Direct Photolithography of WOx Nanoparticles for High-Resolution Non-Emissive Displays
Corresponding Author: Yu‑Mo Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 67
Abstract
High-resolution non-emissive displays based on electrochromic tungsten oxides (WOx) are crucial for future near-eye virtual/augmented reality interactions, given their impressive attributes such as high environmental stability, ideal outdoor readability, and low energy consumption. However, the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale. Here, we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange. This strategy enabled us to achieve ultra-high resolution efficiently (line width < 4 µm, the best resolution for reported inorganic electrochromic materials). Additionally, the resulting device exhibited impressive electrochromic performance, such as fast response (< 1 s at 0 V), high coloration efficiency (119.5 cm2 C−1), good optical modulation (55.9%), and durability (> 3600 cycles), as well as promising applications in electronic logos, pixelated displays, flexible electronics, etc. The success and advancements presented here are expected to inspire and accelerate research and development (R&D) in high-resolution non-emissive displays and other ultra-fine micro-electronics.
Highlights:
1 Direct photolithography of electrochromic WOx nanoparticles via in situ photo-induced ligand exchange is proposed and demonstrated.
2 The highest resolution among inorganic electrochromics (< 4 µm) is achieved, which is promising in high-resolution non-emissive displays.
3 The as-prepared device exhibits highly remarkable performance including rapid response, high coloration efficiency and durability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Sui, J. Pu, T.-H. Chen, J. Liang, Y.-T. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6, 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
- Y. Zhai, J. Li, S. Shen, Z. Zhu, S. Mao et al., Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 32, 2109848 (2022). https://doi.org/10.1002/adfm.202109848
- S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8, 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
- Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
- C. Gu, A.-B. Jia, Y.-M. Zhang, S.X.-A. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
- Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R. Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
- Q. Liu, X. Ou, Y. Niu, L. Li, D. Xing et al., Flexible Zn-ion electrochromic batteries with multiple-color variations. Angew. Chem. Int. Ed. 63, e202317944 (2024). https://doi.org/10.1002/anie.202317944
- L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
- N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- G. Yang, J. Fan, K. Zhang, C. Gu, J. Li et al., Electrochromic reflective displays based on in situ photo-crosslinked PEDOT: PSS patterns. Adv. Funct. Mater. 34, 2314983 (2024). https://doi.org/10.1002/adfm.202314983
- Y. Wang, R. Shen, S. Wang, Q. Chen, C. Gu et al., A see-through electrochromic display via dynamic metal-ligand interactions. Chem 7, 1308–1320 (2021). https://doi.org/10.1016/j.chempr.2021.02.005
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
- J. Park, J.H. Choi, K. Kong, J.H. Han, J.H. Park et al., Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15, 449–455 (2021). https://doi.org/10.1038/s41566-021-00783-1
- Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv et al., Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020). https://doi.org/10.1038/s41377-020-0268-1
- Y. Shi, Z. Wang, C. Dai, S. Wan, Z. Li, On-chip meticulous grayscale high-resolution meta-display. ACS Photonics 11, 1311–1317 (2024). https://doi.org/10.1021/acsphotonics.3c01936
- R. Zhang, Q. Zhou, S. Huang, Y. Zhang, R.-T. Wen, Capturing ion trapping and detrapping dynamics in electrochromic thin films. Nat. Commun. 15, 2294 (2024). https://doi.org/10.1038/s41467-024-46500-8
- J. Guo, H. Jia, Z. Shao, P. Jin, X. Cao, Fast-switching WO3-based electrochromic devices: design, fabrication, and applications. Acc. Mater. Res. 4, 438–447 (2023). https://doi.org/10.1021/accountsmr.2c00217
- W. Cheng, J. He, K.E. Dettelbach, N.J.J. Johnson, R.S. Sherbo et al., Photodeposited amorphous oxide films for electrochromic windows. Chem 4, 821–832 (2018). https://doi.org/10.1016/j.chempr.2017.12.030
- Q. Zhang, Q. Liu, J. Kang, Q. Huang, Z. Liu et al., Robust sandwich-structured nanofluidic diodes modulating ionic transport for an enhanced electrochromic performance. Adv. Sci. 5, 1800163 (2018). https://doi.org/10.1002/advs.201800163
