi Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 206
Abstract
The advancement of aqueous zinc metal batteries (ZMBs) is constrained by intrinsic interfacial issues in aqueous electrolyte systems. Here, using numerical simulation, we decipher the multi-scale causes of interfacial instability, elucidating the synergistic effect of macroscopic ineffective regions and microscopic passivation. Based on the analysis, we develop an electrolyte-triggered interphase construction strategy to resolve the interfacial failure. This strategy couples the in situ formation of hydrogel interphase on both the anode and cathode with the electrolyte filling process, thereby (1) facilitating contact between electrodes and the separator; (2) promoting anode reversibility through inducing a bilayer SEI that enhances Zn2+ desolvation kinetics and blocks electron tunneling; (3) ensuring long-term cathode cycling stability via restricting the irreversible dissolution of MnO2 and side-reactions. The resultant Zn metal anode exhibited a near-unity Coulombic efficiency (99.5%) for Zn plating/stripping at an extremely low current density of 0.1 mA cm−2 and the Zn/MnO2 full cell sustained 2000 full-duty-cycles with an exceptionally low decay rate of 0.0051% per-cycle. This work unlocks an alternative angle for promoting practical ZMBs toward more sustainable energy storage systems.
Highlights:
1 Decipher the multi-scale causes of interfacial instability in aqueous electrolyte systems via numerical simulations.
2 Develop an electrolyte-triggered interphase construction strategy to achieve synergistic regulation of both the anode and cathode.
3 Achieve high Coulombic efficiency (99.5%) and long-term cycling stability (over 6000 h) at ultra-low current density (0.1 mA cm−2) in zinc metal batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- C. Bauer, S. Burkhardt, N.P. Dasgupta, L.A. Ellingsen, L.L. Gaines et al., Charging sustainable batteries. Nat. Sustain. 5(3), 176–178 (2022). https://doi.org/10.1038/s41893-022-00864-1
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6(8), 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
- H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- Y. Zhang, S. Shen, K. Xi, P. Li, Z. Kang et al., Suppressed dissolution of fluorine-rich SEI enables highly reversible zinc metal anode for stable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(32), e202407067 (2024). https://doi.org/10.1002/anie.202407067
- H. Cui, Y. Song, D. Ren, L. Wang, X. He, Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 8(1), 29–44 (2024). https://doi.org/10.1016/j.joule.2023.11.012
- X. Cai, W. Wu, B. Zhang, W. Cai, C. Lu et al., Developing an electro-chemo-mechanically synergistic effect via the cholesteric cellulose crystalline interphase for highly stable flexible zinc metal batteries. Energy Environ. Sci. 18(7), 3313–3324 (2025). https://doi.org/10.1039/d5ee00202h
- W. Zhang, C. Zeng, M. Zhang, C. Zhao, D. Chao et al., MXene triggered free radical polymerization in minutes toward all-printed Zn-ion hybrid capacitors and beyond. Angew. Chem. Int. Ed. 64(1), e202413728 (2025). https://doi.org/10.1002/anie.202413728
- Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy (2024). https://doi.org/10.1038/s41560-024-01679-4
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
- Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
- H. Li, S. Li, R. Hou, Y. Rao, S. Guo et al., Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 53(15), 7742–7783 (2024). https://doi.org/10.1039/d4cs00343h
- Z. Shi, Z. Xu, Z. Liu, Y. Ren, L. Zhang et al., Aerogel-driven interface rapid self-gelation enables highly stable Zn anode. Adv. Funct. Mater. 35(5), 2414451 (2025). https://doi.org/10.1002/adfm.202414451
- Z. Liu, S. Chen, Z. Shi, P. Qiu, K. He et al., Multivalent dipole interactions-driven supramolecular polymer layer enables highly stable Zn anode under harsh conditions. Adv. Energy Mater. 15(29), 2502010 (2025). https://doi.org/10.1002/aenm.202502010
- L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao et al., A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32(52), 2004579 (2020). https://doi.org/10.1002/adma.202004579
