An Engineered Heterostructured Trinity Enables Fire-Safe, Thermally Conductive Polymer Nanocomposite Films with Low Dielectric Loss
Corresponding Author: Pingan Song
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 168
Abstract
To adapt to the trend of increasing miniaturization and high integration of microelectronic equipments, there is a high demand for multifunctional thermally conductive (TC) polymeric films combining excellent flame retardancy and low dielectric constant (ε). To date, there have been few successes that achieve such a performance portfolio in polymer films due to their different and even mutually exclusive governing mechanisms. Herein, we propose a trinity strategy for creating a rationally engineered heterostructure nanoadditive (FG@CuP@ZTC) by in situ self-assembly immobilization of copper-phenyl phosphonate (CuP) and zinc-3, 5-diamino-1,2,4-triazole complex (ZTC) onto the fluorinated graphene (FG) surface. Benefiting from the synergistic effects of FG, CuP, and ZTC and the bionic lay-by-lay (LBL) strategy, the as-fabricated waterborne polyurethane (WPU) nanocomposite film with 30 wt% FG@CuP@ZTC exhibits a 55.6% improvement in limiting oxygen index (LOI), 66.0% and 40.5% reductions in peak heat release rate and total heat release, respectively, and 93.3% increase in tensile strength relative to pure WPU film due to the synergistic effects between FG, CuP, and ZTC. Moreover, the WPU nanocomposite film presents a high thermal conductivity (λ) of 12.7 W m−1 K−1 and a low ε of 2.92 at 106 Hz. This work provides a commercially viable rational design strategy to develop high-performance multifunctional polymer nanocomposite films, which hold great potential as advanced polymeric thermal dissipators for high-power-density microelectronics.
Highlights:
1 The as-fabricated waterborne polyurethane (WPU) nanocomposite film exhibits a 55.6% improvement in limiting oxygen index, 66.0% and 40.5% reductions in peak heat release rate and total heat release, respectively, and 93.3% increase in tensile strength relative to pure WPU film.
2 The resultant WPU nanocomposite film presents a high thermal conductivity (λ) of 12.7 W m−1 K−1 and a low dielectric constant (ε) of 2.92 at 106 Hz.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.K. He, X. Zhong, X.H. Lu, J.W. Hu, K.P. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
- J. Yun, Y.J. Yoo, H.R. Kim, Y.M. Song, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
- Z.F. Wang, Z.J. Wu, L. Weng, S.B. Ge, D.W. Jiang et al., A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects. Adv. Funct. Mater. 33, 2301549 (2023). https://doi.org/10.1002/adfm.202301549
- Y. Li, Y.X. Qian, Q.H. Jiang, A.Y. Haruna, Y.B. Luo et al., Thermally conductive polymer-based composites: fundamentals, progress and flame retardancy/anti-electromagnetic interference design. J. Mater. Chem. C 10, 14399–14430 (2022). https://doi.org/10.1039/D2TC03306B
- Q. Chen, Z.W. Ma, M.C. Wang, Z.Z. Wang, J.B. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16, 1362–1386 (2023). https://doi.org/10.1007/s12274-022-4824-2
- X.R. Fan, Z. Liu, S.S. Wang, J.W. Gu, Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat. 3, 877–893 (2023). https://doi.org/10.1002/sus2.172
- J.L. Zhang, L. Dang, F.Y. Zhang, K. Zhang, Q.Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au. 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
- Q. Chen, Z.W. Ma, Z.Z. Wang, L. Liu, M.H. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32, 2110782 (2022). https://doi.org/10.1002/adfm.202110782
- X.D. Dong, B.Q. Wan, M.S. Zheng, L.B. Huang, Y. Feng et al., Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv. Mater. 36, 2307804 (2024). https://doi.org/10.1002/adma.202307804
- S.S. Zhou, T.L. Xu, F. Jiang, N. Song, L.Y. Shi et al., High thermal conductivity property of polyamide-imide/boron nitride composite films by doping boron nitride quantum dots. J. Mater. Chem. C 7, 13896–13903 (2019). https://doi.org/10.1039/C9TC04381K
