Highly Thermal Conductive and Electromagnetic Shielding Polymer Nanocomposites from Waste Masks
Corresponding Author: Pingan Song
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 263
Abstract
Over 950 billion (about 3.8 million tons) masks have been consumed in the last four years around the world to protect human beings from COVID-19 and air pollution. However, very few of these used masks are being recycled, with the majority of them being landfilled or incinerated. To address this issue, we propose a repurposing upcycling strategy by converting these polypropylene (PP)-based waste masks to high-performance thermally conductive nanocomposites (PP@G, where G refers to graphene) with exceptional electromagnetic interference shielding property. The PP@G is fabricated by loading tannic acid onto PP fibers via electrostatic self-assembling, followed by mixing with graphene nanoplatelets (GNPs). Because this strategy enables the GNPs to form efficient thermal and electrical conduction pathways along the PP fiber surface, the PP@G shows a high thermal conductivity of 87 W m⁻1 K⁻1 and exhibits an electromagnetic interference shielding effectiveness of 88 dB (1100 dB cm−1), making it potentially applicable for heat dissipation and electromagnetic shielding in advanced electronic devices. Life cycle assessment and techno-economic assessment results show that our repurposing strategy has significant advantages over existing methods in reducing environmental impacts and economic benefits. This strategy offers a facile and promising approach to upcycling/repurposing of fibrous waste plastics.
Highlights:
1 Fabricating low-cost, high-performance, scalable polypropylene (PP)@graphene (G) nanocomposites from recycled PP fibers in waste masks by a simple electrostatic self-assembly hot-pressing method.
2 The resultant PP@G presents a high thermal conductivity of 87 W m−1 K−1 and a high electromagnetic interference shielding effectiveness of 88 dB (1100 dB cm−1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Cheng, N. Ma, C. Witt, S. Rapp, P.S. Wild et al., Face masks effectively limit the probability of SARS-CoV-2 transmission. Science 372(6549), 1439–1443 (2021). https://doi.org/10.1126/science.abg6296
- C.J. Worby, H.-H. Chang, Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat. Commun. 11, 4049 (2020). https://doi.org/10.1038/s41467-020-17922-x
- X. Hu, S. Wang, S. Fu, M. Qin, C. Lyu et al., Intranasal mask for protecting the respiratory tract against viral aerosols. Nat. Commun. 14(1), 8398 (2023). https://doi.org/10.1038/s41467-023-44134-w
- F. Richter, Global Mask Sales Surged 30-Fold during the Pandemic. (2023). https://www.statista.com/chart/29100/global-face-mask-sales/
- G. Lin, J. Yuan, X. Li, S. Zhao, S. Wang et al., Strategic choice of the management of disposable meal boxes from the perspectives of life cycle impact assessment: Recycling fossil plastics or promoting biogenic plastics. Resour. Conserv. Recycl. 204, 107477 (2024). https://doi.org/10.1016/j.resconrec.2024.107477
- Z. Wang, W. Zhang, M. Wei, P. Wang, D. Li, Mechanical and deformation behavior of clay reinforced by discarded mask fibers. J. Clean. Prod. 428, 139485 (2023). https://doi.org/10.1016/j.jclepro.2023.139485
- J. Zhu, M. Saberian, J. Li, E. Yaghoubi, M.T. Rahman, Sustainable use of COVID-19 discarded face masks to improve the performance of stone mastic asphalt. Constr. Build. Mater. 398, 132524 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132524
- L. Li, Y. Luo, R. Li, Q. Zhou, W.J.G.M. Peijnenburg et al., Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3(11), 929–937 (2020). https://doi.org/10.1038/s41893-020-0567-9
- I.A. Kane, M.A. Clare, E. Miramontes, R. Wogelius, J.J. Rothwell et al., Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368(6495), 1140–1145 (2020). https://doi.org/10.1126/science.aba5899
- Z. Liu, A. Sokratian, A.M. Duda, E. Xu, C. Stanhope et al., Anionic nanoplastic contaminants promote Parkinson’s disease–associated α-synuclein aggregation. Sci. Adv. 9(46), eadi8716 (2023). https://doi.org/10.1126/sciadv.adi8716
- K.M. Van Geem, Plastic waste recycling is Gaining momentum. Science 381(6658), 607–608 (2023). https://doi.org/10.1126/science.adj2807
- Z. Xu, N.E. Munyaneza, Q. Zhang, M. Sun, C. Posada et al., Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 381(6658), 666–671 (2023). https://doi.org/10.1126/science.adh0993
- R. Yu, X. Wen, J. Liu, Y. Wang, X. Chen et al., A green and high-yield route to recycle waste masks into CNTs/Ni hybrids via catalytic carbonization and their application for superior microwave absorption. Appl. Catal. B Environ. 298, 120544 (2021). https://doi.org/10.1016/j.apcatb.2021.120544