- G. Cai, J. Wang, P.S. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
- Q. Zhao, J. Wang, X. Ai, Y. Duan, Z. Pan et al., Three-dimensional knotting of W17O47@PEDOT:PSS nanowires enables high-performance flexible cathode for dual-functional electrochromic and electrochemical device. InfoMat 4, e12298 (2022). https://doi.org/10.1002/inf2.12298
- G. Cai, R. Zhu, S. Liu, J. Wang, C. Wei et al., Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage. Adv. Energy Mater. 12, 2270015 (2022). https://doi.org/10.1002/aenm.202270015
- G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49, 8687–8720 (2020). https://doi.org/10.1039/d0cs00317d
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11, 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
- S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014). https://doi.org/10.1002/adma.201400447
- G. Zhang, J. Zhang, T. Qiu, H. Ning, Z. Fang et al., Fabrication of flexible electrochromic film based on amorphous isopolytungstate by low-temperature inkjet-printed process with a solution crystallization kinetic-controlled strategy. Chem. Eng. J. 427, 131840 (2022). https://doi.org/10.1016/j.cej.2021.131840
- J.-L. Wang, J.-W. Liu, S.-Z. Sheng, Z. He, J. Gao et al., Manipulating nanowire assemblies toward multicolor transparent electrochromic device. Nano Lett. 21, 9203–9209 (2021). https://doi.org/10.1021/acs.nanolett.1c03061
- X. Li, T.Y. Yun, K.W. Kim, S.H. Kim, H.C. Moon, Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration. ACS Appl. Mater. Interfaces 12, 4022–4030 (2020). https://doi.org/10.1021/acsami.9b21254
- L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10, 2000142 (2020). https://doi.org/10.1002/aenm.202000142
- D. Hahm, J. Lim, H. Kim, J.-W. Shin, S. Hwang et al., Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022). https://doi.org/10.1038/s41565-022-01182-5
- P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13, 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
- Y. Yao, L. Zhang, T. Leydecker, P. Samorì, Direct photolithography on molecular crystals for high performance organic optoelectronic devices. J. Am. Chem. Soc. 140, 6984–6990 (2018). https://doi.org/10.1021/jacs.8b03526
- Y. Wang, I. Fedin, H. Zhang, D.V. Talapin, Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017). https://doi.org/10.1126/science.aan2958
- Y. Wang, J.-A. Pan, H. Wu, D.V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 13, 13917–13931 (2019). https://doi.org/10.1021/acsnano.9b05491
- H. Cho, J.-A. Pan, H. Wu, X. Lan, I. Coropceanu et al., Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv. Mater. 32, e2003805 (2020). https://doi.org/10.1002/adma.202003805
- J.-A. Pan, Z. Rong, Y. Wang, H. Cho, I. Coropceanu et al., Direct optical lithography of colloidal metal oxide nanomaterials for diffractive optical elements with 2π phase control. J. Am. Chem. Soc. 143, 2372–2383 (2021). https://doi.org/10.1021/jacs.0c12447
- C.B. Nielsen, A. Angerhofer, K.A. Abboud, J.R. Reynolds, Discrete photopatternable pi-conjugated oligomers for electrochromic devices. J. Am. Chem. Soc. 130, 9734–9746 (2008). https://doi.org/10.1021/ja7112273
- J. Jensen, A.L. Dyer, D.E. Shen, F.C. Krebs, J.R. Reynolds, Direct photopatterning of electrochromic polymers. Adv. Funct. Mater. 23, 3728–3737 (2013). https://doi.org/10.1002/adfm.201203005
- J. Kim, J. You, B. Kim, T. Park, E. Kim, Solution processable and patternable poly(3, 4-alkylenedioxythiophene)s for large-area electrochromic films. Adv. Mater. 23, 4168–4173 (2011). https://doi.org/10.1002/adma.201101900
- C. Huang, Y.-Q.-Q. Yi, Z. Hu, S. Zhang, X. Wu et al., Photolithographically patterned and highly stable electrochromic displays enabled by a photo-assisted cross-linker. J. Mater. Chem. C 11, 15591–15598 (2023). https://doi.org/10.1039/d3tc03088a
- J. Kim, J. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. Mater. 29, 1808911 (2019). https://doi.org/10.1002/adfm.201808911
- J.-W. Kim, D.-K. Kwon, J.-M. Myoung, Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability. Chem. Eng. J. 387, 124145 (2020). https://doi.org/10.1016/j.cej.2020.124145
- C. Gu, S. Wang, J. He, Y.-M. Zhang, S.X.-A. Zhang, High-durability organic electrochromic devices based on in-situ-photocurable electrochromic materials. Chem 9, 2841–2854 (2023). https://doi.org/10.1016/j.chempr.2023.05.015
- C. Gu, Y. Yan, J. He, D. Pu, L. Chen et al., Transparent and energy-efficient electrochromic AR display with minimum crosstalk using the pixel confinement effect. Device 1, 100126 (2023). https://doi.org/10.1016/j.device.2023.100126
