Specific Sn–O–Fe Active Sites from Atomically Sn-Doping Porous Fe2O3 for Ultrasensitive NO2 Detection
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 276
Abstract
Conventional gas sensing materials (e.g., metal oxides) suffer from deficient sensitivity and serve cross-sensitivity issues due to the lack of efficient adsorption sites. Herein, the heteroatom atomically doping strategy is demonstrated to significantly enhance the sensing performance of metal oxides-based gas sensing materials. Specifically, the Sn atoms were incorporated into porous Fe2O3 in the form of atomically dispersed sites. As revealed by X-ray absorption spectroscopy and atomic-resolution scanning transmission electron microscopy, these Sn atoms successfully occupy the Fe sites in the Fe2O3 lattice, forming the unique Sn–O–Fe sites. Compared to Fe–O–Fe sites (from bare Fe2O3) and Sn–O–Sn sites (from SnO2/Fe2O3 with high Sn loading), the Sn–O–Fe sites on porous Fe2O3 exhibit a superior sensitivity (Rg/Ra = 2646.6) to 1 ppm NO2, along with dramatically increased selectivity and ultra-low limits of detection (10 ppb). Further theoretical calculations suggest that the strong adsorption of NO2 on Sn–O–Fe sites (N atom on Sn site, O atom on Fe site) contributes a more efficient gas response, compared to NO2 on Fe–O–Fe sites and other gases on Sn–O–Fe sites. Moreover, the incorporated Sn atoms reduce the bandgap of Fe2O3, not only facilitating the electron release but also increasing the NO2 adsorption at a low working temperature (150 °C). This work introduces an effective strategy to construct effective adsorption sites that show a unique response to specific gas molecules, potentially promoting the rational design of atomically modified gas sensing materials with high sensitivity and high selectivity.
Highlights:
1 The heteroatom atomically doping strategy was reported to construct highly efficient sites on metal oxides for the detection of low-concentration gas.
2 The atomically dispersed Sn atoms were intentionally incorporated into the Fe2O3 lattice during the oxidative annealing of Fe-based metal organic framework, leading to specific Sn–O–Fe sites, porous structures, and abundant oxygen vacancies.
3 The optimized Sn-Fe2O3 exhibited exceptional sensing performance for NO2 detection: ultra-high sensitivity (Rg/Ra=2646.6 to 1 ppm NO2), ultra-low limit of detection (10 ppb), and high selectivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Sharma, S.B. Eadi, H. Noothalapati, M. Otyepka, H.-D. Lee et al., Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 53(5), 2530–2577 (2024). https://doi.org/10.1039/D2CS00761D
- B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
- F. Zheng, H.-Y. Jiang, X.-T. Yang, J.-H. Guo, L. Sun et al., Reviews of wearable healthcare systems based on flexible gas sensors. Chem. Eng. J. 490, 151874 (2024). https://doi.org/10.1016/j.cej.2024.151874
- P. Wu, Y. Li, A. Yang, X. Tan, J. Chu et al., Advances in 2D materials based gas sensors for industrial machine olfactory applications. ACS Sens. 9(6), 2728–2776 (2024). https://doi.org/10.1021/acssensors.4c00431
- G. Verma, A. Gokarna, H. Kadiri, K. Nomenyo, G. Lerondel et al., Multiplexed gas sensor: fabrication strategies, recent progress, and challenges. ACS Sens. 8(9), 3320–3337 (2023). https://doi.org/10.1021/acssensors.3c01244
- M. Taheri, I.A. Deen, M. Packirisamy, M.J. Deen, Metal oxide-based electrical/electrochemical sensors for health monitoring systems. TrAC Trends Anal. Chem. 171, 117509 (2024). https://doi.org/10.1016/j.trac.2023.117509
