Top-Down Dual-Interface Carrier Management for Highly Efficient and Stable Perovskite/Silicon Tandem Solar Cells
Corresponding Author: Jichun Ye
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 141
Abstract
Despite significant advancements in the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells, improving carrier management in top cells remains challenging due to the defective dual interfaces of wide-bandgap perovskite, particularly on textured silicon surfaces. Herein, a series of halide ions (Cl−, Br−, I−) substituted piperazinium salts are designed and synthesized as post-treatment modifiers for perovskite surfaces. Notably, piperazinium chloride induces an asymmetric bidirectional ions distribution from the top to the bottom surface, with large piperazinium cations concentrating at the perovskite surface and small chloride anions migrating downward to accumulate at the buried interface. This results in effective dual-interface defect passivation and energy band modulation, enabling wide-bandgap (1.68 eV) perovskite solar cells to achieve a PCE of 22.3% and a record product of open-circuit voltage × fill factor (84.4% relative to the Shockley–Queisser limit). Furthermore, the device retains 91.3% of its initial efficiency after 1200 h of maximum power point tracking without encapsulation. When integrated with double-textured silicon heterojunction solar cells, a remarkable PCE of 31.5% is achieved for a 1.04 cm2 monolithic perovskite/silicon tandem solar cell, exhibiting excellent long-term operational stability (T80 = 755 h) without encapsulation in ambient air. This work provides a convenient strategy on dual-interface engineering for making high-efficiency and stable perovskite platforms.
Highlights:
1 An innovated top-down dual-interface carrier management strategy is developed to effectively improve both interfaces of the wide-bandgap perovskite using a multi-functionalized piperazinium chloride post-treatment.
2 The 1.68 eV unencapsulated single-junction perovskite solar cells exhibit a champion PCE of 22.3%, with a record VOC × FF product (84.4% relative to the Shockley–Queisser limit).
3 An impressive PCE of 31.5% for the 1.04 cm2 monolithic perovskite/silicon tandem solar cell based on silicon heterojunction bottom cell is demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32(7), 425–441 (2024). https://doi.org/10.1002/pip.3831
- M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016). https://doi.org/10.1021/acsenergylett.6b00405
- Z. Ying, X. Yang, X. Wang, J. Ye, Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv. Mater. 36, e2311501 (2024). https://doi.org/10.1002/adma.202311501
- W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
- H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
- M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
- J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12, 2103567 (2022). https://doi.org/10.1002/aenm.202103567
- A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8, 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
- J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022). https://doi.org/10.1126/science.abn8910
- S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69 (2023). https://doi.org/10.1126/science.adf5872
- X.Y. Chin, D. Turkay, J.A. Steele, S. Tabean, S. Eswara et al., Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023). https://doi.org/10.1126/science.adg0091
- K. Artuk, D. Turkay, M.D. Mensi, J.A. Steele, D.A. Jacobs et al., A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite-silicon tandems. Adv. Mater. 36, e2311745 (2024). https://doi.org/10.1002/adma.202311745
- Z.-W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12, 2104030 (2022). https://doi.org/10.1002/aenm.202104030
- Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9, 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2022). https://doi.org/10.1038/s41578-022-00503-3
