Recent Advances in Wide-Range Temperature Metal-CO2 Batteries: A Mini Review
Corresponding Author: Xiaofei Hu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 99
Abstract
The metal–carbon dioxide batteries, emerging as high-energy–density energy storage devices, enable direct CO2 utilization, offering promising prospects for CO2 capture and utilization, energy conversion, and storage. However, the electrochemical performance of M-CO2 batteries faces significant challenges, particularly at extreme temperatures. Issues such as high overpotential, poor charge reversibility, and cycling capacity decay arise from complex reaction interfaces, sluggish oxidation kinetics, inefficient catalysts, dendrite growth, and unstable electrolytes. Despite significant advancements at room temperature, limited research has focused on the performance of M-CO2 batteries across a wide-temperature range. This review examines the effects of low and high temperatures on M-CO2 battery components and their reaction mechanism, as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures. It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities, challenges, and future directions for the development of M-CO2 batteries.
Highlights:
1 This review provides a comprehensive overview of the current research progress on metal–carbon dioxide (M-CO2) batteries across a broad temperature range (from room temperature to low/high temperatures).
2 The challenges encountered by M-CO2 batteries under extreme low- and high-temperature conditions thoroughly discussed, along with strategies to address these challenges.
3 The potential application scenarios and future directions of M-CO2 batteries across a broad temperature range are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.-B. Lin, T.T.T. Nguyen, R. Vaidhyanathan, J. Burner, J.M. Taylor et al., A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021). https://doi.org/10.1126/science.abi7281
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
- T. Liu, J. Sang, H. Li, P. Wei, Y. Zang et al., Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts. Battery Energy 1, 20220012 (2022). https://doi.org/10.1002/bte2.20220012
- B. Du, M. Wang, Q. Zhao, X. Hu, S. Ding, Phase change materials microcapsules reinforced with graphene oxide for energy storage technology. Energy Mater. 3, 300026 (2023). https://doi.org/10.1002/eum2.202300026
- X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, e1903790 (2020). https://doi.org/10.1002/adma.201903790
- A. Sarkar, V.R. Dharmaraj, C.-H. Yi, K. Iputera, S.-Y. Huang et al., Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes. Chem. Rev. 123, 9497–9564 (2023). https://doi.org/10.1021/acs.chemrev.3c00167
- M.K. Aslam, H. Wang, S. Chen, Q. Li, J. Duan, Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Mater. Today Energy 31, 101196 (2023). https://doi.org/10.1016/j.mtener.2022.101196
- X. Hu, J. Sun, Z. Li, Q. Zhao, C. Chen et al., Rechargeable room-temperature Na-CO2 batteries. Angew. Chem. Int. Ed. 55, 6482–6486 (2016). https://doi.org/10.1002/anie.201602504
- Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou et al., The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem. Int. Ed. 54, 6550–6553 (2015). https://doi.org/10.1002/anie.201501214
- J. Xie, Z. Zhou, Y. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 30, 1908285 (2020). https://doi.org/10.1002/adfm.201908285
- X. Zhang, T. Wang, Y. Yang, X. Zhang, Z. Lu et al., Breaking the stable triangle of carbonate via W–O bonds for Li–CO2 batteries with low polarization. ACS Energy Lett. 6, 3503–3510 (2021). https://doi.org/10.1021/acsenergylett.1c01428
- W. Ma, X. Liu, C. Li, H. Yin, W. Xi et al., Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv. Mater. 30, e1801152 (2018). https://doi.org/10.1002/adma.201801152
- L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53, 4877–4925 (2024). https://doi.org/10.1039/d3cs00295k