- S.-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To et al., Crystalline WO3 nanops for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006). https://doi.org/10.1002/adma.200501953
- Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang et al., Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018). https://doi.org/10.1021/acsami.7b17166
- J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). https://doi.org/10.1038/ncomms5921
- H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32, e2003574 (2020). https://doi.org/10.1002/adma.202003574
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- J.-L. Wang, S.-Z. Sheng, Z. He, R. Wang, Z. Pan et al., Self-powered flexible electrochromic smart window. Nano Lett. 21, 9976–9982 (2021). https://doi.org/10.1021/acs.nanolett.1c03438
References
C. Sui, J. Pu, T.-H. Chen, J. Liang, Y.-T. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6, 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
Y. Zhai, J. Li, S. Shen, Z. Zhu, S. Mao et al., Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 32, 2109848 (2022). https://doi.org/10.1002/adfm.202109848
S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8, 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
C. Gu, A.-B. Jia, Y.-M. Zhang, S.X.-A. Zhang, Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022). https://doi.org/10.1021/acs.chemrev.1c01055
Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R. Rep. 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
Q. Liu, X. Ou, Y. Niu, L. Li, D. Xing et al., Flexible Zn-ion electrochromic batteries with multiple-color variations. Angew. Chem. Int. Ed. 63, e202317944 (2024). https://doi.org/10.1002/anie.202317944
L. Yin, M. Cao, K.N. Kim, M. Lin, J.-M. Moon et al., A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022). https://doi.org/10.1038/s41928-022-00843-6
N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
G. Yang, J. Fan, K. Zhang, C. Gu, J. Li et al., Electrochromic reflective displays based on in situ photo-crosslinked PEDOT: PSS patterns. Adv. Funct. Mater. 34, 2314983 (2024). https://doi.org/10.1002/adfm.202314983
Y. Wang, R. Shen, S. Wang, Q. Chen, C. Gu et al., A see-through electrochromic display via dynamic metal-ligand interactions. Chem 7, 1308–1320 (2021). https://doi.org/10.1016/j.chempr.2021.02.005
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 9, 121 (2020). https://doi.org/10.1038/s41377-020-00366-9
J. Park, J.H. Choi, K. Kong, J.H. Han, J.H. Park et al., Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15, 449–455 (2021). https://doi.org/10.1038/s41566-021-00783-1
Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv et al., Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020). https://doi.org/10.1038/s41377-020-0268-1
Y. Shi, Z. Wang, C. Dai, S. Wan, Z. Li, On-chip meticulous grayscale high-resolution meta-display. ACS Photonics 11, 1311–1317 (2024). https://doi.org/10.1021/acsphotonics.3c01936
R. Zhang, Q. Zhou, S. Huang, Y. Zhang, R.-T. Wen, Capturing ion trapping and detrapping dynamics in electrochromic thin films. Nat. Commun. 15, 2294 (2024). https://doi.org/10.1038/s41467-024-46500-8
J. Guo, H. Jia, Z. Shao, P. Jin, X. Cao, Fast-switching WO3-based electrochromic devices: design, fabrication, and applications. Acc. Mater. Res. 4, 438–447 (2023). https://doi.org/10.1021/accountsmr.2c00217
W. Cheng, J. He, K.E. Dettelbach, N.J.J. Johnson, R.S. Sherbo et al., Photodeposited amorphous oxide films for electrochromic windows. Chem 4, 821–832 (2018). https://doi.org/10.1016/j.chempr.2017.12.030
Q. Zhang, Q. Liu, J. Kang, Q. Huang, Z. Liu et al., Robust sandwich-structured nanofluidic diodes modulating ionic transport for an enhanced electrochromic performance. Adv. Sci. 5, 1800163 (2018). https://doi.org/10.1002/advs.201800163
G. Cai, J. Wang, P.S. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
Q. Zhao, J. Wang, X. Ai, Y. Duan, Z. Pan et al., Three-dimensional knotting of W17O47@PEDOT:PSS nanowires enables high-performance flexible cathode for dual-functional electrochromic and electrochemical device. InfoMat 4, e12298 (2022). https://doi.org/10.1002/inf2.12298
G. Cai, R. Zhu, S. Liu, J. Wang, C. Wei et al., Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage. Adv. Energy Mater. 12, 2270015 (2022). https://doi.org/10.1002/aenm.202270015
G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49, 8687–8720 (2020). https://doi.org/10.1039/d0cs00317d
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11, 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014). https://doi.org/10.1002/adma.201400447