- M.J. Cooper, R.V. Martin, M.S. Hammer, P.F. Levelt, P. Veefkind et al., Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature 601(7893), 380–387 (2022). https://doi.org/10.1038/s41586-021-04229-0
- T. Xue, M. Tong, M. Wang, X. Yang, Y. Wang et al., Health impacts of long-term NO2 exposure and inequalities among the Chinese population from 2013 to 2020. Environ. Sci. Technol. 57(13), 5349–5357 (2023). https://doi.org/10.1021/acs.est.2c08022
- M. Krzyzanowski, A. Cohen, Update of WHO air quality guidelines. Air Qual. Atmos. Health 1(1), 7–13 (2008). https://doi.org/10.1007/s11869-008-0008-9
- L.X. Ou, M.Y. Liu, L.Y. Zhu, D.W. Zhang, H.L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 14(1), 206 (2022). https://doi.org/10.1007/s40820-022-00956-9
- S. Ma, J. Xu, Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 11(44), 23742–23771 (2023). https://doi.org/10.1039/d3ta04953a
- Q. Li, W. Zeng, Y. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sens. Actuat. B Chem. 359, 131579 (2022). https://doi.org/10.1016/j.snb.2022.131579
- C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
- Q. Zhang, J. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30(31), 2000768 (2020). https://doi.org/10.1002/adfm.202000768
- N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
- S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120(21), 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- C. Kim, H. Min, J. Kim, J.H. Moon, Boosting electrochemical methane conversion by oxygen evolution reactions on Fe–N–C single atom catalysts. Energy Environ. Sci. 16(7), 3158–3165 (2023). https://doi.org/10.1039/D3EE00027C
- F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos et al., Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 256, 117809 (2019). https://doi.org/10.1016/j.apcatb.2019.117809
- B. Feng, Z. Wang, Y. Feng, P. Li, Y. Zhu et al., Single-atom Au-functionalized mesoporous SnO2 nanospheres for ultrasensitive detection of Listeria monocytogenes biomarker at low temperatures. ACS Nano 18(34), 22888–22900 (2024). https://doi.org/10.1021/acsnano.4c03566
- P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10(26), 2302778 (2023). https://doi.org/10.1002/advs.202302778
- T. Chu, C. Rong, L. Zhou, X. Mao, B. Zhang et al., Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 35(3), 2206783 (2023). https://doi.org/10.1002/adma.202206783
- G. Lei, H. Pan, H. Mei, X. Liu, G. Lu et al., Emerging single atom catalysts in gas sensors. Chem. Soc. Rev. 51(16), 7260–7280 (2022). https://doi.org/10.1039/d2cs00257d
- M.-H. Pham, G.-T. Vuong, A.-T. Vu, T.-O. Do, Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 27(24), 15261–15267 (2011). https://doi.org/10.1021/la203570h
- C. Serre, F. Millange, S. Surblé, G. Férey, A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43(46), 6285–6289 (2004). https://doi.org/10.1002/anie.200454250
- V. Pascanu, A. Bermejo Gómez, C. Ayats, A.E. Platero-Prats, F. Carson et al., Double-supported silica-metal–organic framework palladium nanocatalyst for the aerobic oxidation of alcohols under batch and continuous flow regimes. ACS Catal. 5(2), 472–479 (2015). https://doi.org/10.1021/cs501573c
- W. Tian, J. Han, L. Wan, N. Li, D. Chen et al., Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 107, 108165 (2023). https://doi.org/10.1016/j.nanoen.2023.108165
- J. Łuczak, M. Kroczewska, M. Baluk, J. Sowik, P. Mazierski et al., Morphology control through the synthesis of metal-organic frameworks. Adv. Colloid Interface Sci. 314, 102864 (2023). https://doi.org/10.1016/j.cis.2023.102864
- H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. 9(6), 2104374 (2022). https://doi.org/10.1002/advs.202104374