- L.H. Zhao, Y.F. Jin, Z.G. Wang, J.W. Ren, L.C. Jia et al., Highly thermally conductive fluorinated graphene/aramid nanofiber films with superior mechanical properties and thermostability. Ind. Eng. Chem. Res. 60, 8451–8459 (2021). https://doi.org/10.1021/acs.iecr.1c01260
- X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- C. Pan, K.C. Kou, Q. Jia, Y. Zhang, G.L. Wu et al., Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B Eng. 111, 83–90 (2017). https://doi.org/10.1016/j.compositesb.2016.11.050
- S.D. Yang, Y.S. He, J.H. Zhang, Fluorine-terminated functionalized liquid metal/silicon carbide binary nanops for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant. Surf. Interfaces 35, 102408 (2022). https://doi.org/10.1016/j.surfin.2022.102408
- J.W. Ren, Z. Wang, G.Q. Jiang, Y.C. Li, Z. Wang et al., Multipurpose poly(dimethylsiloxane) dielectric films with superb thermal conductivity by incorporating silver nanop-decorated boron nitride nanosheets. J. Phys. Chem. C 127, 13238–13248 (2023). https://doi.org/10.1021/acs.jpcc.3c01952
- K. Zhao, S.Y. Wei, M. Cao, M. Wang, P.F. Li et al., Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network. Compos. Sci. Technol. 245, 110323 (2024). https://doi.org/10.1016/j.compscitech.2023.110323
- X.Y. Chen, K. Fan, Y. Liu, Y. Li, X.Y. Liu et al., Recent advances in fluorinated graphene from synthesis to applications: critical review on functional chemistry and structure engineering. Adv. Mater. 34, 2101665 (2022). https://doi.org/10.1002/adma.202101665
- Z.L. Xie, K. Wu, D.Y. Liu, Q. Zhang, Q. Fu, One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos. Sci. Technol. 208, 108756 (2021). https://doi.org/10.1016/j.compscitech.2021.108756
- Y. Zhang, J.W. Wang, Y.J. Ma, Z.L. Zhang, L. Tao, Polyimide composites with fluorinated graphene and functionalized boron nitride nanosheets for heat dissipation. ACS Appl. Nano Mater. 7, 5009–5018 (2024). https://doi.org/10.1021/acsanm.3c05761
- Q. Chen, L. Liu, A.L. Zhang, W.D. Wang, Z.Z. Wang et al., An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 454, 140424 (2023). https://doi.org/10.1016/j.cej.2022.140424
- Z. Zhao, D.M. Guo, T. Fu, X.L. Wang, Y.Z. Wang, A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer 205, 122780 (2020). https://doi.org/10.1016/j.polymer.2020.122780
- W.T. He, P.A. Song, B. Yu, Z.P. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020). https://doi.org/10.1016/j.pmatsci.2020.100687
- J. Zhou, T. Zhang, Y.S. Xu, X.M. Zhang, A phosphorus- and nitrogen-containing aromatic Schiff base derivative in waterborne polyurethane backbone for excellent flame retardant, UV-shielding and mechanical properties. Prog. Org. Coat. 182, 107631 (2023). https://doi.org/10.1016/j.porgcoat.2023.107631
- M.J. Cui, J. Li, D.B. Qin, J.K. Sun, Y. Chen et al., Intumescent flame retardant behavior of triazine group and ammonium polyphosphate in waterborne polyurethane. Polym. Degrad. Stab. 183, 109439 (2021). https://doi.org/10.1016/j.polymdegradstab.2020.109439
- K. Siemensmeyer, C.A. Peeples, P. Tholen, F.J. Schmitt, B. Çoşut et al., Phosphonate metal-organic frameworks: a novel family of semiconductors. Adv. Mater. 32, 2000474 (2020). https://doi.org/10.1002/adma.202000474
- Y.B. Hou, Z.M. Xu, F.K. Chu, Z. Gui, L. Song et al., A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Compos. Part B Eng. 221, 109014 (2021). https://doi.org/10.1016/j.compositesb.2021.109014
- B.W. Liu, H.B. Zhao, Y.Z. Wang, Advanced flame-retardant methods for polymeric materials. Adv. Mater. 34, 2107905 (2022). https://doi.org/10.1002/adma.202107905
- Y.J. Xue, M. Zhang, S.Q. Huo, Z.W. Ma, M. Lynch et al., Engineered functional segments enabled mechanically robust, intrinsically fire-retardant, switchable, degradable polyurethane adhesives. Adv. Funct. Mater. 34, 2409139 (2024). https://doi.org/10.1002/adfm.202409139