G. Zhang, J. Zhang, T. Qiu, H. Ning, Z. Fang et al., Fabrication of flexible electrochromic film based on amorphous isopolytungstate by low-temperature inkjet-printed process with a solution crystallization kinetic-controlled strategy. Chem. Eng. J. 427, 131840 (2022). https://doi.org/10.1016/j.cej.2021.131840
J.-L. Wang, J.-W. Liu, S.-Z. Sheng, Z. He, J. Gao et al., Manipulating nanowire assemblies toward multicolor transparent electrochromic device. Nano Lett. 21, 9203–9209 (2021). https://doi.org/10.1021/acs.nanolett.1c03061
X. Li, T.Y. Yun, K.W. Kim, S.H. Kim, H.C. Moon, Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration. ACS Appl. Mater. Interfaces 12, 4022–4030 (2020). https://doi.org/10.1021/acsami.9b21254
L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10, 2000142 (2020). https://doi.org/10.1002/aenm.202000142
D. Hahm, J. Lim, H. Kim, J.-W. Shin, S. Hwang et al., Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022). https://doi.org/10.1038/s41565-022-01182-5
P. Zhang, G. Yang, F. Li, J. Shi, H. Zhong, Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 13, 6713 (2022). https://doi.org/10.1038/s41467-022-34453-9
Y. Yao, L. Zhang, T. Leydecker, P. Samorì, Direct photolithography on molecular crystals for high performance organic optoelectronic devices. J. Am. Chem. Soc. 140, 6984–6990 (2018). https://doi.org/10.1021/jacs.8b03526
Y. Wang, I. Fedin, H. Zhang, D.V. Talapin, Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017). https://doi.org/10.1126/science.aan2958
Y. Wang, J.-A. Pan, H. Wu, D.V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 13, 13917–13931 (2019). https://doi.org/10.1021/acsnano.9b05491
H. Cho, J.-A. Pan, H. Wu, X. Lan, I. Coropceanu et al., Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv. Mater. 32, e2003805 (2020). https://doi.org/10.1002/adma.202003805
J.-A. Pan, Z. Rong, Y. Wang, H. Cho, I. Coropceanu et al., Direct optical lithography of colloidal metal oxide nanomaterials for diffractive optical elements with 2π phase control. J. Am. Chem. Soc. 143, 2372–2383 (2021). https://doi.org/10.1021/jacs.0c12447
C.B. Nielsen, A. Angerhofer, K.A. Abboud, J.R. Reynolds, Discrete photopatternable pi-conjugated oligomers for electrochromic devices. J. Am. Chem. Soc. 130, 9734–9746 (2008). https://doi.org/10.1021/ja7112273
J. Jensen, A.L. Dyer, D.E. Shen, F.C. Krebs, J.R. Reynolds, Direct photopatterning of electrochromic polymers. Adv. Funct. Mater. 23, 3728–3737 (2013). https://doi.org/10.1002/adfm.201203005
J. Kim, J. You, B. Kim, T. Park, E. Kim, Solution processable and patternable poly(3, 4-alkylenedioxythiophene)s for large-area electrochromic films. Adv. Mater. 23, 4168–4173 (2011). https://doi.org/10.1002/adma.201101900
C. Huang, Y.-Q.-Q. Yi, Z. Hu, S. Zhang, X. Wu et al., Photolithographically patterned and highly stable electrochromic displays enabled by a photo-assisted cross-linker. J. Mater. Chem. C 11, 15591–15598 (2023). https://doi.org/10.1039/d3tc03088a
J. Kim, J. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. Mater. 29, 1808911 (2019). https://doi.org/10.1002/adfm.201808911
J.-W. Kim, D.-K. Kwon, J.-M. Myoung, Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability. Chem. Eng. J. 387, 124145 (2020). https://doi.org/10.1016/j.cej.2020.124145
C. Gu, S. Wang, J. He, Y.-M. Zhang, S.X.-A. Zhang, High-durability organic electrochromic devices based on in-situ-photocurable electrochromic materials. Chem 9, 2841–2854 (2023). https://doi.org/10.1016/j.chempr.2023.05.015
C. Gu, Y. Yan, J. He, D. Pu, L. Chen et al., Transparent and energy-efficient electrochromic AR display with minimum crosstalk using the pixel confinement effect. Device 1, 100126 (2023). https://doi.org/10.1016/j.device.2023.100126
S.-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To et al., Crystalline WO3 nanops for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006). https://doi.org/10.1002/adma.200501953
Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang et al., Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018). https://doi.org/10.1021/acsami.7b17166
J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). https://doi.org/10.1038/ncomms5921
H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32, e2003574 (2020). https://doi.org/10.1002/adma.202003574
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
J.-L. Wang, S.-Z. Sheng, Z. He, R. Wang, Z. Pan et al., Self-powered flexible electrochromic smart window. Nano Lett. 21, 9976–9982 (2021). https://doi.org/10.1021/acs.nanolett.1c03438