- J. Deng, S. Cai, M. Gao, J.-Y. Hasegawa, H. Yao et al., Crystal-in-amorphous vanadate catalysts for universal poison-resistant elimination of nitric oxide. ACS Catal. 13(18), 12363–12373 (2023). https://doi.org/10.1021/acscatal.3c02571
- A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2(10), 2804–2812 (2010). https://doi.org/10.1021/am1004943
- A.K. Bhunia, B. Mahata, B. Mandal, P.K. Guha, S. Saha, Emerging 2D nanoscale metal oxide sensor: semiconducting CeO2 nano-sheets for enhanced formaldehyde vapor sensing. Nanotechnology 35(45), 455501 (2024). https://doi.org/10.1088/1361-6528/ad6e8b
- W. Chen, S. Yang, H. Liu, F. Huang, Q. Shao et al., Single-atom Ce-modified α-Fe2O3 for selective catalytic reduction of NO with NH3. Environ. Sci. Technol. 56(14), 10442–10453 (2022). https://doi.org/10.1021/acs.est.2c02916
- L. Zhao, C. Yu, C. Xin, Y. Xing, Z. Wei et al., Increasing the catalytic activity of Co3O4 via boron doping and chemical reduction for enhanced acetone detection. Adv. Funct. Mater. 34(18), 2314174 (2024). https://doi.org/10.1002/adfm.202314174
- L. Gui, Z. Wang, K. Zhang, B. He, Y. Liu et al., Oxygen vacancies-rich Ce0.9Gd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B Environ. 266, 118656 (2020). https://doi.org/10.1016/j.apcatb.2020.118656
- B. Mandal, A.K. Bhunia, B. Mahata, S. Roy, S. Acharyya et al., Defect-rich SnO2–x polydisperse spheres toward the detection of vehicle-emitted category NO2 gas. IEEE Sens. J. 24(17), 27183–27190 (2024). https://doi.org/10.1109/JSEN.2024.3429543
- H. Xie, Y. Song, Y. Jiao, L. Gao, S. Shi et al., Engineering surface passivation and hole transport layer on hematite photoanodes enabling robust photoelectrocatalytic water oxidation. ACS Nano 18(7), 5712–5722 (2024). https://doi.org/10.1021/acsnano.3c11638
- A.K. Bhunia, B. Mandal, P.K. Guha, Efficient ethanol sensor based on vertically aligned ZnO nanorods on radio frequency sputtered ZnO/Pt/SiO2/Si substrate. Phys. Status Solidi RRL 19(3), 2400285 (2025). https://doi.org/10.1002/pssr.202400285
- Y. Hong, L. Wei, Q. Zhang, Z. Deng, X. Liao et al., A broad-spectrum gas sensor based on correlated two-dimensional electron gas. Nat. Commun. 14(1), 8496 (2023). https://doi.org/10.1038/s41467-023-44331-7
- T. Liang, Y. Li, X. Zhang, H. Bao, F. Li et al., Selenium-doped hematite (α-Fe2O3) hollow nanorods for highly sensitive and selective detection of trace NO2. J. Mater. Chem. C 13(13), 6660–6668 (2025). https://doi.org/10.1039/d4tc05464d
- A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi et al., A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42(16), 18974–18982 (2016). https://doi.org/10.1016/j.ceramint.2016.09.052
- L. Sun, J. Sun, K. Zhang, X. Sun, S. Bai et al., rGO functionalized α-Fe2O3/Co3O4 heterojunction for NO2 detection. Sens. Actuat. B Chem. 354, 131194 (2022). https://doi.org/10.1016/j.snb.2021.131194
- S.L. Bai, K. Tian, H. Fu, Y.J. Feng, R.X. Luo et al., Novel α-Fe2O3/BiVO4 heterojunctions for enhancing NO2 sensing properties. Sens. Actuat. B-Chem. 268, 136–143 (2018). https://doi.org/10.1016/j.snb.2018.03.173
- B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao et al., The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens. Actuat. B Chem. 261, 252–263 (2018). https://doi.org/10.1016/j.snb.2018.01.143
- Y.-C. Liang, Y.-W. Hsu, Enhanced sensing ability of brush-like Fe2O3-ZnO nanostructures towards NO2 gas via manipulating material synergistic effect. Int. J. Mol. Sci. 22(13), 6884 (2021). https://doi.org/10.3390/ijms22136884