- D.Y. Liu, Y.H. Cui, T.L. Zhang, W.H. Zhao, P.F. Ji, Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8. Polym. Degrad. Stab. 194, 109749 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109749
- Q. Chen, Z.Z. Wang, A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A Appl. Sci. Manuf. 153, 106738 (2022). https://doi.org/10.1016/j.compositesa.2021.106738
- L. Liu, M.H. Zhu, Z.W. Ma, X.D. Xu, S.M. Seraji et al., A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chem. Eng. J. 430, 132712 (2022). https://doi.org/10.1016/j.cej.2021.132712
- Z.Y. Huang, Z.Z. Wang, Construction of a copper hydroxystannate functionalized graphene oxide for rigid polyvinyl chloride foam toward improved fire safety. Polym. Adv. Technol. 34, 3473–3484 (2023). https://doi.org/10.1002/pat.6158
- R. Tian, X.H. Jia, Y.F. Bai, J. Yang, H.J. Song, Fluorinated graphene thermally conductive hydrogel with a solid–liquid interpenetrating heat conduction network. ACS Appl. Mater. Interfaces 16, 1451–1460 (2024). https://doi.org/10.1021/acsami.3c14478
- Q. Chen, S.Q. Huo, Y.X. Lu, M.M. Ding, J.B. Feng et al., Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small 20, 2310724 (2024). https://doi.org/10.1002/smll.202310724
- L. Liu, M.H. Zhu, Y.Q. Shi, X.D. Xu, Z.W. Ma et al., Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem. Eng. J. 424, 130338 (2021). https://doi.org/10.1016/j.cej.2021.130338
- J. Yang, A. Zhang, Y.X. Chen, L.S. Wang, M.X. Li et al., Surface modification of core-shell structured ZIF-67@Cobalt coordination compound to improve the fire safety of biomass aerogel insulation materials. Chem. Eng. J. 430, 132809 (2022). https://doi.org/10.1016/j.cej.2021.132809
- M.W. Wang, G.X. Peng, C.L. Chen, L. Zhang, Y. Xie, Synergistic modification of ZIF and silica on carbon spheres to enhance the flame retardancy of composites coatings. Colloid Surf. A-Physicochem. Eng. Asp. 642, 128645 (2022). https://doi.org/10.1016/j.colsurfa.2022.128645
- D. Wang, X.H. Jia, R. Tian, J. Yang, Y.F. Su et al., Tuning fluorine content of fluorinated graphene by an ionothermal synthesis method for achieving excellent tribological behaviors. Carbon 218, 118649 (2024). https://doi.org/10.1016/j.carbon.2023.118649
- Q.H. Kong, T. Wu, J.H. Zhang, D.Y. Wang, Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos. Sci. Technol. 154, 136–144 (2018). https://doi.org/10.1016/j.compscitech.2017.10.013
- M.H. Zhu, L. Liu, Z.Z. Wang, Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin. J. Hazard. Mater. 392, 122343 (2020). https://doi.org/10.1016/j.jhazmat.2020.122343
- Y.X. Han, K.P. Ruan, J.W. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
- K.P. Ruan, X.T. Shi, Y.L. Zhang, Y.Q. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
- Y. Chen, H.G. Zhang, J. Chen, Y.T. Guo, P.K. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16, 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
- Z.C. Bai, T. Huang, J.H. Shen, D. Xie, J.J. Xu et al., Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chem. Eng. J. 482, 148964 (2024). https://doi.org/10.1016/j.cej.2024.148964
- J.B. Feng, Y.X. Lu, H.Y. Xie, Y. Zhang, S.Q. Huo et al., Atom-economic synthesis of an oligomeric P/N-containing fire retardant towards fire-retarding and mechanically robust polylactide biocomposites. J. Mater. Sci. Technol. 160, 86–95 (2023). https://doi.org/10.1016/j.jmst.2023.04.003
- Y.X. Lu, J.B. Feng, D.Q. Yi, H.Y. Xie, Z.G. Xu et al., Strong synergistic effects between P/N-containing supramolecular microplates and aluminum diethylphosphinate for fire-retardant PA6. Compos. Part A Appl. Sci. Manuf. 176, 107834 (2024). https://doi.org/10.1016/j.compositesa.2023.107834
- L.X. He, X. Zhou, W. Cai, Y.L. Xiao, F.K. Chu et al., Electrochemical exfoliation and functionalization of black phosphorene to enhance mechanical properties and flame retardancy of waterborne polyurethane. Compos. Part B Eng. 202, 108446 (2020). https://doi.org/10.1016/j.compositesb.2020.108446