- J. Liu, G. Fu, Y. Liao, W. Zhang, X. Xi et al., Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: electrocatalysts, devices and mechanisms. eScience (2024). https://doi.org/10.1016/j.esci.2024.100267
- B. Lu, X. Wu, X. Xiao, B. Chen, W. Zeng et al., Energy band engineering guided design of bidirectional catalyst for reversible Li–CO2 batteries. Adv. Mater. 36, e2308889 (2024). https://doi.org/10.1002/adma.202308889
- B. Lu, Z. Min, X. Xiao, B. Wang, B. Chen et al., Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv. Mater. 36, e2309264 (2024). https://doi.org/10.1002/adma.202309264
- X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
- Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang et al., Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
- Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29, 1605891 (2017). https://doi.org/10.1002/adma.201605891
- Y. Luo, S. Chen, J. Zhang, X. Ding, B. Pan et al., Perovskite-derived bismuth with I- and Cs+ dual modification for high-efficiency CO2-to-formate electrosynthesis and Al-CO2 batteries. Adv. Mater. 35, e2303297 (2023). https://doi.org/10.1002/adma.202303297
- W. Liu, X. Sui, C. Cai, H. Huang, R. Xu et al., A nonaqueous Mg–CO2 battery with low overpotential. Adv. Energy Mater. 12, 2201675 (2022). https://doi.org/10.1002/aenm.202201675
- T. Jian, W. Ma, C. Xu, H. Liu, J. Wang, Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 3(3), 100114 (2023). https://doi.org/10.1016/j.esci.2023.100114
- L. Chen, J. Zhou, Y. Wang, Y. Xiong, J. Zhang et al., Flexible, stretchable, water-/ fire-proof fiber-shaped Li-CO2 batteries with high energy density. Adv. Energy Mater. 13, 2202933 (2023). https://doi.org/10.1002/aenm.202202933
- Y.-F. Wang, L.-N. Song, L.-J. Zheng, Y. Wang, J.-Y. Wu et al., Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery. Angew. Chem. Int. Ed. 63, e202400132 (2024). https://doi.org/10.1002/anie.202400132
- F. Wang, Y. Li, X. Xia, W. Cai, Q. Chen et al., Metal–CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy Mater. 11, 2100667 (2021). https://doi.org/10.1002/aenm.202100667
- D. Wang, J. Yang, P. He, H. Zhou, A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 14, 4107–4114 (2021). https://doi.org/10.1039/D1EE00068C
- Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13, 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
- Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018). https://doi.org/10.1146/annurev-matsci-070317-124435
- S. Wang, K. Xu, H. Song, T. Zhu, Z. Yu et al., A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures. Adv. Energy Mater. 12, 2201866 (2022). https://doi.org/10.1002/aenm.202201866
- S. Xu, S.K. Das, L.A. Archer, The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3, 6656–6660 (2013). https://doi.org/10.1039/C3RA40394G
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- S. Wan, W. Ma, Y. Wang, Y. Xiao, S. Chen, Electrolytes design for extending the temperature adaptability of lithium-ion batteries: from fundamentals to strategies. Adv. Mater. 36, e2311912 (2024). https://doi.org/10.1002/adma.202311912
- P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, In situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
- Y. Sun, J.-C. Li, H. Zhou, S. Guo, Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization. Energy Environ. Sci. 16, 4759–4811 (2023). https://doi.org/10.1039/d3ee02082g
- L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9, 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
- W. Zhang, Y. Lu, Q. Cao, H. Liu, Q. Feng et al., A reversible self-assembled molecular layer for lithium metal batteries with high energy/power densities at ultra-low temperatures. Energy Environ. Sci. 17, 4531–4543 (2024). https://doi.org/10.1039/D4EE01298D
- Y. Li, X. Lu, X. Zhao, H. Wang, X. Hu, Recent advances in research on cathodes for low-temperature sodium-ion batteries. Prog. Nat. Sci. Mater. Int. 33, 767–779 (2023). https://doi.org/10.1016/j.pnsc.2023.12.021
- S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