- Y. Guo, S. Zhu, C. Mao, Y. Chen, L. Liu et al., High-rate lithium-selenium batteries boosted by a multifunctional Janus separator over a wide temperature range of −30 °C to 60 °C. Adv. Mater. 35(46), e2304551 (2023). https://doi.org/10.1002/adma.202304551
- M.-D. Li, X.-Q. Shen, X. Chen, J.-M. Gan, F. Wang et al., Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13(1), 5849 (2022). https://doi.org/10.1038/s41467-022-33596-z
- R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
- X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
- L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16(1), 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
- J.-W. Zha, F. Wang, B. Wan, Polymer composites with high thermal conductivity: theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025). https://doi.org/10.1016/j.pmatsci.2024.101362
- H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
- Z. Wang, Z. Wu, L. Weng, S. Ge, D. Jiang et al., A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects. Adv. Funct. Mater. 33(36), 2301549 (2023). https://doi.org/10.1002/adfm.202301549
- Z. Dai, J. Zhu, J. Yan, J. Su, Y. Gao et al., An advanced dual-function MnO2-fabric air filter combining catalytic oxidation of formaldehyde and high-efficiency fine particulate matter removal. Adv. Funct. Mater. 30(42), 2001488 (2020). https://doi.org/10.1002/adfm.202001488
- L. Cai, Y. Li, X. Lin, H. Chen, Q. Gao et al., High-performance adhesives formulated from soy protein isolate and bio-based material hybrid for plywood production. J. Clean. Prod. 353, 131587 (2022). https://doi.org/10.1016/j.jclepro.2022.131587
- X. Huang, Y. Chen, X. Lin, J. Li, Q. Gao, A strong soy protein-based adhesive with excellent water retention. Chem. Eng. J. 472, 145037 (2023). https://doi.org/10.1016/j.cej.2023.145037
- S. Srinivasan, S.H. Je, S. Back, G. Barin, O. Buyukcakir et al., Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. Adv. Mater. 26(17), 2725–2729 (2014). https://doi.org/10.1002/adma.201304334
- G. Zhao, H. Zhu, Cation-π interactions in graphene-containing systems for water treatment and beyond. Adv. Mater. 32(22), e1905756 (2020). https://doi.org/10.1002/adma.201905756
- Z. Wang, S. Zhang, S. Zhao, H. Kang, Z. Wang et al., Facile biomimetic self-coacervation of tannic acid and polycation: tough and wide pH range of underwater adhesives. Chem. Eng. J. 404, 127069 (2021). https://doi.org/10.1016/j.cej.2020.127069
- Y. Dubi, M. Di Ventra, Fourier’s law: insight from a simple derivation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 042101 (2009). https://doi.org/10.1103/PhysRevE.79.042101
- J. Li, X. Zhao, W. Wu, Z. Zhang, Y. Xian et al., Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.02.012
- H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
- J. Ying, X. Tan, L. Lv, X. Wang, J. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
- T. Sun, W. Luo, Y. Luo, Y. Wang, S. Zhou et al., Self-reinforced polypropylene/graphene composite with segregated structures to achieve balanced electrical and mechanical properties. Ind. Eng. Chem. Res. 59(24), 11206–11218 (2020). https://doi.org/10.1021/acs.iecr.0c00825
- P.-G. Ren, S.-Y. Hou, F. Ren, Z.-P. Zhang, Z.-F. Sun et al., The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure. Compos. Part A Appl. Sci. Manuf. 90, 13–21 (2016). https://doi.org/10.1016/j.compositesa.2016.06.019
- D.S. Muratov, V.O. Vanyushin, L.O. Luchnikov, M. Yu Degtyaryov, E.A. Kolesnikov et al., Improved thermal conductivity of polypropylene filled with exfoliated hexagonal boron nitride (hBN) ps. Mater. Res. Express 8(3), 035010 (2021). https://doi.org/10.1088/2053-1591/abed0f
- I.N. Mazov, I.A. Ilinykh, V.L. Kuznetsov, A.A. Stepashkin, K.S. Ergin et al., Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J. Alloys Compd. 586, S440–S442 (2014). https://doi.org/10.1016/j.jallcom.2012.10.167
- Y. Seki, B. Avci, S. Uzun, N. Kaya, M. Atagur et al., The using of graphene nano-platelets for a better through-plane thermal conductivity for polypropylene. Polym. Compos. 40(S2), E1320–E1328 (2019). https://doi.org/10.1002/pc.24979
- C. Usman, A. Mabrouk, A. Abdala, Enhanced thermal conductivity of polyethylene nanocomposites with graphene, granulated graphene, graphene nanoplatelet, and their hybrids. Int. J. Energy Res. 46(8), 10218–10227 (2022). https://doi.org/10.1002/er.7147
- K. Al Imran, J. Lou, K.N. Shivakumar, Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets. J. Appl. Polym. Sci. 135(9), 45833 (2018). https://doi.org/10.1002/app.45833