- C. Huang, H. Yu, Y. Gao, Y. Chen, S.Y.H. Abdalkarim et al., Recent advances in green and efficient cellulose utilization through structure deconstruction and regeneration. Adv. Funct. Mater. 35(30), 2424591 (2025). https://doi.org/10.1002/adfm.202424591
- Y. Chen, C. Huang, Z. Miao, Y. Gao, Y. Dong et al., Tailoring hydronium ion driven dissociation-chemical cross-linking for superfast one-pot cellulose dissolution and derivatization to build robust cellulose films. ACS Nano 18(12), 8754–8767 (2024). https://doi.org/10.1021/acsnano.3c11335
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- Z. Xiang, Y. Qiu, X. Guo, K. Qi, Z.-L. Xu et al., Inherited construction of porous zinc hydroxide sulfate layer for stable dendrite-free Zn anode. Energy Environ. Sci. 17(10), 3409–3418 (2024). https://doi.org/10.1039/D4EE00721B
- D. Li, Y. Zhong, X. Xu, D. Zhou, Y. Tang et al., Reinforcing the symmetry of stripping/plating behavior via in situ interface construction for long-lasting zinc metal batteries. Energy Environ. Sci. 17(22), 8855–8865 (2024). https://doi.org/10.1039/d4ee03102d
- A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
- Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13(1), 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
- J. Chen, E. Quattrocchi, F. Ciucci, Y. Chen, Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 9(8), 2267–2281 (2023). https://doi.org/10.1016/j.chempr.2023.04.022
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- X. Liu, A. Du, Z. Guo, C. Wang, X. Zhou et al., Uneven stripping behavior, an unheeded killer of Mg anodes. Adv. Mater. 34(31), 2201886 (2022). https://doi.org/10.1002/adma.202201886
- J. Huang, Y. Zhong, H. Fu, Y. Zhao, S. Li et al., Interfacial biomacromolecular engineering toward stable ah-level aqueous zinc batteries. Adv. Mater. 36(33), e2406257 (2024). https://doi.org/10.1002/adma.202406257
- W. Yu, K.-Y. Lin, D.T. Boyle, M.T. Tang, Y. Cui et al., Electrochemical formation of bis(fluorosulfonyl)imide-derived solid-electrolyte interphase at Li-metal potential. Nat. Chem. 17(2), 246–255 (2025). https://doi.org/10.1038/s41557-024-01689-5
- C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
- B. Liu, J. Ma, J. Feng, T. Lin, L. Suo, Bifunctional fluorocarbon electrode additive lowers the salt dependence of aqueous electrolytes. Adv. Mater. 36(50), 2413573 (2024). https://doi.org/10.1002/adma.202413573
- X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
- D. Xu, B. Chen, X. Ren, C. Han, Z. Chang et al., Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ. Sci. 17(2), 642–654 (2024). https://doi.org/10.1039/D3EE02522E
- Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
- D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
- Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12(16), 5843–5852 (2021). https://doi.org/10.1039/d0sc06734b
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), e2007406 (2021). https://doi.org/10.1002/adma.202007406
- Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
- N. Jiang, Y. Zeng, Q. Yang, P. Lu, K. Qu et al., Deep ion mass transfer addressing the capacity shrink challenge of aqueous Zn‖MnO2 batteries during the cathode scaleup. Energy Environ. Sci. 17(22), 8904–8914 (2024). https://doi.org/10.1039/d4ee02871f
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
- X. Li, K. Qi, Z. Qin, X. Ding, Y. Zhu et al., Ion-anchored strategy for MnO2/Mn2+ chemistry without “dead Mn” and corrosion. ACS Nano 18(39), 27016–27025 (2024). https://doi.org/10.1021/acsnano.4c09761
- X. Li, D. He, Q. Zhou, X. Zhou, Z. Wang et al., Deciphering anomalous zinc ion storage in intermediate-state MnO2 during layer-to-tunnel structural transition. Energy Environ. Sci. 17(23), 9195–9204 (2024). https://doi.org/10.1039/d4ee03293d
- G. Lai, Z. Zhao, H. Zhang, X. Hu, B. Lu et al., In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO2 batteries. Nat. Commun. 16(1), 2194 (2025). https://doi.org/10.1038/s41467-025-57579-y
- J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15, 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