- X.N. Song, B.Y. Hou, Z.D. Han, Y.T. Pan, Z.S. Geng et al., Dual nucleation sites induced by ZIF-67 towards mismatch of polyphosphazene hollow sub-micron polyhedrons and nanospheres in flame retardant epoxy matrix. Chem. Eng. J. 470, 144278 (2023). https://doi.org/10.1016/j.cej.2023.144278
- J.S. Wang, J. Wang, S. Yang, X. Chen, K.W. Chen et al., Multifunctional phosphorus-containing imidazoliums endowing one-component epoxy resins with superior thermal latency, heat resistance, mechanical properties, and fire safety. Chem. Eng. J. 485, 149852 (2024). https://doi.org/10.1016/j.cej.2024.149852
- Z.W. Ma, J.B. Feng, S.Q. Huo, Z.Q. Sun, S. Bourbigot et al., Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 36, 2410453 (2024). https://doi.org/10.1002/adma.202410453
- T.T. Tang, S.C. Wang, Y. Jiang, Z.G. Xu, Y. Chen et al., Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 111, 66–75 (2022). https://doi.org/10.1016/j.jmst.2021.08.091
- L. Liu, M.H. Zhu, J.B. Feng, H. Peng, Y.Q. Shi et al., Fire-retardant and high-strength polymeric materials enabled by supramolecular aggregates. Aggregate 5, e494 (2024). https://doi.org/10.1002/agt2.494
- J.B. Feng, Z.W. Ma, J.P. Wu, Z.Z. Zhou, B.Y. Hou et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. (2024). https://doi.org/10.1002/adma.202411856
- Y.J. Xue, M. Zhang, J.B. Feng, Y. Zhang, V. Chevali et al., Structure–fire-retardant property correlations in biodegradable polymers. Appl. Phys. Rev. 11, 031321 (2024). https://doi.org/10.1063/5.0210839
- H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
- Y. Pan, B. Yang, N. Jia, Y.N. Yu, X. Xu et al., Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components. Polym. Test. 101, 107237 (2021). https://doi.org/10.1016/j.polymertesting.2021.107237
- B.F. Nan, K. Wu, W.L. Chen, Y.C. Liu, Q. Zhang et al., Bioinspired modification strategy to improve thermal conductivity of flexible poly(vinyl alcohol)/nanodiamond nanocomposite films for thermal management applications. Appl. Surf. Sci. 508, 144797 (2020). https://doi.org/10.1016/j.apsusc.2019.144797
- L.L. An, Z.H. Yang, X.L. Zeng, W.B. Hu, Y.L. Yu et al., Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chem. Eng. J. 431, 133740 (2022). https://doi.org/10.1016/j.cej.2021.133740
- L. Tang, K.P. Ruan, X. Liu, Y.S. Tang, Y.L. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16, 38 (2024). https://doi.org/10.1007/s40820-023-01257-5
- T. Yao, C.Y. Zhang, K. Chen, T.T. Niu, J. Wang et al., Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions. Compos. Sci. Technol. 234, 109934 (2023). https://doi.org/10.1016/j.compscitech.2023.109934
- M.Z. Islam, Y.Q. Fu, H. Deb, M.K. Hasan, Y.B. Dong et al., Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges. Eur. Polym. J. 200, 112543 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112543
- H. Yan, X.J. Dai, K.P. Ruan, S.J. Zhang, X.T. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4, 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
- J. Dong, L. Cao, Y. Li, Z.Q. Wu, C.Q. Teng, Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos. Sci. Technol. 196, 108242 (2020). https://doi.org/10.1016/j.compscitech.2020.108242
- Z.Y. Chu, W.Z. Li, S.Q. Song, W.C. Yuan, S.B. Zhu et al., Multilayered nacre-mimetic inspired flexible PEI film with high thermal conductivity and reliable dielectric performances. Ceram. Int. 48, 13794–13802 (2022). https://doi.org/10.1016/j.ceramint.2022.01.261
- R.X. Wu, X.D. Song, Y. Ji, H. Wu, S.Y. Guo et al., In-situ exfoliation of hexagonal boron nitride during the forced flow of highly elastic polylactide to fabricate electrospun fibrous film with high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 251, 110573 (2024). https://doi.org/10.1016/j.compscitech.2024.110573