- J.-U. Jang, S.O. So, J.H. Kim, S.Y. Kim, S.H. Kim, Enhanced thermal conductivity of graphene nanoplatelet filled polymer composite based on thermal percolation behavior. Compos. Commun. 31, 101110 (2022). https://doi.org/10.1016/j.coco.2022.101110
- F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 5(13), 6164–6169 (2017). https://doi.org/10.1039/c7ta00750g
- Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7(39), eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
- L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14(1), 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- X. Zhang, T. Liu, Z. Liu, X. Zhu, C. Long et al., A bionic strong nanostructured soy protein-based adhesive enabled antistatic and self-extinguishing wood-based composites. Sustain. Mater. Technol. 40, e00979 (2024). https://doi.org/10.1016/j.susmat.2024.e00979
- L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652
- C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16(6), 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130(22), 225108 (2021). https://doi.org/10.1063/5.0075019
- Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17(13), 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
- H. Jiang, B. Yuan, H. Guo, F. Pan, F. Meng et al., Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 15(1), 6138 (2024). https://doi.org/10.1038/s41467-024-50541-4
- Y. Sun, Y. Su, Z. Chai, L. Jiang, L. Heng, Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat. Commun. 15(1), 7290 (2024). https://doi.org/10.1038/s41467-024-51732-9
- P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- X. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
- M. Crespo, M. González, A.L. Elías, L. Pulickal Rajukumar, J. Baselga et al., Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi RRL 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
- W.-L. Song, J. Wang, L.-Z. Fan, Y. Li, C.-Y. Wang et al., Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfaces 6(13), 10516–10523 (2014). https://doi.org/10.1021/am502103u
- S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 4(27), 13839 (2014). https://doi.org/10.1039/c3ra47387b
- M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
- Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
- X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang et al., Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos. Part A Appl. Sci. Manuf. 85, 199–206 (2016). https://doi.org/10.1016/j.compositesa.2016.03.009
- A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh et al., Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 8(16), 10600–10608 (2016). https://doi.org/10.1021/acsami.5b12334
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
- B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
- N. Agnihotri, K. Chakrabarti, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3, 4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765–43771 (2015). https://doi.org/10.1039/c4ra15674a
- Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
- Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772 (2012). https://doi.org/10.1039/c2jm32692b
- H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011). https://doi.org/10.1021/am200021v
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k
References
Y. Cheng, N. Ma, C. Witt, S. Rapp, P.S. Wild et al., Face masks effectively limit the probability of SARS-CoV-2 transmission. Science 372(6549), 1439–1443 (2021). https://doi.org/10.1126/science.abg6296
C.J. Worby, H.-H. Chang, Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat. Commun. 11, 4049 (2020). https://doi.org/10.1038/s41467-020-17922-x
X. Hu, S. Wang, S. Fu, M. Qin, C. Lyu et al., Intranasal mask for protecting the respiratory tract against viral aerosols. Nat. Commun. 14(1), 8398 (2023). https://doi.org/10.1038/s41467-023-44134-w
F. Richter, Global Mask Sales Surged 30-Fold during the Pandemic. (2023). https://www.statista.com/chart/29100/global-face-mask-sales/
G. Lin, J. Yuan, X. Li, S. Zhao, S. Wang et al., Strategic choice of the management of disposable meal boxes from the perspectives of life cycle impact assessment: Recycling fossil plastics or promoting biogenic plastics. Resour. Conserv. Recycl. 204, 107477 (2024). https://doi.org/10.1016/j.resconrec.2024.107477
Z. Wang, W. Zhang, M. Wei, P. Wang, D. Li, Mechanical and deformation behavior of clay reinforced by discarded mask fibers. J. Clean. Prod. 428, 139485 (2023). https://doi.org/10.1016/j.jclepro.2023.139485
J. Zhu, M. Saberian, J. Li, E. Yaghoubi, M.T. Rahman, Sustainable use of COVID-19 discarded face masks to improve the performance of stone mastic asphalt. Constr. Build. Mater. 398, 132524 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132524