- R. Wang, S. Zhang, S. Peng, Y. Tong, X. Hu, Research progress of electrolyte additives for subzero-temperature aqueous sodium-ion batteries. Carbon Neutr. 3, 6 (2024). https://doi.org/10.1007/s43979-024-00081-z
- J. Wang, D. Yu, X. Sun, H. Wang, J. Li, Anodes for low-temperature rechargeable batteries. eScience 4, 100252 (2024). https://doi.org/10.1016/j.esci.2024.100252
- Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62, e202303888 (2023). https://doi.org/10.1002/anie.202303888
- N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
- J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020). https://doi.org/10.1002/adfm.202001619
- J.-H. Kang, J. Park, M. Na, R.H. Choi, H.R. Byon, Low-temperature CO2-assisted lithium–oxygen batteries for improved stability of peroxodicarbonate and excellent cyclability. ACS Energy Lett. 7, 4248–4257 (2022). https://doi.org/10.1021/acsenergylett.2c01796
- C. Peng, L. Xue, Z. Zhao, L. Guo, C. Zhang et al., Boosted Mg–CO2 batteries by amine-mediated CO2 capture chemistry and Mg2+-conducting solid-electrolyte interphases. Angew. Chem. Int. Ed. 63, e202313264 (2024). https://doi.org/10.1002/anie.202313264
- X. Hu, E. Matios, Y. Zhang, C. Wang, J. Luo et al., Deeply cycled sodium metal anodes at low temperature and in lean electrolyte conditions. Angew. Chem. Int. Ed. 60, 5978–5983 (2021). https://doi.org/10.1002/anie.202014241
- N. Zhao, L. Liu, X. Lu, Y. Li, X. Wu et al., Elevating discharge voltage of Li2CO3-routine Li–CO2 battery over 2.9 V at an ultra-wide temperature window. Angew. Chem. Int. Ed. 63, e202407303 (2024). https://doi.org/10.1002/anie.202407303
- L. Jia, H. Hu, X. Cheng, H. Dong, H. Li et al., Toward low-temperature zinc-ion batteries: strategy, progress, and prospect in vanadium-based cathodes. Adv. Energy Mater. 14, 2470036 (2024). https://doi.org/10.1002/aenm.202470036
- Q. Nian, T. Sun, S. Liu, H. Du, X. Ren et al., Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 423, 130253 (2021). https://doi.org/10.1016/j.cej.2021.130253
- K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13, 2203708 (2023). https://doi.org/10.1002/aenm.202203708
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
- N.K. Wagh, S.S. Shinde, C.H. Lee, S.-H. Kim, D.-H. Kim et al., Supramolecular polymer intertwined free-standing bifunctional membrane catalysts for all-temperature flexible Zn–air batteries. Nano-Micro Lett. 14, 190 (2022). https://doi.org/10.1007/s40820-022-00927-0
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14, 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- M. Liu, Y. Wang, T. Yu, L. Zhan, X. Zhao et al., One-step synthesized Bi5O7I for extremely low-temperature CO2 electroreduction. Sci. Bull. 68, 1238–1242 (2023). https://doi.org/10.1016/j.scib.2023.05.016
- Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at –50 °C. Angew. Chem. Int. Ed. 58, 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
- Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6, 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
- Z. Huang, T. Wang, X. Li, H. Cui, G. Liang et al., Small-dipole-molecule-containing electrolytes for high-voltage aqueous rechargeable batteries. Adv. Mater. 34, e2106180 (2022). https://doi.org/10.1002/adma.202106180
- B. Hu, T. Chen, Y. Wang, X. Qian, Q. Zhang et al., Reconfiguring the electrolyte network structure with bio-inspired cryoprotective additive for low-temperature aqueous zinc batteries. Adv. Energy Mater. 14, 2401470 (2024). https://doi.org/10.1002/aenm.202401470
- X. Yang, D. Zhang, L. Zhao, C. Peng, K. Ren et al., Upgrading cycling stability and capability of hybrid Na–CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy Mater. 14, 2470072 (2024). https://doi.org/10.1002/aenm.202470072
- C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
- Z. Tong, S.-B. Wang, M.-H. Fang, Y.-T. Lin, K.-T. Tsai et al., Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy 85, 105972 (2021). https://doi.org/10.1016/j.nanoen.2021.105972