- K. Zhou, G. Liu, X. Yu, Z. Li, Y. Wang, Carbonate ester-based electrolyte enabling rechargeable Zn battery to achieve high voltage and high Zn utilization. J. Am. Chem. Soc. 146(13), 9455–9464 (2024). https://doi.org/10.1021/jacs.4c02150
- S. Li, Y. Zhong, J. Huang, G. Lai, L. Li et al., Regulating interfacial kinetics boosts the durable A h-level zinc-ion batteries. Energy Environ. Sci. 18(5), 2599–2609 (2025). https://doi.org/10.1039/d4ee04372c
- Y. Dai, C. Zhang, J. Li, X. Gao, P. Hu et al., Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv. Mater. 36(14), 2310645 (2024). https://doi.org/10.1002/adma.202310645
- Q. He, Y. Zhong, J. Li, S. Chai, Y. Yang et al., Constructing kosmotropic salt-compatible PVA hydrogels for stable zinc anodes via strong hydrogen bonds preshielding effect. Adv. Energy Mater. 14(23), 2400170 (2024). https://doi.org/10.1002/aenm.202400170
References
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
C. Bauer, S. Burkhardt, N.P. Dasgupta, L.A. Ellingsen, L.L. Gaines et al., Charging sustainable batteries. Nat. Sustain. 5(3), 176–178 (2022). https://doi.org/10.1038/s41893-022-00864-1
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6(8), 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
Y. Zhang, S. Shen, K. Xi, P. Li, Z. Kang et al., Suppressed dissolution of fluorine-rich SEI enables highly reversible zinc metal anode for stable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 63(32), e202407067 (2024). https://doi.org/10.1002/anie.202407067
H. Cui, Y. Song, D. Ren, L. Wang, X. He, Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 8(1), 29–44 (2024). https://doi.org/10.1016/j.joule.2023.11.012
X. Cai, W. Wu, B. Zhang, W. Cai, C. Lu et al., Developing an electro-chemo-mechanically synergistic effect via the cholesteric cellulose crystalline interphase for highly stable flexible zinc metal batteries. Energy Environ. Sci. 18(7), 3313–3324 (2025). https://doi.org/10.1039/d5ee00202h
W. Zhang, C. Zeng, M. Zhang, C. Zhao, D. Chao et al., MXene triggered free radical polymerization in minutes toward all-printed Zn-ion hybrid capacitors and beyond. Angew. Chem. Int. Ed. 64(1), e202413728 (2025). https://doi.org/10.1002/anie.202413728
Y. Lu, Q. Cao, W. Zhang, T. Zeng, Y. Ou et al., Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium metal batteries under extreme cycling conditions. Nat. Energy (2024). https://doi.org/10.1038/s41560-024-01679-4
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2022). https://doi.org/10.1038/s41893-021-00800-9
Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
H. Li, S. Li, R. Hou, Y. Rao, S. Guo et al., Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 53(15), 7742–7783 (2024). https://doi.org/10.1039/d4cs00343h
Z. Shi, Z. Xu, Z. Liu, Y. Ren, L. Zhang et al., Aerogel-driven interface rapid self-gelation enables highly stable Zn anode. Adv. Funct. Mater. 35(5), 2414451 (2025). https://doi.org/10.1002/adfm.202414451
Z. Liu, S. Chen, Z. Shi, P. Qiu, K. He et al., Multivalent dipole interactions-driven supramolecular polymer layer enables highly stable Zn anode under harsh conditions. Adv. Energy Mater. 15(29), 2502010 (2025). https://doi.org/10.1002/aenm.202502010
L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao et al., A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32(52), 2004579 (2020). https://doi.org/10.1002/adma.202004579
C. Huang, H. Yu, Y. Gao, Y. Chen, S.Y.H. Abdalkarim et al., Recent advances in green and efficient cellulose utilization through structure deconstruction and regeneration. Adv. Funct. Mater. 35(30), 2424591 (2025). https://doi.org/10.1002/adfm.202424591
Y. Chen, C. Huang, Z. Miao, Y. Gao, Y. Dong et al., Tailoring hydronium ion driven dissociation-chemical cross-linking for superfast one-pot cellulose dissolution and derivatization to build robust cellulose films. ACS Nano 18(12), 8754–8767 (2024). https://doi.org/10.1021/acsnano.3c11335
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
Z. Xiang, Y. Qiu, X. Guo, K. Qi, Z.-L. Xu et al., Inherited construction of porous zinc hydroxide sulfate layer for stable dendrite-free Zn anode. Energy Environ. Sci. 17(10), 3409–3418 (2024). https://doi.org/10.1039/D4EE00721B