- S. Zhao, Z.X. Wu, Y.M. Han, D. Jiang, Y. Xiang et al., Highly thermally conductive BNNS/PANF dielectric composite boards prepared by a facile compression moulding process. Compos. Struct. 349–350, 118350 (2024). https://doi.org/10.1016/j.compstruct.2024.118530
- X.D. Kong, Y.P. Chen, R.J. Yang, Y.D. Wang, Z.B. Zhang et al., Large-scale production of boron nitride nanosheets for flexible thermal interface materials with highly thermally conductive and low dielectric constant. Compos. Part B Eng. 271, 111164 (2024). https://doi.org/10.1016/j.compositesb.2023.111164
- L.H. Zhao, C.M. Wei, Z.H. Li, W.F. Wei, L.C. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Design 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124
- B.Y. Hu, H. Guo, Q. Wang, W. Zhang, S.S. Song et al., Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 137, 106038 (2020). https://doi.org/10.1016/j.compositesa.2020.106038
- G.L. Wu, Y.Q. Wang, K.K. Wang, A.L. Feng, The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 6, 102542–102548 (2016). https://doi.org/10.1039/C6RA22794E
References
M.K. He, X. Zhong, X.H. Lu, J.W. Hu, K.P. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
J. Yun, Y.J. Yoo, H.R. Kim, Y.M. Song, Recent progress in thermal management for flexible/wearable devices. Soft Sci. 3, 12 (2023). https://doi.org/10.20517/ss.2023.04
Z.F. Wang, Z.J. Wu, L. Weng, S.B. Ge, D.W. Jiang et al., A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects. Adv. Funct. Mater. 33, 2301549 (2023). https://doi.org/10.1002/adfm.202301549
Y. Li, Y.X. Qian, Q.H. Jiang, A.Y. Haruna, Y.B. Luo et al., Thermally conductive polymer-based composites: fundamentals, progress and flame retardancy/anti-electromagnetic interference design. J. Mater. Chem. C 10, 14399–14430 (2022). https://doi.org/10.1039/D2TC03306B
Q. Chen, Z.W. Ma, M.C. Wang, Z.Z. Wang, J.B. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16, 1362–1386 (2023). https://doi.org/10.1007/s12274-022-4824-2
X.R. Fan, Z. Liu, S.S. Wang, J.W. Gu, Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures. SusMat. 3, 877–893 (2023). https://doi.org/10.1002/sus2.172
J.L. Zhang, L. Dang, F.Y. Zhang, K. Zhang, Q.Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au. 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
Q. Chen, Z.W. Ma, Z.Z. Wang, L. Liu, M.H. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32, 2110782 (2022). https://doi.org/10.1002/adfm.202110782
X.D. Dong, B.Q. Wan, M.S. Zheng, L.B. Huang, Y. Feng et al., Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv. Mater. 36, 2307804 (2024). https://doi.org/10.1002/adma.202307804
S.S. Zhou, T.L. Xu, F. Jiang, N. Song, L.Y. Shi et al., High thermal conductivity property of polyamide-imide/boron nitride composite films by doping boron nitride quantum dots. J. Mater. Chem. C 7, 13896–13903 (2019). https://doi.org/10.1039/C9TC04381K
L.H. Zhao, Y.F. Jin, Z.G. Wang, J.W. Ren, L.C. Jia et al., Highly thermally conductive fluorinated graphene/aramid nanofiber films with superior mechanical properties and thermostability. Ind. Eng. Chem. Res. 60, 8451–8459 (2021). https://doi.org/10.1021/acs.iecr.1c01260
X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
C. Pan, K.C. Kou, Q. Jia, Y. Zhang, G.L. Wu et al., Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B Eng. 111, 83–90 (2017). https://doi.org/10.1016/j.compositesb.2016.11.050
S.D. Yang, Y.S. He, J.H. Zhang, Fluorine-terminated functionalized liquid metal/silicon carbide binary nanops for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant. Surf. Interfaces 35, 102408 (2022). https://doi.org/10.1016/j.surfin.2022.102408
J.W. Ren, Z. Wang, G.Q. Jiang, Y.C. Li, Z. Wang et al., Multipurpose poly(dimethylsiloxane) dielectric films with superb thermal conductivity by incorporating silver nanop-decorated boron nitride nanosheets. J. Phys. Chem. C 127, 13238–13248 (2023). https://doi.org/10.1021/acs.jpcc.3c01952