- D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
- P. Jia, M. Yu, X. Zhang, T. Yang, D. Zhu et al., In-situ imaging the electrochemical reactions of Li–CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 15, 542–550 (2022). https://doi.org/10.1007/s12274-021-3514-9
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13, 2301746 (2023). https://doi.org/10.1002/aenm.202301746
- K. Ando, T. Matsuda, T. Miwa, M. Kawai, D. Imamura, Degradation mechanism of all-solid-state lithium-ion batteries with argyrodite Li7–xPS6–xClx sulfide through high-temperature cycling test. Battery Energy 2, 20220052 (2023). https://doi.org/10.1002/bte2.20220052
- Y. Wang, H. Hao, K.G. Naik, B.S. Vishnugopi, C.D. Fincher et al., Mechanical milling–induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability. Adv. Energy Mater. 14, 2304530 (2024). https://doi.org/10.1002/aenm.202304530
- K. Pan, M. Li, W. Wang, S. Xing, Y. Dou et al., A leap by the rise of solid-state electrolytes for Li-air batteries. Green Energy Environ. 8, 939–944 (2023). https://doi.org/10.1016/j.gee.2023.02.010
- J. Wu, M. Li, S. Gao, Y. Dou, K. Pan et al., Electrospinning-assisted porous skeleton electrolytes for semi-solid Li–O2 batteries. Chem. Commun. 60, 5070–5073 (2024). https://doi.org/10.1039/d4cc00805g
- X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56, 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
- X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, e1602396 (2017). https://doi.org/10.1126/sciadv.1602396
- X. Hu, P.H. Joo, E. Matios, C. Wang, J. Luo et al., Designing an all-solid-state sodium-carbon dioxide battery enabled by nitrogen-doped nanocarbon. Nano Lett. 20, 3620–3626 (2020). https://doi.org/10.1021/acs.nanolett.0c00564
- J. Zhao, Y. Wang, H. Zhao, L. Liu, S. Li et al., Enabling all-solid-state lithium–carbon dioxide battery operation in a wide temperature range. ACS Nano 18, 5132–5140 (2024). https://doi.org/10.1021/acsnano.3c12522
- K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
- Y. Dou, D. Kan, Y. Su, Y. Zhang, Y. Wei et al., Critical factors affecting the catalytic activity of redox mediators on Li–O2 battery discharge. J. Phys. Chem. Lett. 13, 7081–7086 (2022). https://doi.org/10.1021/acs.jpclett.2c01818
- Y. Chen, J. Xu, P. He, Y. Qiao, S. Guo et al., Metal-air batteries: progress and perspective. Sci. Bull. 67, 2449–2486 (2022). https://doi.org/10.1016/j.scib.2022.11.027
- M. Chen, H. Meng, F. Wang, Q. Liu, Y. Liu et al., Dispersed Mn2Co2C nanops in interconnected nitrogen-doped carbon framework as cathode catalysts for efficient and long-life Li-CO2 batteries. Chem. Eng. J. 455, 140564 (2023). https://doi.org/10.1016/j.cej.2022.140564
References
J.-B. Lin, T.T.T. Nguyen, R. Vaidhyanathan, J. Burner, J.M. Taylor et al., A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021). https://doi.org/10.1126/science.abi7281
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
T. Liu, J. Sang, H. Li, P. Wei, Y. Zang et al., Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts. Battery Energy 1, 20220012 (2022). https://doi.org/10.1002/bte2.20220012
B. Du, M. Wang, Q. Zhao, X. Hu, S. Ding, Phase change materials microcapsules reinforced with graphene oxide for energy storage technology. Energy Mater. 3, 300026 (2023). https://doi.org/10.1002/eum2.202300026
X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, e1903790 (2020). https://doi.org/10.1002/adma.201903790
A. Sarkar, V.R. Dharmaraj, C.-H. Yi, K. Iputera, S.-Y. Huang et al., Recent advances in rechargeable metal–CO2 batteries with nonaqueous electrolytes. Chem. Rev. 123, 9497–9564 (2023). https://doi.org/10.1021/acs.chemrev.3c00167
M.K. Aslam, H. Wang, S. Chen, Q. Li, J. Duan, Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Mater. Today Energy 31, 101196 (2023). https://doi.org/10.1016/j.mtener.2022.101196