- D. Turkay, K. Artuk, X.-Y. Chin, D.A. Jacobs, S.-J. Moon et al., Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells. Joule 8, 1735–1753 (2024). https://doi.org/10.1016/j.joule.2024.04.015
- X. Zhang, Q. Ma, Y. Wang, J. Zheng, Q. Liu et al., Ligand homogenized Br-I wide-bandgap perovskites for efficient NiOx-based inverted semitransparent and tandem solar cells. ACS Nano 18, 15991–16001 (2024). https://doi.org/10.1021/acsnano.4c04341
- L. Qiao, T. Ye, T. Wang, W. Kong, R. Sun et al., Freezing halide segregation under intense light for photostable perovskite/silicon tandem solar cells. Adv. Energy Mater. 14, 2302983 (2024). https://doi.org/10.1002/aenm.202302983
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- S. Yuan, K. Mao, F. Cai, Z. Zhu, H. Meng et al., Understanding and engineering the perovskite/organometallic hole transport interface for high-performance p–i–n single cells and textured tandem solar cells. ACS Energy Lett. 9, 3557–3566 (2024). https://doi.org/10.1021/acsenergylett.4c01301
- J. Li, B. Farhadi, S. Liu, L. Liu, H. Wang et al., Built-in field manipulation through a perovskite homojunction for efficient monolithic perovskite/silicon tandem solar cells. Nano Energy 129, 109976 (2024). https://doi.org/10.1016/j.nanoen.2024.109976
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- N. Yan, Y. Gao, J. Yang, Z. Fang, J. Feng et al., Wide-bandgap perovskite solar cell using a fluoride-assisted surface gradient passivation strategy. Angew. Chem. Int. Ed. 62, e202216668 (2023). https://doi.org/10.1002/anie.202216668
- D.B. Khadka, Y. Shirai, M. Yanagida, H. Ota, A. Lyalin et al., Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat. Commun. 15, 882 (2024). https://doi.org/10.1038/s41467-024-45228-9
- F. Yang, P. Tockhorn, A. Musiienko, F. Lang, D. Menzel et al., Minimizing interfacial recombination in 1.8 eV triple-halide perovskites for 27.5% efficient all-perovskite tandems. Adv. Mater. 36, e2307743 (2024). https://doi.org/10.1002/adma.202307743
- T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Phys. Rev. B 68, 195408 (2003). https://doi.org/10.1103/physrevb.68.195408
- M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
- L. Shen, P. Song, L. Zheng, L. Wang, X. Zhang et al., Ion-diffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 35, e2301624 (2023). https://doi.org/10.1002/adma.202301624
- X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36, e2313524 (2024). https://doi.org/10.1002/adma.202313524
- C. Luo, G. Zheng, F. Gao, X. Wang, C. Zhan et al., Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023). https://doi.org/10.1038/s41566-023-01247-4
- F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020). https://doi.org/10.1021/jacs.0c09845
- Y. Zheng, X. Wu, R. Zhuang, C. Tian, A. Sun et al., Managing interfacial hot-carrier cooling and extraction kinetics for inverted ma-free perovskite solar cells over 23% efficiency via Dion–Jacobson 2D capping layer. Adv. Funct. Mater. 33, 2300576 (2023). https://doi.org/10.1002/adfm.202300576
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- X. Liu, T. Webb, L. Dai, K. Ji, J.A. Smith et al., Influence of halide choice on formation of low-dimensional perovskite interlayer in efficient perovskite solar cells. Energy Environ. Mater. 5, 670–682 (2022). https://doi.org/10.1002/eem2.12321
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
- X. Wang, Y. Wang, Y. Chen, X. Liu, Y. Zhao, Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, e2103688 (2021). https://doi.org/10.1002/adma.202103688
- S. Tan, C. Tan, Y. Cui, B. Yu, Y. Li et al., Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules. Adv. Mater. 35, e2301879 (2023). https://doi.org/10.1002/adma.202301879
- J. Fang, D. Lin, G. Xie, S. Li, H. Li et al., Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17, 7829–7837 (2024). https://doi.org/10.1039/d4ee02718c