D. Li, Y. Zhong, X. Xu, D. Zhou, Y. Tang et al., Reinforcing the symmetry of stripping/plating behavior via in situ interface construction for long-lasting zinc metal batteries. Energy Environ. Sci. 17(22), 8855–8865 (2024). https://doi.org/10.1039/d4ee03102d
A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13(1), 3699 (2022). https://doi.org/10.1038/s41467-022-31461-7
J. Chen, E. Quattrocchi, F. Ciucci, Y. Chen, Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 9(8), 2267–2281 (2023). https://doi.org/10.1016/j.chempr.2023.04.022
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
X. Liu, A. Du, Z. Guo, C. Wang, X. Zhou et al., Uneven stripping behavior, an unheeded killer of Mg anodes. Adv. Mater. 34(31), 2201886 (2022). https://doi.org/10.1002/adma.202201886
J. Huang, Y. Zhong, H. Fu, Y. Zhao, S. Li et al., Interfacial biomacromolecular engineering toward stable ah-level aqueous zinc batteries. Adv. Mater. 36(33), e2406257 (2024). https://doi.org/10.1002/adma.202406257
W. Yu, K.-Y. Lin, D.T. Boyle, M.T. Tang, Y. Cui et al., Electrochemical formation of bis(fluorosulfonyl)imide-derived solid-electrolyte interphase at Li-metal potential. Nat. Chem. 17(2), 246–255 (2025). https://doi.org/10.1038/s41557-024-01689-5
C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
B. Liu, J. Ma, J. Feng, T. Lin, L. Suo, Bifunctional fluorocarbon electrode additive lowers the salt dependence of aqueous electrolytes. Adv. Mater. 36(50), 2413573 (2024). https://doi.org/10.1002/adma.202413573
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
D. Xu, B. Chen, X. Ren, C. Han, Z. Chang et al., Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ. Sci. 17(2), 642–654 (2024). https://doi.org/10.1039/D3EE02522E
Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
Y. Dong, L. Miao, G. Ma, S. Di, Y. Wang et al., Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 12(16), 5843–5852 (2021). https://doi.org/10.1039/d0sc06734b
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), e2007406 (2021). https://doi.org/10.1002/adma.202007406
Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O–H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
N. Jiang, Y. Zeng, Q. Yang, P. Lu, K. Qu et al., Deep ion mass transfer addressing the capacity shrink challenge of aqueous Zn‖MnO2 batteries during the cathode scaleup. Energy Environ. Sci. 17(22), 8904–8914 (2024). https://doi.org/10.1039/d4ee02871f
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
X. Li, K. Qi, Z. Qin, X. Ding, Y. Zhu et al., Ion-anchored strategy for MnO2/Mn2+ chemistry without “dead Mn” and corrosion. ACS Nano 18(39), 27016–27025 (2024). https://doi.org/10.1021/acsnano.4c09761
X. Li, D. He, Q. Zhou, X. Zhou, Z. Wang et al., Deciphering anomalous zinc ion storage in intermediate-state MnO2 during layer-to-tunnel structural transition. Energy Environ. Sci. 17(23), 9195–9204 (2024). https://doi.org/10.1039/d4ee03293d
G. Lai, Z. Zhao, H. Zhang, X. Hu, B. Lu et al., In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO2 batteries. Nat. Commun. 16(1), 2194 (2025). https://doi.org/10.1038/s41467-025-57579-y
J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15, 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
K. Zhou, G. Liu, X. Yu, Z. Li, Y. Wang, Carbonate ester-based electrolyte enabling rechargeable Zn battery to achieve high voltage and high Zn utilization. J. Am. Chem. Soc. 146(13), 9455–9464 (2024). https://doi.org/10.1021/jacs.4c02150
S. Li, Y. Zhong, J. Huang, G. Lai, L. Li et al., Regulating interfacial kinetics boosts the durable A h-level zinc-ion batteries. Energy Environ. Sci. 18(5), 2599–2609 (2025). https://doi.org/10.1039/d4ee04372c
Y. Dai, C. Zhang, J. Li, X. Gao, P. Hu et al., Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv. Mater. 36(14), 2310645 (2024). https://doi.org/10.1002/adma.202310645
Q. He, Y. Zhong, J. Li, S. Chai, Y. Yang et al., Constructing kosmotropic salt-compatible PVA hydrogels for stable zinc anodes via strong hydrogen bonds preshielding effect. Adv. Energy Mater. 14(23), 2400170 (2024). https://doi.org/10.1002/aenm.202400170