X. Hu, J. Sun, Z. Li, Q. Zhao, C. Chen et al., Rechargeable room-temperature Na-CO2 batteries. Angew. Chem. Int. Ed. 55, 6482–6486 (2016). https://doi.org/10.1002/anie.201602504
Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou et al., The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem. Int. Ed. 54, 6550–6553 (2015). https://doi.org/10.1002/anie.201501214
J. Xie, Z. Zhou, Y. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 30, 1908285 (2020). https://doi.org/10.1002/adfm.201908285
X. Zhang, T. Wang, Y. Yang, X. Zhang, Z. Lu et al., Breaking the stable triangle of carbonate via W–O bonds for Li–CO2 batteries with low polarization. ACS Energy Lett. 6, 3503–3510 (2021). https://doi.org/10.1021/acsenergylett.1c01428
W. Ma, X. Liu, C. Li, H. Yin, W. Xi et al., Rechargeable Al–CO2 batteries for reversible utilization of CO2. Adv. Mater. 30, e1801152 (2018). https://doi.org/10.1002/adma.201801152
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang et al., Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 53, 4877–4925 (2024). https://doi.org/10.1039/d3cs00295k
J. Liu, G. Fu, Y. Liao, W. Zhang, X. Xi et al., Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: electrocatalysts, devices and mechanisms. eScience (2024). https://doi.org/10.1016/j.esci.2024.100267
B. Lu, X. Wu, X. Xiao, B. Chen, W. Zeng et al., Energy band engineering guided design of bidirectional catalyst for reversible Li–CO2 batteries. Adv. Mater. 36, e2308889 (2024). https://doi.org/10.1002/adma.202308889
B. Lu, Z. Min, X. Xiao, B. Wang, B. Chen et al., Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv. Mater. 36, e2309264 (2024). https://doi.org/10.1002/adma.202309264
X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang et al., Li–CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017). https://doi.org/10.1016/j.joule.2017.07.001
Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 29, 1605891 (2017). https://doi.org/10.1002/adma.201605891
Y. Luo, S. Chen, J. Zhang, X. Ding, B. Pan et al., Perovskite-derived bismuth with I- and Cs+ dual modification for high-efficiency CO2-to-formate electrosynthesis and Al-CO2 batteries. Adv. Mater. 35, e2303297 (2023). https://doi.org/10.1002/adma.202303297
W. Liu, X. Sui, C. Cai, H. Huang, R. Xu et al., A nonaqueous Mg–CO2 battery with low overpotential. Adv. Energy Mater. 12, 2201675 (2022). https://doi.org/10.1002/aenm.202201675
T. Jian, W. Ma, C. Xu, H. Liu, J. Wang, Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 3(3), 100114 (2023). https://doi.org/10.1016/j.esci.2023.100114
L. Chen, J. Zhou, Y. Wang, Y. Xiong, J. Zhang et al., Flexible, stretchable, water-/ fire-proof fiber-shaped Li-CO2 batteries with high energy density. Adv. Energy Mater. 13, 2202933 (2023). https://doi.org/10.1002/aenm.202202933
Y.-F. Wang, L.-N. Song, L.-J. Zheng, Y. Wang, J.-Y. Wu et al., Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery. Angew. Chem. Int. Ed. 63, e202400132 (2024). https://doi.org/10.1002/anie.202400132
F. Wang, Y. Li, X. Xia, W. Cai, Q. Chen et al., Metal–CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy Mater. 11, 2100667 (2021). https://doi.org/10.1002/aenm.202100667
D. Wang, J. Yang, P. He, H. Zhou, A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 14, 4107–4114 (2021). https://doi.org/10.1039/D1EE00068C
Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13, 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018). https://doi.org/10.1146/annurev-matsci-070317-124435
S. Wang, K. Xu, H. Song, T. Zhu, Z. Yu et al., A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures. Adv. Energy Mater. 12, 2201866 (2022). https://doi.org/10.1002/aenm.202201866
S. Xu, S.K. Das, L.A. Archer, The Li–CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 3, 6656–6660 (2013). https://doi.org/10.1039/C3RA40394G
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
S. Wan, W. Ma, Y. Wang, Y. Xiao, S. Chen, Electrolytes design for extending the temperature adaptability of lithium-ion batteries: from fundamentals to strategies. Adv. Mater. 36, e2311912 (2024). https://doi.org/10.1002/adma.202311912
