Biological Tissue-Inspired Ultrasoft, Ultrathin, and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics
Corresponding Author: Ting Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 139
Abstract
Hydrogels offer tissue-like softness, stretchability, fracture toughness, ionic conductivity, and compatibility with biological tissues, which make them promising candidates for fabricating flexible bioelectronics. A soft hydrogel film offers an ideal interface to directly bridge thin-film electronics with the soft tissues. However, it remains difficult to fabricate a soft hydrogel film with an ultrathin configuration and excellent mechanical strength. Here we report a biological tissue-inspired ultrasoft microfiber composite ultrathin (< 5 μm) hydrogel film, which is currently the thinnest hydrogel film as far as we know. The embedded microfibers endow the composite hydrogel with prominent mechanical strength (tensile stress ~ 6 MPa) and anti-tearing property. Moreover, our microfiber composite hydrogel offers the capability of tunable mechanical properties in a broad range, allowing for matching the modulus of most biological tissues and organs. The incorporation of glycerol and salt ions imparts the microfiber composite hydrogel with high ionic conductivity and prominent anti-dehydration behavior. Such microfiber composite hydrogels are promising for constructing attaching-type flexible bioelectronics to monitor biosignals.
Highlights:
1 A novel strategy was developed to construct ultrathin microfiber composite hydrogel films (< 5 μm) by embedding an electrospun fiber network into a hydrogel.
2 The microfiber composite hydrogel offers tunable modulus in a broad range (from ~ 5 kPa to tens of MPa), which matches the modulus of most biological tissues and organs.
3 The ultrathin configuration and ultrasoft nature allow the microfiber composite hydrogel seamlessly attaching to various rough surfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Wang, M. Wang, J. Wang, L. Yang, X. Ren et al., A chemically mediated artificial neuron. Nat. Electron. 5(9), 586–595 (2022). https://doi.org/10.1038/s41928-022-00806-x
- G. Yang, K. Zhu, W. Guo, D. Wu, X. Quan et al., Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 32(29), 2200457 (2022). https://doi.org/10.1002/adfm.202200457
- W. Li, N. Matsuhisa, Z. Liu, M. Wang, Y. Luo et al., An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 4(2), 134–142 (2021). https://doi.org/10.1038/s41928-020-00530-4
- X. Yang, T. Zhou, T.J. Zwang, G. Hong, Y. Zhao et al., Bioinspired neuron-like electronics. Nat. Mater. 18(5), 510–517 (2019). https://doi.org/10.1038/s41563-019-0292-9
- R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal et al., Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15(6), 679–685 (2016). https://doi.org/10.1038/nmat4590
- Y. Dobashi, D. Yao, Y. Petel, T.N. Nguyen, M.S. Sarwar et al., Piezoionic mechanoreceptors: force-induced current generation in hydrogels. Science 376(6592), 502–507 (2022). https://doi.org/10.1126/science.aaw1974
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nano-Micro Lett. 14(1), 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
- C.F. Guimarães, L. Gasperini, A.P. Marques, R.L. Reis, The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5(5), 351–370 (2020). https://doi.org/10.1038/s41578-019-0169-1
- H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly (vinyl alcohol)/mxene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Strategies for body-conformable electronics. Matter 5(4), 1104–1136 (2022). https://doi.org/10.1016/j.matt.2022.02.006
- X. Liu, M.E. Inda, Y. Lai, T.K. Lu, X. Zhao, Engineered living hydrogels. Adv. Mater. 34(26), 2201326 (2022). https://doi.org/10.1002/adma.202201326
- C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
- L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
- X. Liu, M. Hao, Z. Chen, T. Zhang, J. Huang et al., 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272, 120771 (2021). https://doi.org/10.1016/j.biomaterials.2021.120771
- Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14(1), 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
- J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2023). https://doi.org/10.1007/s40820-022-00980-9
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2022). https://doi.org/10.1002/adma.202206793
- Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4(3), 185–192 (2021). https://doi.org/10.1038/s41928-021-00545-5
- X. Xia, Q. Liang, X. Sun, D. Yu, X. Huang et al., Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 32(48), 2208024 (2022). https://doi.org/10.1002/adfm.202208024
- S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
- Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
- S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
- J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
- X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
- J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma et al., An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32(13), 2107404 (2022). https://doi.org/10.1002/adfm.202107404
- M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19(10), 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
- Y. Hui, Y. Yao, Q. Qian, J. Luo, H. Chen et al., Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022). https://doi.org/10.1038/s41928-022-00887-8