- C. Han, X. Li, Y. Liu, X. Li, C. Shao et al., Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. J. Hazard. Mater. 403, 124093 (2021). https://doi.org/10.1016/j.jhazmat.2020.124093
- Y. Yang, M. Zhu, H. Zhang, B. Wang, C. Chen et al., Room temperature gas sensor based on rGO/Bi2S3 heterostructures for ultrasensitive and rapid NO2 detection. Chem. Eng. J. 490, 151872 (2024). https://doi.org/10.1016/j.cej.2024.151872
- G.-C. Lu, X.-H. Liu, W. Zheng, J.-Y. Xie, Z.-S. Li et al., UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 41(5), 1520–1528 (2022). https://doi.org/10.1007/s12598-021-01899-7
- H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a
- G.-L. Chen, M.-S. Lv, L.-L. Sui, Z.-P. Deng, Y.-M. Xu et al., Low-temperature and dual-sensing NO2/dimethylamine sensor based on single-crystal WO3 nanops-supported sheets synthesized by simple pyrolysis of spoiled WCl6 powder. Chem. Eng. J. 464, 142528 (2023). https://doi.org/10.1016/j.cej.2023.142528
- M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuat. B Chem. 301, 126845 (2019). https://doi.org/10.1016/j.snb.2019.126845
- C. Zhang, G. Liu, X. Geng, K. Wu, M. Debliquy, Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: a review. Sens. Actuat. A Phys. 309, 112026 (2020). https://doi.org/10.1016/j.sna.2020.112026
References
A. Sharma, S.B. Eadi, H. Noothalapati, M. Otyepka, H.-D. Lee et al., Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 53(5), 2530–2577 (2024). https://doi.org/10.1039/D2CS00761D
B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
F. Zheng, H.-Y. Jiang, X.-T. Yang, J.-H. Guo, L. Sun et al., Reviews of wearable healthcare systems based on flexible gas sensors. Chem. Eng. J. 490, 151874 (2024). https://doi.org/10.1016/j.cej.2024.151874
P. Wu, Y. Li, A. Yang, X. Tan, J. Chu et al., Advances in 2D materials based gas sensors for industrial machine olfactory applications. ACS Sens. 9(6), 2728–2776 (2024). https://doi.org/10.1021/acssensors.4c00431
G. Verma, A. Gokarna, H. Kadiri, K. Nomenyo, G. Lerondel et al., Multiplexed gas sensor: fabrication strategies, recent progress, and challenges. ACS Sens. 8(9), 3320–3337 (2023). https://doi.org/10.1021/acssensors.3c01244
M. Taheri, I.A. Deen, M. Packirisamy, M.J. Deen, Metal oxide-based electrical/electrochemical sensors for health monitoring systems. TrAC Trends Anal. Chem. 171, 117509 (2024). https://doi.org/10.1016/j.trac.2023.117509
M.J. Cooper, R.V. Martin, M.S. Hammer, P.F. Levelt, P. Veefkind et al., Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature 601(7893), 380–387 (2022). https://doi.org/10.1038/s41586-021-04229-0
T. Xue, M. Tong, M. Wang, X. Yang, Y. Wang et al., Health impacts of long-term NO2 exposure and inequalities among the Chinese population from 2013 to 2020. Environ. Sci. Technol. 57(13), 5349–5357 (2023). https://doi.org/10.1021/acs.est.2c08022
M. Krzyzanowski, A. Cohen, Update of WHO air quality guidelines. Air Qual. Atmos. Health 1(1), 7–13 (2008). https://doi.org/10.1007/s11869-008-0008-9
L.X. Ou, M.Y. Liu, L.Y. Zhu, D.W. Zhang, H.L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 14(1), 206 (2022). https://doi.org/10.1007/s40820-022-00956-9
S. Ma, J. Xu, Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 11(44), 23742–23771 (2023). https://doi.org/10.1039/d3ta04953a
Q. Li, W. Zeng, Y. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sens. Actuat. B Chem. 359, 131579 (2022). https://doi.org/10.1016/j.snb.2022.131579
C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017). https://doi.org/10.1002/anie.201703864
Q. Zhang, J. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30(31), 2000768 (2020). https://doi.org/10.1002/adfm.202000768