- M.A. Mahmud, H.T. Pham, T. Duong, Y. Yin, J. Peng et al., Combined bulk and surface passivation in dimensionally engineered 2D–3D perovskite films via chlorine diffusion. Adv. Funct. Mater. 31, 2104251 (2021). https://doi.org/10.1002/adfm.202104251
- X. Zhang, W. Zhou, X. Chen, Y. Chen, X. Li et al., Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv. Energy Mater. 12, 2201105 (2022). https://doi.org/10.1002/aenm.202201105
- C. Luo, G. Zheng, X. Wang, F. Gao, C. Zhan et al., Solid–solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 16, 178–189 (2023). https://doi.org/10.1039/d2ee02732a
- Y. Zhang, Y. Wang, L. Zhao, X. Yang, C.-H. Hou et al., Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 14, 6526–6535 (2021). https://doi.org/10.1039/d1ee02287c
- H. Wu, X. Yin, L. Lu, J. Song, L. Hu et al., Cation and anion optimization of ammonium halide for interfacial passivation of inverted perovskite solar cells. Chem. Commun. 59, 6183–6186 (2023). https://doi.org/10.1039/D3CC01195J
- H. Wang, H. Liu, Z. Dong, T. Song, W. Li et al., Size mismatch induces cation segregation in CsPbI3: forming energy level gradient and 3D/2D heterojunction promotes the efficiency of carbon-based perovskite solar cells to over 15%. Nano Energy 89, 106411 (2021). https://doi.org/10.1016/j.nanoen.2021.106411
- X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021). https://doi.org/10.1002/adma.202006435
- P. Chen, W. Pan, S. Zhu, F. Cao, A. Tong et al., Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with n-i-p structure. Chem. Eng. J. 468, 143652 (2023). https://doi.org/10.1016/j.cej.2023.143652
- B. Yang, J. Keum, O.S. Ovchinnikova, A. Belianinov, S. Chen et al., Deciphering halogen competition in organometallic halide perovskite growth. J. Am. Chem. Soc. 138, 5028–5035 (2016). https://doi.org/10.1021/jacs.5b13254
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
- X. Luo, H. Luo, H. Li, R. Xia, X. Zheng et al., Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023). https://doi.org/10.1002/adma.202207883
- F. Wang, D. Duan, Y. Sun, T. Wang, G. Yang et al., Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics. Nano Energy 125, 109549 (2024). https://doi.org/10.1016/j.nanoen.2024.109549
- Z. Zhang, X. Tian, C. Wang, J. Jin, Y. Jiang et al., Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy Environ. Sci. 15, 5274–5283 (2022). https://doi.org/10.1039/d2ee02796h
- Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
- W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
- J. Wu, J. Shi, Y. Li, H. Li, H. Wu et al., Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 9, 1901352 (2019). https://doi.org/10.1002/aenm.201901352
- J. Endres, D.A. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental-theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
- Z. Yang, Y. Wu, N. Yang, R. Yang, Y. Hao, Revealing the role of polyacrylonitrile for highly efficient and stable perovskite solar cells at extremely low temperatures. Adv. Energy Mater. 14, 2400638 (2024). https://doi.org/10.1002/aenm.202400638
- J. Zhang, B. Yu, Y. Sun, H. Yu, Minimized energy loss at the buried interface of p-i-n perovskite solar cells via accelerating charge transfer and forming p–n homojunction. Adv. Energy Mater. 13, 2300382 (2023). https://doi.org/10.1002/aenm.202300382
- Y. Chen, Y. Shen, W. Tang, Y. Wu, W. Luo et al., Ion compensation of buried interface enables highly efficient and stable inverted MA-free perovskite solar cells. Adv. Funct. Mater. 32, 2206703 (2022). https://doi.org/10.1002/adfm.202206703
- J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong et al., Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015). https://doi.org/10.1103/physrevapplied.4.014020
- S. Chen, X. Xiao, H. Gu, J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021). https://doi.org/10.1126/sciadv.abe8130
- Y.-H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
- S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