K. Zhao, S.Y. Wei, M. Cao, M. Wang, P.F. Li et al., Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network. Compos. Sci. Technol. 245, 110323 (2024). https://doi.org/10.1016/j.compscitech.2023.110323
X.Y. Chen, K. Fan, Y. Liu, Y. Li, X.Y. Liu et al., Recent advances in fluorinated graphene from synthesis to applications: critical review on functional chemistry and structure engineering. Adv. Mater. 34, 2101665 (2022). https://doi.org/10.1002/adma.202101665
Z.L. Xie, K. Wu, D.Y. Liu, Q. Zhang, Q. Fu, One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos. Sci. Technol. 208, 108756 (2021). https://doi.org/10.1016/j.compscitech.2021.108756
Y. Zhang, J.W. Wang, Y.J. Ma, Z.L. Zhang, L. Tao, Polyimide composites with fluorinated graphene and functionalized boron nitride nanosheets for heat dissipation. ACS Appl. Nano Mater. 7, 5009–5018 (2024). https://doi.org/10.1021/acsanm.3c05761
Q. Chen, L. Liu, A.L. Zhang, W.D. Wang, Z.Z. Wang et al., An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 454, 140424 (2023). https://doi.org/10.1016/j.cej.2022.140424
Z. Zhao, D.M. Guo, T. Fu, X.L. Wang, Y.Z. Wang, A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer 205, 122780 (2020). https://doi.org/10.1016/j.polymer.2020.122780
W.T. He, P.A. Song, B. Yu, Z.P. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020). https://doi.org/10.1016/j.pmatsci.2020.100687
J. Zhou, T. Zhang, Y.S. Xu, X.M. Zhang, A phosphorus- and nitrogen-containing aromatic Schiff base derivative in waterborne polyurethane backbone for excellent flame retardant, UV-shielding and mechanical properties. Prog. Org. Coat. 182, 107631 (2023). https://doi.org/10.1016/j.porgcoat.2023.107631
M.J. Cui, J. Li, D.B. Qin, J.K. Sun, Y. Chen et al., Intumescent flame retardant behavior of triazine group and ammonium polyphosphate in waterborne polyurethane. Polym. Degrad. Stab. 183, 109439 (2021). https://doi.org/10.1016/j.polymdegradstab.2020.109439
K. Siemensmeyer, C.A. Peeples, P. Tholen, F.J. Schmitt, B. Çoşut et al., Phosphonate metal-organic frameworks: a novel family of semiconductors. Adv. Mater. 32, 2000474 (2020). https://doi.org/10.1002/adma.202000474
Y.B. Hou, Z.M. Xu, F.K. Chu, Z. Gui, L. Song et al., A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Compos. Part B Eng. 221, 109014 (2021). https://doi.org/10.1016/j.compositesb.2021.109014
B.W. Liu, H.B. Zhao, Y.Z. Wang, Advanced flame-retardant methods for polymeric materials. Adv. Mater. 34, 2107905 (2022). https://doi.org/10.1002/adma.202107905
Y.J. Xue, M. Zhang, S.Q. Huo, Z.W. Ma, M. Lynch et al., Engineered functional segments enabled mechanically robust, intrinsically fire-retardant, switchable, degradable polyurethane adhesives. Adv. Funct. Mater. 34, 2409139 (2024). https://doi.org/10.1002/adfm.202409139
D.Y. Liu, Y.H. Cui, T.L. Zhang, W.H. Zhao, P.F. Ji, Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8. Polym. Degrad. Stab. 194, 109749 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109749
Q. Chen, Z.Z. Wang, A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A Appl. Sci. Manuf. 153, 106738 (2022). https://doi.org/10.1016/j.compositesa.2021.106738
L. Liu, M.H. Zhu, Z.W. Ma, X.D. Xu, S.M. Seraji et al., A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chem. Eng. J. 430, 132712 (2022). https://doi.org/10.1016/j.cej.2021.132712
Z.Y. Huang, Z.Z. Wang, Construction of a copper hydroxystannate functionalized graphene oxide for rigid polyvinyl chloride foam toward improved fire safety. Polym. Adv. Technol. 34, 3473–3484 (2023). https://doi.org/10.1002/pat.6158
R. Tian, X.H. Jia, Y.F. Bai, J. Yang, H.J. Song, Fluorinated graphene thermally conductive hydrogel with a solid–liquid interpenetrating heat conduction network. ACS Appl. Mater. Interfaces 16, 1451–1460 (2024). https://doi.org/10.1021/acsami.3c14478