L. Li, Y. Luo, R. Li, Q. Zhou, W.J.G.M. Peijnenburg et al., Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3(11), 929–937 (2020). https://doi.org/10.1038/s41893-020-0567-9
I.A. Kane, M.A. Clare, E. Miramontes, R. Wogelius, J.J. Rothwell et al., Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368(6495), 1140–1145 (2020). https://doi.org/10.1126/science.aba5899
Z. Liu, A. Sokratian, A.M. Duda, E. Xu, C. Stanhope et al., Anionic nanoplastic contaminants promote Parkinson’s disease–associated α-synuclein aggregation. Sci. Adv. 9(46), eadi8716 (2023). https://doi.org/10.1126/sciadv.adi8716
K.M. Van Geem, Plastic waste recycling is Gaining momentum. Science 381(6658), 607–608 (2023). https://doi.org/10.1126/science.adj2807
Z. Xu, N.E. Munyaneza, Q. Zhang, M. Sun, C. Posada et al., Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 381(6658), 666–671 (2023). https://doi.org/10.1126/science.adh0993
R. Yu, X. Wen, J. Liu, Y. Wang, X. Chen et al., A green and high-yield route to recycle waste masks into CNTs/Ni hybrids via catalytic carbonization and their application for superior microwave absorption. Appl. Catal. B Environ. 298, 120544 (2021). https://doi.org/10.1016/j.apcatb.2021.120544
Y. Guo, S. Zhu, C. Mao, Y. Chen, L. Liu et al., High-rate lithium-selenium batteries boosted by a multifunctional Janus separator over a wide temperature range of −30 °C to 60 °C. Adv. Mater. 35(46), e2304551 (2023). https://doi.org/10.1002/adma.202304551
M.-D. Li, X.-Q. Shen, X. Chen, J.-M. Gan, F. Wang et al., Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nat. Commun. 13(1), 5849 (2022). https://doi.org/10.1038/s41467-022-33596-z
R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
L. Tang, K. Ruan, X. Liu, Y. Tang, Y. Zhang et al., Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 16(1), 38 (2023). https://doi.org/10.1007/s40820-023-01257-5
J.-W. Zha, F. Wang, B. Wan, Polymer composites with high thermal conductivity: theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025). https://doi.org/10.1016/j.pmatsci.2024.101362
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
Z. Wang, Z. Wu, L. Weng, S. Ge, D. Jiang et al., A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects. Adv. Funct. Mater. 33(36), 2301549 (2023). https://doi.org/10.1002/adfm.202301549
Z. Dai, J. Zhu, J. Yan, J. Su, Y. Gao et al., An advanced dual-function MnO2-fabric air filter combining catalytic oxidation of formaldehyde and high-efficiency fine particulate matter removal. Adv. Funct. Mater. 30(42), 2001488 (2020). https://doi.org/10.1002/adfm.202001488
L. Cai, Y. Li, X. Lin, H. Chen, Q. Gao et al., High-performance adhesives formulated from soy protein isolate and bio-based material hybrid for plywood production. J. Clean. Prod. 353, 131587 (2022). https://doi.org/10.1016/j.jclepro.2022.131587
X. Huang, Y. Chen, X. Lin, J. Li, Q. Gao, A strong soy protein-based adhesive with excellent water retention. Chem. Eng. J. 472, 145037 (2023). https://doi.org/10.1016/j.cej.2023.145037
S. Srinivasan, S.H. Je, S. Back, G. Barin, O. Buyukcakir et al., Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. Adv. Mater. 26(17), 2725–2729 (2014). https://doi.org/10.1002/adma.201304334
G. Zhao, H. Zhu, Cation-π interactions in graphene-containing systems for water treatment and beyond. Adv. Mater. 32(22), e1905756 (2020). https://doi.org/10.1002/adma.201905756
Z. Wang, S. Zhang, S. Zhao, H. Kang, Z. Wang et al., Facile biomimetic self-coacervation of tannic acid and polycation: tough and wide pH range of underwater adhesives. Chem. Eng. J. 404, 127069 (2021). https://doi.org/10.1016/j.cej.2020.127069
Y. Dubi, M. Di Ventra, Fourier’s law: insight from a simple derivation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 042101 (2009). https://doi.org/10.1103/PhysRevE.79.042101
J. Li, X. Zhao, W. Wu, Z. Zhang, Y. Xian et al., Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.02.012
H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
J. Ying, X. Tan, L. Lv, X. Wang, J. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
T. Sun, W. Luo, Y. Luo, Y. Wang, S. Zhou et al., Self-reinforced polypropylene/graphene composite with segregated structures to achieve balanced electrical and mechanical properties. Ind. Eng. Chem. Res. 59(24), 11206–11218 (2020). https://doi.org/10.1021/acs.iecr.0c00825
P.-G. Ren, S.-Y. Hou, F. Ren, Z.-P. Zhang, Z.-F. Sun et al., The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure. Compos. Part A Appl. Sci. Manuf. 90, 13–21 (2016). https://doi.org/10.1016/j.compositesa.2016.06.019
D.S. Muratov, V.O. Vanyushin, L.O. Luchnikov, M. Yu Degtyaryov, E.A. Kolesnikov et al., Improved thermal conductivity of polypropylene filled with exfoliated hexagonal boron nitride (hBN) ps. Mater. Res. Express 8(3), 035010 (2021). https://doi.org/10.1088/2053-1591/abed0f