- C. Deger, S. Tan, K.N. Houk, Y. Yang, I. Yavuz, Lattice strain suppresses point defect formation in halide perovskites. Nano Res. 15, 5746–5751 (2022). https://doi.org/10.1007/s12274-022-4141-9
- W. Nie, J.-C. Blancon, A.J. Neukirch, K. Appavoo, H. Tsai et al., Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms11574
- J. Sun, C. Shou, J. Sun, X. Wang, Z. Yang et al., NiOx-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells. Sol. RRL 5, 2100663 (2021). https://doi.org/10.1002/solr.202100663
- X. Li, Z. Ying, X. Wang, Y. Zeng, X. Yang et al., How to enable highly efficient and large-area fabrication on specific textures for monolithic perovskite/silicon tandem solar cells? Inf. Funct. Mater. 1, 160–180 (2024). https://doi.org/10.1002/ifm2.18
- X. Wang, Z. Ying, J. Zheng, X. Li, Z. Zhang et al., Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat. Commun. 14, 2166 (2023). https://doi.org/10.1038/s41467-023-37877-z
References
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32(7), 425–441 (2024). https://doi.org/10.1002/pip.3831
M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016). https://doi.org/10.1021/acsenergylett.6b00405
Z. Ying, X. Yang, X. Wang, J. Ye, Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv. Mater. 36, e2311501 (2024). https://doi.org/10.1002/adma.202311501
W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
H. Lin, M. Yang, X. Ru, G. Wang, S. Yin et al., Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023). https://doi.org/10.1038/s41560-023-01255-2
M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
J. Warby, F. Zu, S. Zeiske, E. Gutierrez-Partida, L. Frohloff et al., Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12, 2103567 (2022). https://doi.org/10.1002/aenm.202103567
A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8, 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022). https://doi.org/10.1126/science.abn8910
S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69 (2023). https://doi.org/10.1126/science.adf5872
X.Y. Chin, D. Turkay, J.A. Steele, S. Tabean, S. Eswara et al., Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023). https://doi.org/10.1126/science.adg0091
K. Artuk, D. Turkay, M.D. Mensi, J.A. Steele, D.A. Jacobs et al., A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite-silicon tandems. Adv. Mater. 36, e2311745 (2024). https://doi.org/10.1002/adma.202311745
Z.-W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12, 2104030 (2022). https://doi.org/10.1002/aenm.202104030
Q. Jiang, K. Zhu, Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9, 399–419 (2024). https://doi.org/10.1038/s41578-024-00678-x
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2022). https://doi.org/10.1038/s41578-022-00503-3
D. Turkay, K. Artuk, X.-Y. Chin, D.A. Jacobs, S.-J. Moon et al., Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells. Joule 8, 1735–1753 (2024). https://doi.org/10.1016/j.joule.2024.04.015
X. Zhang, Q. Ma, Y. Wang, J. Zheng, Q. Liu et al., Ligand homogenized Br-I wide-bandgap perovskites for efficient NiOx-based inverted semitransparent and tandem solar cells. ACS Nano 18, 15991–16001 (2024). https://doi.org/10.1021/acsnano.4c04341
L. Qiao, T. Ye, T. Wang, W. Kong, R. Sun et al., Freezing halide segregation under intense light for photostable perovskite/silicon tandem solar cells. Adv. Energy Mater. 14, 2302983 (2024). https://doi.org/10.1002/aenm.202302983
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
S. Yuan, K. Mao, F. Cai, Z. Zhu, H. Meng et al., Understanding and engineering the perovskite/organometallic hole transport interface for high-performance p–i–n single cells and textured tandem solar cells. ACS Energy Lett. 9, 3557–3566 (2024). https://doi.org/10.1021/acsenergylett.4c01301
J. Li, B. Farhadi, S. Liu, L. Liu, H. Wang et al., Built-in field manipulation through a perovskite homojunction for efficient monolithic perovskite/silicon tandem solar cells. Nano Energy 129, 109976 (2024). https://doi.org/10.1016/j.nanoen.2024.109976