N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120(21), 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
C. Kim, H. Min, J. Kim, J.H. Moon, Boosting electrochemical methane conversion by oxygen evolution reactions on Fe–N–C single atom catalysts. Energy Environ. Sci. 16(7), 3158–3165 (2023). https://doi.org/10.1039/D3EE00027C
F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos et al., Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 256, 117809 (2019). https://doi.org/10.1016/j.apcatb.2019.117809
B. Feng, Z. Wang, Y. Feng, P. Li, Y. Zhu et al., Single-atom Au-functionalized mesoporous SnO2 nanospheres for ultrasensitive detection of Listeria monocytogenes biomarker at low temperatures. ACS Nano 18(34), 22888–22900 (2024). https://doi.org/10.1021/acsnano.4c03566
P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10(26), 2302778 (2023). https://doi.org/10.1002/advs.202302778
T. Chu, C. Rong, L. Zhou, X. Mao, B. Zhang et al., Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 35(3), 2206783 (2023). https://doi.org/10.1002/adma.202206783
G. Lei, H. Pan, H. Mei, X. Liu, G. Lu et al., Emerging single atom catalysts in gas sensors. Chem. Soc. Rev. 51(16), 7260–7280 (2022). https://doi.org/10.1039/d2cs00257d
M.-H. Pham, G.-T. Vuong, A.-T. Vu, T.-O. Do, Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 27(24), 15261–15267 (2011). https://doi.org/10.1021/la203570h
C. Serre, F. Millange, S. Surblé, G. Férey, A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43(46), 6285–6289 (2004). https://doi.org/10.1002/anie.200454250
V. Pascanu, A. Bermejo Gómez, C. Ayats, A.E. Platero-Prats, F. Carson et al., Double-supported silica-metal–organic framework palladium nanocatalyst for the aerobic oxidation of alcohols under batch and continuous flow regimes. ACS Catal. 5(2), 472–479 (2015). https://doi.org/10.1021/cs501573c
W. Tian, J. Han, L. Wan, N. Li, D. Chen et al., Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 107, 108165 (2023). https://doi.org/10.1016/j.nanoen.2023.108165
J. Łuczak, M. Kroczewska, M. Baluk, J. Sowik, P. Mazierski et al., Morphology control through the synthesis of metal-organic frameworks. Adv. Colloid Interface Sci. 314, 102864 (2023). https://doi.org/10.1016/j.cis.2023.102864
H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. 9(6), 2104374 (2022). https://doi.org/10.1002/advs.202104374
J. Deng, S. Cai, M. Gao, J.-Y. Hasegawa, H. Yao et al., Crystal-in-amorphous vanadate catalysts for universal poison-resistant elimination of nitric oxide. ACS Catal. 13(18), 12363–12373 (2023). https://doi.org/10.1021/acscatal.3c02571
A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2(10), 2804–2812 (2010). https://doi.org/10.1021/am1004943
A.K. Bhunia, B. Mahata, B. Mandal, P.K. Guha, S. Saha, Emerging 2D nanoscale metal oxide sensor: semiconducting CeO2 nano-sheets for enhanced formaldehyde vapor sensing. Nanotechnology 35(45), 455501 (2024). https://doi.org/10.1088/1361-6528/ad6e8b
W. Chen, S. Yang, H. Liu, F. Huang, Q. Shao et al., Single-atom Ce-modified α-Fe2O3 for selective catalytic reduction of NO with NH3. Environ. Sci. Technol. 56(14), 10442–10453 (2022). https://doi.org/10.1021/acs.est.2c02916
L. Zhao, C. Yu, C. Xin, Y. Xing, Z. Wei et al., Increasing the catalytic activity of Co3O4 via boron doping and chemical reduction for enhanced acetone detection. Adv. Funct. Mater. 34(18), 2314174 (2024). https://doi.org/10.1002/adfm.202314174
L. Gui, Z. Wang, K. Zhang, B. He, Y. Liu et al., Oxygen vacancies-rich Ce0.9Gd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B Environ. 266, 118656 (2020). https://doi.org/10.1016/j.apcatb.2020.118656