P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, In situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613–1625 (2023). https://doi.org/10.1021/acsenergylett.3c00154
Y. Sun, J.-C. Li, H. Zhou, S. Guo, Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization. Energy Environ. Sci. 16, 4759–4811 (2023). https://doi.org/10.1039/d3ee02082g
L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9, 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
W. Zhang, Y. Lu, Q. Cao, H. Liu, Q. Feng et al., A reversible self-assembled molecular layer for lithium metal batteries with high energy/power densities at ultra-low temperatures. Energy Environ. Sci. 17, 4531–4543 (2024). https://doi.org/10.1039/D4EE01298D
Y. Li, X. Lu, X. Zhao, H. Wang, X. Hu, Recent advances in research on cathodes for low-temperature sodium-ion batteries. Prog. Nat. Sci. Mater. Int. 33, 767–779 (2023). https://doi.org/10.1016/j.pnsc.2023.12.021
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 (2023). https://doi.org/10.1007/s40820-023-01245-9
R. Wang, S. Zhang, S. Peng, Y. Tong, X. Hu, Research progress of electrolyte additives for subzero-temperature aqueous sodium-ion batteries. Carbon Neutr. 3, 6 (2024). https://doi.org/10.1007/s43979-024-00081-z
J. Wang, D. Yu, X. Sun, H. Wang, J. Li, Anodes for low-temperature rechargeable batteries. eScience 4, 100252 (2024). https://doi.org/10.1016/j.esci.2024.100252
Z. Li, Y.-X. Yao, S. Sun, C.-B. Jin, N. Yao et al., 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew. Chem. Int. Ed. 62, e202303888 (2023). https://doi.org/10.1002/anie.202303888
N. Piao, X. Gao, H. Yang, Z. Guo, G. Hu et al., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 11, 100145 (2022). https://doi.org/10.1016/j.etran.2021.100145
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020). https://doi.org/10.1002/adfm.202001619
J.-H. Kang, J. Park, M. Na, R.H. Choi, H.R. Byon, Low-temperature CO2-assisted lithium–oxygen batteries for improved stability of peroxodicarbonate and excellent cyclability. ACS Energy Lett. 7, 4248–4257 (2022). https://doi.org/10.1021/acsenergylett.2c01796
C. Peng, L. Xue, Z. Zhao, L. Guo, C. Zhang et al., Boosted Mg–CO2 batteries by amine-mediated CO2 capture chemistry and Mg2+-conducting solid-electrolyte interphases. Angew. Chem. Int. Ed. 63, e202313264 (2024). https://doi.org/10.1002/anie.202313264
X. Hu, E. Matios, Y. Zhang, C. Wang, J. Luo et al., Deeply cycled sodium metal anodes at low temperature and in lean electrolyte conditions. Angew. Chem. Int. Ed. 60, 5978–5983 (2021). https://doi.org/10.1002/anie.202014241
N. Zhao, L. Liu, X. Lu, Y. Li, X. Wu et al., Elevating discharge voltage of Li2CO3-routine Li–CO2 battery over 2.9 V at an ultra-wide temperature window. Angew. Chem. Int. Ed. 63, e202407303 (2024). https://doi.org/10.1002/anie.202407303
L. Jia, H. Hu, X. Cheng, H. Dong, H. Li et al., Toward low-temperature zinc-ion batteries: strategy, progress, and prospect in vanadium-based cathodes. Adv. Energy Mater. 14, 2470036 (2024). https://doi.org/10.1002/aenm.202470036
Q. Nian, T. Sun, S. Liu, H. Du, X. Ren et al., Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 423, 130253 (2021). https://doi.org/10.1016/j.cej.2021.130253
K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13, 2203708 (2023). https://doi.org/10.1002/aenm.202203708
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
N.K. Wagh, S.S. Shinde, C.H. Lee, S.-H. Kim, D.-H. Kim et al., Supramolecular polymer intertwined free-standing bifunctional membrane catalysts for all-temperature flexible Zn–air batteries. Nano-Micro Lett. 14, 190 (2022). https://doi.org/10.1007/s40820-022-00927-0
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14, 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
M. Liu, Y. Wang, T. Yu, L. Zhan, X. Zhao et al., One-step synthesized Bi5O7I for extremely low-temperature CO2 electroreduction. Sci. Bull. 68, 1238–1242 (2023). https://doi.org/10.1016/j.scib.2023.05.016
Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at –50 °C. Angew. Chem. Int. Ed. 58, 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6, 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
Z. Huang, T. Wang, X. Li, H. Cui, G. Liang et al., Small-dipole-molecule-containing electrolytes for high-voltage aqueous rechargeable batteries. Adv. Mater. 34, e2106180 (2022). https://doi.org/10.1002/adma.202106180
B. Hu, T. Chen, Y. Wang, X. Qian, Q. Zhang et al., Reconfiguring the electrolyte network structure with bio-inspired cryoprotective additive for low-temperature aqueous zinc batteries. Adv. Energy Mater. 14, 2401470 (2024). https://doi.org/10.1002/aenm.202401470
X. Yang, D. Zhang, L. Zhao, C. Peng, K. Ren et al., Upgrading cycling stability and capability of hybrid Na–CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy Mater. 14, 2470072 (2024). https://doi.org/10.1002/aenm.202470072
C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
Z. Tong, S.-B. Wang, M.-H. Fang, Y.-T. Lin, K.-T. Tsai et al., Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy 85, 105972 (2021). https://doi.org/10.1016/j.nanoen.2021.105972
D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
P. Jia, M. Yu, X. Zhang, T. Yang, D. Zhu et al., In-situ imaging the electrochemical reactions of Li–CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 15, 542–550 (2022). https://doi.org/10.1007/s12274-021-3514-9
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13, 2301746 (2023). https://doi.org/10.1002/aenm.202301746
K. Ando, T. Matsuda, T. Miwa, M. Kawai, D. Imamura, Degradation mechanism of all-solid-state lithium-ion batteries with argyrodite Li7–xPS6–xClx sulfide through high-temperature cycling test. Battery Energy 2, 20220052 (2023). https://doi.org/10.1002/bte2.20220052
Y. Wang, H. Hao, K.G. Naik, B.S. Vishnugopi, C.D. Fincher et al., Mechanical milling–induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability. Adv. Energy Mater. 14, 2304530 (2024). https://doi.org/10.1002/aenm.202304530
K. Pan, M. Li, W. Wang, S. Xing, Y. Dou et al., A leap by the rise of solid-state electrolytes for Li-air batteries. Green Energy Environ. 8, 939–944 (2023). https://doi.org/10.1016/j.gee.2023.02.010
J. Wu, M. Li, S. Gao, Y. Dou, K. Pan et al., Electrospinning-assisted porous skeleton electrolytes for semi-solid Li–O2 batteries. Chem. Commun. 60, 5070–5073 (2024). https://doi.org/10.1039/d4cc00805g
X. Hu, Z. Li, J. Chen, Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56, 5785–5789 (2017). https://doi.org/10.1002/anie.201701928
X. Hu, Z. Li, Y. Zhao, J. Sun, Q. Zhao et al., Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, e1602396 (2017). https://doi.org/10.1126/sciadv.1602396
X. Hu, P.H. Joo, E. Matios, C. Wang, J. Luo et al., Designing an all-solid-state sodium-carbon dioxide battery enabled by nitrogen-doped nanocarbon. Nano Lett. 20, 3620–3626 (2020). https://doi.org/10.1021/acs.nanolett.0c00564
J. Zhao, Y. Wang, H. Zhao, L. Liu, S. Li et al., Enabling all-solid-state lithium–carbon dioxide battery operation in a wide temperature range. ACS Nano 18, 5132–5140 (2024). https://doi.org/10.1021/acsnano.3c12522
K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
Y. Dou, D. Kan, Y. Su, Y. Zhang, Y. Wei et al., Critical factors affecting the catalytic activity of redox mediators on Li–O2 battery discharge. J. Phys. Chem. Lett. 13, 7081–7086 (2022). https://doi.org/10.1021/acs.jpclett.2c01818
Y. Chen, J. Xu, P. He, Y. Qiao, S. Guo et al., Metal-air batteries: progress and perspective. Sci. Bull. 67, 2449–2486 (2022). https://doi.org/10.1016/j.scib.2022.11.027
M. Chen, H. Meng, F. Wang, Q. Liu, Y. Liu et al., Dispersed Mn2Co2C nanops in interconnected nitrogen-doped carbon framework as cathode catalysts for efficient and long-life Li-CO2 batteries. Chem. Eng. J. 455, 140564 (2023). https://doi.org/10.1016/j.cej.2022.140564