- D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8(23), eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
- S.F. Badylak, D.O. Freytes, T.W. Gilbert, Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5(1), 1–13 (2009). https://doi.org/10.1016/j.actbio.2008.09.013
- S.F. Badylak, The extracellular matrix as a biologic scaffold material. Biomaterials 28(25), 3587–3593 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.043
- F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From cell-ecm interactions to tissue engineering. J. Cell. Physiol. 199(2), 174–180 (2004). https://doi.org/10.1002/jcp.10471
- J.K. Mouw, G. Ou, V.M. Weaver, Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15(12), 771–785 (2014). https://doi.org/10.1038/nrm3902
- C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59(14), 1413–1433 (2007). https://doi.org/10.1016/j.addr.2007.04.022
- H. Jin, M.O.G. Nayeem, S. Lee, N. Matsuhisa, D. Inoue et al., Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 13(7), 7905–7912 (2019). https://doi.org/10.1021/acsnano.9b02297
- X. Lu, Y. Si, S. Zhang, J. Yu, B. Ding, In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31(30), 2103117 (2021). https://doi.org/10.1002/adfm.202103117
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
- S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel-elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30(29), 1909540 (2020). https://doi.org/10.1002/adfm.201909540
- Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- C.M. Hassan, N.A. Peppas, Structure and morphology of freeze/thawed pva hydrogels. Macromolecules 33(7), 2472–2479 (2000). https://doi.org/10.1021/ma9907587
- J.L. Holloway, A.M. Lowman, G.R. Palmese, The role of crystallization and phase separation in the formation of physically cross-linked pva hydrogels. Soft Matter 9(3), 826–833 (2013). https://doi.org/10.1039/C2SM26763B
- Y. Guo, J. Drum, C. Qu, M. Cakmak, Mechanical reinforcement of hydrogels by nanofiber network undergoing biaxial deformation. Polym. Compos. 37(3), 709–717 (2016). https://doi.org/10.1002/pc.23228
- R. Ricciardi, F. Auriemma, C. De Rosa, F. Lauprêtre, X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5), 1921–1927 (2004). https://doi.org/10.1021/ma035663q
- S. Peng, S. Liu, Y. Sun, N. Xiang, X. Jiang et al., Facile preparation and characterization of poly (vinyl alcohol)-nacl-glycerol supramolecular hydrogel electrolyte. Eur. Polym. J. 106, 206–213 (2018). https://doi.org/10.1016/j.eurpolymj.2018.07.024
- Z. Liu, J. Liu, J. Zhang, B. Zheng, X. Ren et al., Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Mater. Chem. Front. 4(11), 3319–3327 (2020). https://doi.org/10.1039/D0QM00566E
- B.B. Murphy, B.H. Scheid, Q. Hendricks, N.V. Apollo, B. Litt et al., Time evolution of the skin-electrode interface impedance under different skin treatments. Sensors 21(15), 5210 (2021). https://doi.org/10.3390/s21155210
- Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6(43), eabd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
- C. Disselhorst-Klug, T. Schmitz-Rode, G. Rau, Surface electromyography and muscle force: limits in semg–force relationship and new approaches for applications. Clin. Biomech. 24(3), 225–235 (2009). https://doi.org/10.1016/j.clinbiomech.2008.08.003
- E.N. Kamavuako, D. Farina, K. Yoshida, W. Jensen, Relationship between grasping force and features of single-channel intramuscular emg signals. J. Neurosci. Methods 185(1), 143–150 (2009). https://doi.org/10.1016/j.jneumeth.2009.09.006
References
T. Wang, M. Wang, J. Wang, L. Yang, X. Ren et al., A chemically mediated artificial neuron. Nat. Electron. 5(9), 586–595 (2022). https://doi.org/10.1038/s41928-022-00806-x
G. Yang, K. Zhu, W. Guo, D. Wu, X. Quan et al., Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater. 32(29), 2200457 (2022). https://doi.org/10.1002/adfm.202200457
W. Li, N. Matsuhisa, Z. Liu, M. Wang, Y. Luo et al., An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 4(2), 134–142 (2021). https://doi.org/10.1038/s41928-020-00530-4
X. Yang, T. Zhou, T.J. Zwang, G. Hong, Y. Zhao et al., Bioinspired neuron-like electronics. Nat. Mater. 18(5), 510–517 (2019). https://doi.org/10.1038/s41563-019-0292-9
R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal et al., Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15(6), 679–685 (2016). https://doi.org/10.1038/nmat4590
Y. Dobashi, D. Yao, Y. Petel, T.N. Nguyen, M.S. Sarwar et al., Piezoionic mechanoreceptors: force-induced current generation in hydrogels. Science 376(6592), 502–507 (2022). https://doi.org/10.1126/science.aaw1974
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
G. Yan, S. He, G. Chen, S. Ma, A. Zeng et al., Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nano-Micro Lett. 14(1), 84 (2022). https://doi.org/10.1007/s40820-022-00827-3
C.F. Guimarães, L. Gasperini, A.P. Marques, R.L. Reis, The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5(5), 351–370 (2020). https://doi.org/10.1038/s41578-019-0169-1
H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly (vinyl alcohol)/mxene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Strategies for body-conformable electronics. Matter 5(4), 1104–1136 (2022). https://doi.org/10.1016/j.matt.2022.02.006