Q. Chen, S.Q. Huo, Y.X. Lu, M.M. Ding, J.B. Feng et al., Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small 20, 2310724 (2024). https://doi.org/10.1002/smll.202310724
L. Liu, M.H. Zhu, Y.Q. Shi, X.D. Xu, Z.W. Ma et al., Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem. Eng. J. 424, 130338 (2021). https://doi.org/10.1016/j.cej.2021.130338
J. Yang, A. Zhang, Y.X. Chen, L.S. Wang, M.X. Li et al., Surface modification of core-shell structured ZIF-67@Cobalt coordination compound to improve the fire safety of biomass aerogel insulation materials. Chem. Eng. J. 430, 132809 (2022). https://doi.org/10.1016/j.cej.2021.132809
M.W. Wang, G.X. Peng, C.L. Chen, L. Zhang, Y. Xie, Synergistic modification of ZIF and silica on carbon spheres to enhance the flame retardancy of composites coatings. Colloid Surf. A-Physicochem. Eng. Asp. 642, 128645 (2022). https://doi.org/10.1016/j.colsurfa.2022.128645
D. Wang, X.H. Jia, R. Tian, J. Yang, Y.F. Su et al., Tuning fluorine content of fluorinated graphene by an ionothermal synthesis method for achieving excellent tribological behaviors. Carbon 218, 118649 (2024). https://doi.org/10.1016/j.carbon.2023.118649
Q.H. Kong, T. Wu, J.H. Zhang, D.Y. Wang, Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos. Sci. Technol. 154, 136–144 (2018). https://doi.org/10.1016/j.compscitech.2017.10.013
M.H. Zhu, L. Liu, Z.Z. Wang, Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin. J. Hazard. Mater. 392, 122343 (2020). https://doi.org/10.1016/j.jhazmat.2020.122343
Y.X. Han, K.P. Ruan, J.W. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
K.P. Ruan, X.T. Shi, Y.L. Zhang, Y.Q. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
Y. Chen, H.G. Zhang, J. Chen, Y.T. Guo, P.K. Jiang et al., Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 16, 14323–14333 (2022). https://doi.org/10.1021/acsnano.2c04534
Z.C. Bai, T. Huang, J.H. Shen, D. Xie, J.J. Xu et al., Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chem. Eng. J. 482, 148964 (2024). https://doi.org/10.1016/j.cej.2024.148964
J.B. Feng, Y.X. Lu, H.Y. Xie, Y. Zhang, S.Q. Huo et al., Atom-economic synthesis of an oligomeric P/N-containing fire retardant towards fire-retarding and mechanically robust polylactide biocomposites. J. Mater. Sci. Technol. 160, 86–95 (2023). https://doi.org/10.1016/j.jmst.2023.04.003
Y.X. Lu, J.B. Feng, D.Q. Yi, H.Y. Xie, Z.G. Xu et al., Strong synergistic effects between P/N-containing supramolecular microplates and aluminum diethylphosphinate for fire-retardant PA6. Compos. Part A Appl. Sci. Manuf. 176, 107834 (2024). https://doi.org/10.1016/j.compositesa.2023.107834
L.X. He, X. Zhou, W. Cai, Y.L. Xiao, F.K. Chu et al., Electrochemical exfoliation and functionalization of black phosphorene to enhance mechanical properties and flame retardancy of waterborne polyurethane. Compos. Part B Eng. 202, 108446 (2020). https://doi.org/10.1016/j.compositesb.2020.108446
X.N. Song, B.Y. Hou, Z.D. Han, Y.T. Pan, Z.S. Geng et al., Dual nucleation sites induced by ZIF-67 towards mismatch of polyphosphazene hollow sub-micron polyhedrons and nanospheres in flame retardant epoxy matrix. Chem. Eng. J. 470, 144278 (2023). https://doi.org/10.1016/j.cej.2023.144278
J.S. Wang, J. Wang, S. Yang, X. Chen, K.W. Chen et al., Multifunctional phosphorus-containing imidazoliums endowing one-component epoxy resins with superior thermal latency, heat resistance, mechanical properties, and fire safety. Chem. Eng. J. 485, 149852 (2024). https://doi.org/10.1016/j.cej.2024.149852
Z.W. Ma, J.B. Feng, S.Q. Huo, Z.Q. Sun, S. Bourbigot et al., Mussel-inspired, self-healing, highly effective fully polymeric fire-retardant coatings enabled by group synergy. Adv. Mater. 36, 2410453 (2024). https://doi.org/10.1002/adma.202410453
T.T. Tang, S.C. Wang, Y. Jiang, Z.G. Xu, Y. Chen et al., Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 111, 66–75 (2022). https://doi.org/10.1016/j.jmst.2021.08.091