I.N. Mazov, I.A. Ilinykh, V.L. Kuznetsov, A.A. Stepashkin, K.S. Ergin et al., Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J. Alloys Compd. 586, S440–S442 (2014). https://doi.org/10.1016/j.jallcom.2012.10.167
Y. Seki, B. Avci, S. Uzun, N. Kaya, M. Atagur et al., The using of graphene nano-platelets for a better through-plane thermal conductivity for polypropylene. Polym. Compos. 40(S2), E1320–E1328 (2019). https://doi.org/10.1002/pc.24979
C. Usman, A. Mabrouk, A. Abdala, Enhanced thermal conductivity of polyethylene nanocomposites with graphene, granulated graphene, graphene nanoplatelet, and their hybrids. Int. J. Energy Res. 46(8), 10218–10227 (2022). https://doi.org/10.1002/er.7147
K. Al Imran, J. Lou, K.N. Shivakumar, Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets. J. Appl. Polym. Sci. 135(9), 45833 (2018). https://doi.org/10.1002/app.45833
J.-U. Jang, S.O. So, J.H. Kim, S.Y. Kim, S.H. Kim, Enhanced thermal conductivity of graphene nanoplatelet filled polymer composite based on thermal percolation behavior. Compos. Commun. 31, 101110 (2022). https://doi.org/10.1016/j.coco.2022.101110
F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 5(13), 6164–6169 (2017). https://doi.org/10.1039/c7ta00750g
Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7(39), eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14(1), 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
X. Zhang, T. Liu, Z. Liu, X. Zhu, C. Long et al., A bionic strong nanostructured soy protein-based adhesive enabled antistatic and self-extinguishing wood-based composites. Sustain. Mater. Technol. 40, e00979 (2024). https://doi.org/10.1016/j.susmat.2024.e00979
L. Chen, T. Mai, X.-X. Ji, P.-L. Wang, M.-Y. Qi et al., 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 476, 146652 (2023). https://doi.org/10.1016/j.cej.2023.146652
C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16(6), 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2T hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130(22), 225108 (2021). https://doi.org/10.1063/5.0075019
Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17(13), 12616–12628 (2023). https://doi.org/10.1021/acsnano.3c02975
H. Jiang, B. Yuan, H. Guo, F. Pan, F. Meng et al., Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 15(1), 6138 (2024). https://doi.org/10.1038/s41467-024-50541-4
Y. Sun, Y. Su, Z. Chai, L. Jiang, L. Heng, Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat. Commun. 15(1), 7290 (2024). https://doi.org/10.1038/s41467-024-51732-9
P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14(1), 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
X. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
M. Crespo, M. González, A.L. Elías, L. Pulickal Rajukumar, J. Baselga et al., Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi RRL 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
W.-L. Song, J. Wang, L.-Z. Fan, Y. Li, C.-Y. Wang et al., Interfacial engineering of carbon nanofiber-graphene-carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfaces 6(13), 10516–10523 (2014). https://doi.org/10.1021/am502103u
S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 4(27), 13839 (2014). https://doi.org/10.1039/c3ra47387b
M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
X. Sun, X. Liu, X. Shen, Y. Wu, Z. Wang et al., Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos. Part A Appl. Sci. Manuf. 85, 199–206 (2016). https://doi.org/10.1016/j.compositesa.2016.03.009
A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh et al., Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 8(16), 10600–10608 (2016). https://doi.org/10.1021/acsami.5b12334
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang et al., Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013). https://doi.org/10.1021/am303289m
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
N. Agnihotri, K. Chakrabarti, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3, 4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765–43771 (2015). https://doi.org/10.1039/c4ra15674a
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9(10), 9059–9069 (2017). https://doi.org/10.1021/acsami.7b01017
Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang et al., Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772 (2012). https://doi.org/10.1039/c2jm32692b
H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011). https://doi.org/10.1021/am200021v
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang et al., Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k