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
N. Yan, Y. Gao, J. Yang, Z. Fang, J. Feng et al., Wide-bandgap perovskite solar cell using a fluoride-assisted surface gradient passivation strategy. Angew. Chem. Int. Ed. 62, e202216668 (2023). https://doi.org/10.1002/anie.202216668
D.B. Khadka, Y. Shirai, M. Yanagida, H. Ota, A. Lyalin et al., Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat. Commun. 15, 882 (2024). https://doi.org/10.1038/s41467-024-45228-9
F. Yang, P. Tockhorn, A. Musiienko, F. Lang, D. Menzel et al., Minimizing interfacial recombination in 1.8 eV triple-halide perovskites for 27.5% efficient all-perovskite tandems. Adv. Mater. 36, e2307743 (2024). https://doi.org/10.1002/adma.202307743
T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Phys. Rev. B 68, 195408 (2003). https://doi.org/10.1103/physrevb.68.195408
M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10, 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
L. Shen, P. Song, L. Zheng, L. Wang, X. Zhang et al., Ion-diffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 35, e2301624 (2023). https://doi.org/10.1002/adma.202301624
X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36, e2313524 (2024). https://doi.org/10.1002/adma.202313524
C. Luo, G. Zheng, F. Gao, X. Wang, C. Zhan et al., Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023). https://doi.org/10.1038/s41566-023-01247-4
F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020). https://doi.org/10.1021/jacs.0c09845
Y. Zheng, X. Wu, R. Zhuang, C. Tian, A. Sun et al., Managing interfacial hot-carrier cooling and extraction kinetics for inverted ma-free perovskite solar cells over 23% efficiency via Dion–Jacobson 2D capping layer. Adv. Funct. Mater. 33, 2300576 (2023). https://doi.org/10.1002/adfm.202300576
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
X. Liu, T. Webb, L. Dai, K. Ji, J.A. Smith et al., Influence of halide choice on formation of low-dimensional perovskite interlayer in efficient perovskite solar cells. Energy Environ. Mater. 5, 670–682 (2022). https://doi.org/10.1002/eem2.12321
D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
X. Wang, Y. Wang, Y. Chen, X. Liu, Y. Zhao, Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, e2103688 (2021). https://doi.org/10.1002/adma.202103688
S. Tan, C. Tan, Y. Cui, B. Yu, Y. Li et al., Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules. Adv. Mater. 35, e2301879 (2023). https://doi.org/10.1002/adma.202301879
J. Fang, D. Lin, G. Xie, S. Li, H. Li et al., Anion exchange promoting non-impurities enables conformable and efficient inverted perovskite solar cells. Energy Environ. Sci. 17, 7829–7837 (2024). https://doi.org/10.1039/d4ee02718c
M.A. Mahmud, H.T. Pham, T. Duong, Y. Yin, J. Peng et al., Combined bulk and surface passivation in dimensionally engineered 2D–3D perovskite films via chlorine diffusion. Adv. Funct. Mater. 31, 2104251 (2021). https://doi.org/10.1002/adfm.202104251
X. Zhang, W. Zhou, X. Chen, Y. Chen, X. Li et al., Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv. Energy Mater. 12, 2201105 (2022). https://doi.org/10.1002/aenm.202201105
C. Luo, G. Zheng, X. Wang, F. Gao, C. Zhan et al., Solid–solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 16, 178–189 (2023). https://doi.org/10.1039/d2ee02732a
Y. Zhang, Y. Wang, L. Zhao, X. Yang, C.-H. Hou et al., Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 14, 6526–6535 (2021). https://doi.org/10.1039/d1ee02287c
H. Wu, X. Yin, L. Lu, J. Song, L. Hu et al., Cation and anion optimization of ammonium halide for interfacial passivation of inverted perovskite solar cells. Chem. Commun. 59, 6183–6186 (2023). https://doi.org/10.1039/D3CC01195J