B. Mandal, A.K. Bhunia, B. Mahata, S. Roy, S. Acharyya et al., Defect-rich SnO2–x polydisperse spheres toward the detection of vehicle-emitted category NO2 gas. IEEE Sens. J. 24(17), 27183–27190 (2024). https://doi.org/10.1109/JSEN.2024.3429543
H. Xie, Y. Song, Y. Jiao, L. Gao, S. Shi et al., Engineering surface passivation and hole transport layer on hematite photoanodes enabling robust photoelectrocatalytic water oxidation. ACS Nano 18(7), 5712–5722 (2024). https://doi.org/10.1021/acsnano.3c11638
A.K. Bhunia, B. Mandal, P.K. Guha, Efficient ethanol sensor based on vertically aligned ZnO nanorods on radio frequency sputtered ZnO/Pt/SiO2/Si substrate. Phys. Status Solidi RRL 19(3), 2400285 (2025). https://doi.org/10.1002/pssr.202400285
Y. Hong, L. Wei, Q. Zhang, Z. Deng, X. Liao et al., A broad-spectrum gas sensor based on correlated two-dimensional electron gas. Nat. Commun. 14(1), 8496 (2023). https://doi.org/10.1038/s41467-023-44331-7
T. Liang, Y. Li, X. Zhang, H. Bao, F. Li et al., Selenium-doped hematite (α-Fe2O3) hollow nanorods for highly sensitive and selective detection of trace NO2. J. Mater. Chem. C 13(13), 6660–6668 (2025). https://doi.org/10.1039/d4tc05464d
A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi et al., A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42(16), 18974–18982 (2016). https://doi.org/10.1016/j.ceramint.2016.09.052
L. Sun, J. Sun, K. Zhang, X. Sun, S. Bai et al., rGO functionalized α-Fe2O3/Co3O4 heterojunction for NO2 detection. Sens. Actuat. B Chem. 354, 131194 (2022). https://doi.org/10.1016/j.snb.2021.131194
S.L. Bai, K. Tian, H. Fu, Y.J. Feng, R.X. Luo et al., Novel α-Fe2O3/BiVO4 heterojunctions for enhancing NO2 sensing properties. Sens. Actuat. B-Chem. 268, 136–143 (2018). https://doi.org/10.1016/j.snb.2018.03.173
B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao et al., The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens. Actuat. B Chem. 261, 252–263 (2018). https://doi.org/10.1016/j.snb.2018.01.143
Y.-C. Liang, Y.-W. Hsu, Enhanced sensing ability of brush-like Fe2O3-ZnO nanostructures towards NO2 gas via manipulating material synergistic effect. Int. J. Mol. Sci. 22(13), 6884 (2021). https://doi.org/10.3390/ijms22136884
C. Han, X. Li, Y. Liu, X. Li, C. Shao et al., Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. J. Hazard. Mater. 403, 124093 (2021). https://doi.org/10.1016/j.jhazmat.2020.124093
Y. Yang, M. Zhu, H. Zhang, B. Wang, C. Chen et al., Room temperature gas sensor based on rGO/Bi2S3 heterostructures for ultrasensitive and rapid NO2 detection. Chem. Eng. J. 490, 151872 (2024). https://doi.org/10.1016/j.cej.2024.151872
G.-C. Lu, X.-H. Liu, W. Zheng, J.-Y. Xie, Z.-S. Li et al., UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 41(5), 1520–1528 (2022). https://doi.org/10.1007/s12598-021-01899-7
H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a
G.-L. Chen, M.-S. Lv, L.-L. Sui, Z.-P. Deng, Y.-M. Xu et al., Low-temperature and dual-sensing NO2/dimethylamine sensor based on single-crystal WO3 nanops-supported sheets synthesized by simple pyrolysis of spoiled WCl6 powder. Chem. Eng. J. 464, 142528 (2023). https://doi.org/10.1016/j.cej.2023.142528
M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuat. B Chem. 301, 126845 (2019). https://doi.org/10.1016/j.snb.2019.126845
C. Zhang, G. Liu, X. Geng, K. Wu, M. Debliquy, Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: a review. Sens. Actuat. A Phys. 309, 112026 (2020). https://doi.org/10.1016/j.sna.2020.112026