L. Liu, M.H. Zhu, J.B. Feng, H. Peng, Y.Q. Shi et al., Fire-retardant and high-strength polymeric materials enabled by supramolecular aggregates. Aggregate 5, e494 (2024). https://doi.org/10.1002/agt2.494
J.B. Feng, Z.W. Ma, J.P. Wu, Z.Z. Zhou, B.Y. Hou et al., Fire-safe aerogels and foams for thermal insulation: from materials to properties. Adv. Mater. (2024). https://doi.org/10.1002/adma.202411856
Y.J. Xue, M. Zhang, J.B. Feng, Y. Zhang, V. Chevali et al., Structure–fire-retardant property correlations in biodegradable polymers. Appl. Phys. Rev. 11, 031321 (2024). https://doi.org/10.1063/5.0210839
H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
Y. Pan, B. Yang, N. Jia, Y.N. Yu, X. Xu et al., Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components. Polym. Test. 101, 107237 (2021). https://doi.org/10.1016/j.polymertesting.2021.107237
B.F. Nan, K. Wu, W.L. Chen, Y.C. Liu, Q. Zhang et al., Bioinspired modification strategy to improve thermal conductivity of flexible poly(vinyl alcohol)/nanodiamond nanocomposite films for thermal management applications. Appl. Surf. Sci. 508, 144797 (2020). https://doi.org/10.1016/j.apsusc.2019.144797
L.L. An, Z.H. Yang, X.L. Zeng, W.B. Hu, Y.L. Yu et al., Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chem. Eng. J. 431, 133740 (2022). https://doi.org/10.1016/j.cej.2021.133740
L. Tang, K.P. Ruan, X. Liu, Y.S. Tang, Y.L. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16, 38 (2024). https://doi.org/10.1007/s40820-023-01257-5
T. Yao, C.Y. Zhang, K. Chen, T.T. Niu, J. Wang et al., Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions. Compos. Sci. Technol. 234, 109934 (2023). https://doi.org/10.1016/j.compscitech.2023.109934
M.Z. Islam, Y.Q. Fu, H. Deb, M.K. Hasan, Y.B. Dong et al., Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges. Eur. Polym. J. 200, 112543 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112543
H. Yan, X.J. Dai, K.P. Ruan, S.J. Zhang, X.T. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4, 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
J. Dong, L. Cao, Y. Li, Z.Q. Wu, C.Q. Teng, Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos. Sci. Technol. 196, 108242 (2020). https://doi.org/10.1016/j.compscitech.2020.108242
Z.Y. Chu, W.Z. Li, S.Q. Song, W.C. Yuan, S.B. Zhu et al., Multilayered nacre-mimetic inspired flexible PEI film with high thermal conductivity and reliable dielectric performances. Ceram. Int. 48, 13794–13802 (2022). https://doi.org/10.1016/j.ceramint.2022.01.261
R.X. Wu, X.D. Song, Y. Ji, H. Wu, S.Y. Guo et al., In-situ exfoliation of hexagonal boron nitride during the forced flow of highly elastic polylactide to fabricate electrospun fibrous film with high thermal conductivity and low dielectric loss. Compos. Sci. Technol. 251, 110573 (2024). https://doi.org/10.1016/j.compscitech.2024.110573
S. Zhao, Z.X. Wu, Y.M. Han, D. Jiang, Y. Xiang et al., Highly thermally conductive BNNS/PANF dielectric composite boards prepared by a facile compression moulding process. Compos. Struct. 349–350, 118350 (2024). https://doi.org/10.1016/j.compstruct.2024.118530
X.D. Kong, Y.P. Chen, R.J. Yang, Y.D. Wang, Z.B. Zhang et al., Large-scale production of boron nitride nanosheets for flexible thermal interface materials with highly thermally conductive and low dielectric constant. Compos. Part B Eng. 271, 111164 (2024). https://doi.org/10.1016/j.compositesb.2023.111164
L.H. Zhao, C.M. Wei, Z.H. Li, W.F. Wei, L.C. Jia et al., High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Design 210, 110124 (2021). https://doi.org/10.1016/j.matdes.2021.110124
B.Y. Hu, H. Guo, Q. Wang, W. Zhang, S.S. Song et al., Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 137, 106038 (2020). https://doi.org/10.1016/j.compositesa.2020.106038
G.L. Wu, Y.Q. Wang, K.K. Wang, A.L. Feng, The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 6, 102542–102548 (2016). https://doi.org/10.1039/C6RA22794E