H. Wang, H. Liu, Z. Dong, T. Song, W. Li et al., Size mismatch induces cation segregation in CsPbI3: forming energy level gradient and 3D/2D heterojunction promotes the efficiency of carbon-based perovskite solar cells to over 15%. Nano Energy 89, 106411 (2021). https://doi.org/10.1016/j.nanoen.2021.106411
X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021). https://doi.org/10.1002/adma.202006435
P. Chen, W. Pan, S. Zhu, F. Cao, A. Tong et al., Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with n-i-p structure. Chem. Eng. J. 468, 143652 (2023). https://doi.org/10.1016/j.cej.2023.143652
B. Yang, J. Keum, O.S. Ovchinnikova, A. Belianinov, S. Chen et al., Deciphering halogen competition in organometallic halide perovskite growth. J. Am. Chem. Soc. 138, 5028–5035 (2016). https://doi.org/10.1021/jacs.5b13254
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019). https://doi.org/10.1039/C9EE02268F
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
X. Luo, H. Luo, H. Li, R. Xia, X. Zheng et al., Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883 (2023). https://doi.org/10.1002/adma.202207883
F. Wang, D. Duan, Y. Sun, T. Wang, G. Yang et al., Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics. Nano Energy 125, 109549 (2024). https://doi.org/10.1016/j.nanoen.2024.109549
Z. Zhang, X. Tian, C. Wang, J. Jin, Y. Jiang et al., Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy Environ. Sci. 15, 5274–5283 (2022). https://doi.org/10.1039/d2ee02796h
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
J. Wu, J. Shi, Y. Li, H. Li, H. Wu et al., Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 9, 1901352 (2019). https://doi.org/10.1002/aenm.201901352
J. Endres, D.A. Egger, M. Kulbak, R.A. Kerner, L. Zhao et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental-theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016). https://doi.org/10.1021/acs.jpclett.6b00946
Z. Yang, Y. Wu, N. Yang, R. Yang, Y. Hao, Revealing the role of polyacrylonitrile for highly efficient and stable perovskite solar cells at extremely low temperatures. Adv. Energy Mater. 14, 2400638 (2024). https://doi.org/10.1002/aenm.202400638
J. Zhang, B. Yu, Y. Sun, H. Yu, Minimized energy loss at the buried interface of p-i-n perovskite solar cells via accelerating charge transfer and forming p–n homojunction. Adv. Energy Mater. 13, 2300382 (2023). https://doi.org/10.1002/aenm.202300382
Y. Chen, Y. Shen, W. Tang, Y. Wu, W. Luo et al., Ion compensation of buried interface enables highly efficient and stable inverted MA-free perovskite solar cells. Adv. Funct. Mater. 32, 2206703 (2022). https://doi.org/10.1002/adfm.202206703
J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong et al., Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015). https://doi.org/10.1103/physrevapplied.4.014020
S. Chen, X. Xiao, H. Gu, J. Huang, Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021). https://doi.org/10.1126/sciadv.abe8130
Y.-H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020). https://doi.org/10.1126/science.aba1628
S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
C. Deger, S. Tan, K.N. Houk, Y. Yang, I. Yavuz, Lattice strain suppresses point defect formation in halide perovskites. Nano Res. 15, 5746–5751 (2022). https://doi.org/10.1007/s12274-022-4141-9
W. Nie, J.-C. Blancon, A.J. Neukirch, K. Appavoo, H. Tsai et al., Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms11574
J. Sun, C. Shou, J. Sun, X. Wang, Z. Yang et al., NiOx-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells. Sol. RRL 5, 2100663 (2021). https://doi.org/10.1002/solr.202100663
X. Li, Z. Ying, X. Wang, Y. Zeng, X. Yang et al., How to enable highly efficient and large-area fabrication on specific textures for monolithic perovskite/silicon tandem solar cells? Inf. Funct. Mater. 1, 160–180 (2024). https://doi.org/10.1002/ifm2.18
X. Wang, Z. Ying, J. Zheng, X. Li, Z. Zhang et al., Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat. Commun. 14, 2166 (2023). https://doi.org/10.1038/s41467-023-37877-z