X. Liu, M.E. Inda, Y. Lai, T.K. Lu, X. Zhao, Engineered living hydrogels. Adv. Mater. 34(26), 2201326 (2022). https://doi.org/10.1002/adma.202201326
C. Yang, Z. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 3(6), 125–142 (2018). https://doi.org/10.1038/s41578-018-0018-7
L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
X. Liu, M. Hao, Z. Chen, T. Zhang, J. Huang et al., 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272, 120771 (2021). https://doi.org/10.1016/j.biomaterials.2021.120771
Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14(1), 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2023). https://doi.org/10.1007/s40820-022-00980-9
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2022). https://doi.org/10.1002/adma.202206793
Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4(3), 185–192 (2021). https://doi.org/10.1038/s41928-021-00545-5
X. Xia, Q. Liang, X. Sun, D. Yu, X. Huang et al., Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 32(48), 2208024 (2022). https://doi.org/10.1002/adfm.202208024
S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim et al., Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58–68 (2019). https://doi.org/10.1038/s41551-018-0335-6
S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma et al., An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32(13), 2107404 (2022). https://doi.org/10.1002/adfm.202107404
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19(10), 1102–1109 (2020). https://doi.org/10.1038/s41563-020-0699-3
Y. Hui, Y. Yao, Q. Qian, J. Luo, H. Chen et al., Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022). https://doi.org/10.1038/s41928-022-00887-8
D. Won, J. Kim, J. Choi, H. Kim, S. Han et al., Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8(23), eabo3209 (2022). https://doi.org/10.1126/sciadv.abo3209
S.F. Badylak, D.O. Freytes, T.W. Gilbert, Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5(1), 1–13 (2009). https://doi.org/10.1016/j.actbio.2008.09.013
S.F. Badylak, The extracellular matrix as a biologic scaffold material. Biomaterials 28(25), 3587–3593 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.043
F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From cell-ecm interactions to tissue engineering. J. Cell. Physiol. 199(2), 174–180 (2004). https://doi.org/10.1002/jcp.10471
J.K. Mouw, G. Ou, V.M. Weaver, Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15(12), 771–785 (2014). https://doi.org/10.1038/nrm3902
C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59(14), 1413–1433 (2007). https://doi.org/10.1016/j.addr.2007.04.022
H. Jin, M.O.G. Nayeem, S. Lee, N. Matsuhisa, D. Inoue et al., Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 13(7), 7905–7912 (2019). https://doi.org/10.1021/acsnano.9b02297
X. Lu, Y. Si, S. Zhang, J. Yu, B. Ding, In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31(30), 2103117 (2021). https://doi.org/10.1002/adfm.202103117
Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). https://doi.org/10.1002/adfm.201806220
S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel-elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30(29), 1909540 (2020). https://doi.org/10.1002/adfm.201909540
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13(1), 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
C.M. Hassan, N.A. Peppas, Structure and morphology of freeze/thawed pva hydrogels. Macromolecules 33(7), 2472–2479 (2000). https://doi.org/10.1021/ma9907587
J.L. Holloway, A.M. Lowman, G.R. Palmese, The role of crystallization and phase separation in the formation of physically cross-linked pva hydrogels. Soft Matter 9(3), 826–833 (2013). https://doi.org/10.1039/C2SM26763B
Y. Guo, J. Drum, C. Qu, M. Cakmak, Mechanical reinforcement of hydrogels by nanofiber network undergoing biaxial deformation. Polym. Compos. 37(3), 709–717 (2016). https://doi.org/10.1002/pc.23228
R. Ricciardi, F. Auriemma, C. De Rosa, F. Lauprêtre, X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5), 1921–1927 (2004). https://doi.org/10.1021/ma035663q
S. Peng, S. Liu, Y. Sun, N. Xiang, X. Jiang et al., Facile preparation and characterization of poly (vinyl alcohol)-nacl-glycerol supramolecular hydrogel electrolyte. Eur. Polym. J. 106, 206–213 (2018). https://doi.org/10.1016/j.eurpolymj.2018.07.024
Z. Liu, J. Liu, J. Zhang, B. Zheng, X. Ren et al., Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Mater. Chem. Front. 4(11), 3319–3327 (2020). https://doi.org/10.1039/D0QM00566E
B.B. Murphy, B.H. Scheid, Q. Hendricks, N.V. Apollo, B. Litt et al., Time evolution of the skin-electrode interface impedance under different skin treatments. Sensors 21(15), 5210 (2021). https://doi.org/10.3390/s21155210
Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6(43), eabd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
C. Disselhorst-Klug, T. Schmitz-Rode, G. Rau, Surface electromyography and muscle force: limits in semg–force relationship and new approaches for applications. Clin. Biomech. 24(3), 225–235 (2009). https://doi.org/10.1016/j.clinbiomech.2008.08.003
E.N. Kamavuako, D. Farina, K. Yoshida, W. Jensen, Relationship between grasping force and features of single-channel intramuscular emg signals. J. Neurosci. Methods 185(1), 143–150 (2009). https://doi.org/10.1016/j.jneumeth.2009.09.006