Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next-Generation Self-Powered Remote IoT Fire Warning
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 242
Abstract
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 μW m−1 K−2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1–10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
Highlights:
1 The flexible single-walled carbon nanotube/titanium carbide composite films exhibit excellent thermoelectric (TE), high-temperature stable and flame-retardant properties.
2 The assembled TE device achieves an ultrafast fire warning response time of ~ 0.1 s with a threshold voltage of 1 mV.
3 The fire warning device demonstrates exceptional repeatability and long-term stability.
4 The designed intelligent system is promising for next-generation self-powered remote IoT fire warning applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M.J.S. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324, 481–484 (2009). https://doi.org/10.1126/science.1163886
- L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 150, 100698 (2022). https://doi.org/10.1016/j.mser.2022.100690
- X. Li, A. Vázquez-López, J.S. Del Río Sáez, D.-Y. Wang, Recent advances on early-stage fire-warning systems: mechanism, performance, and perspective. Nano-Micro Lett. 14, 197 (2022). https://doi.org/10.1007/s40820-022-00938-x
- L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-arning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2022). https://doi.org/10.1002/adfm.202212124
- S. Araby, B. Philips, Q. Meng, J. Ma, T. Laoui et al., Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B Eng. 212, 108675 (2021). https://doi.org/10.1016/j.compositesb.2021.108675
- J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
- Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68, 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
- T. Fu, X. Zhao, L. Chen, W. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29, 1806586 (2019). https://doi.org/10.1002/adfm.201806586
- L. Chen, H.-B. Zhao, Y.-P. Ni, T. Fu, W.-S. Wu et al., 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G
- L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. Part B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
- Q. Zeng, B. Wang, X. Lai, H. Li, Z. Chen et al., Multifunctional MXene-coated cotton fabric with enhanced thermopower for smart fire protection. Compos. Part A Appl. Sci. Manuf. 164, 107305 (2023). https://doi.org/10.1016/j.compositesa.2022.107305
- Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen et al., Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31, e1807916 (2019). https://doi.org/10.1002/adma.201807916
- H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16, 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
- G. Li, Y. Hu, J. Chen, L. Liang, Z. Liu et al., Thermoelectric and photoelectric dual modulated sensors for human internet of things application in accurate fire recognition and warning. Adv. Funct. Mater. 33, 2303861 (2023). https://doi.org/10.1002/adfm.202303861
- Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu et al., Wearable thermoelectric materials and devices for self-owered electronic systems. Adv. Mater. 33, 2102990 (2021). https://doi.org/10.1002/adma.202102990
- S. Liu, H. Deng, Y. Zhao, S. Ren, Q. Fu, The optimization of thermoelectric properties in a PEDOT: PSS thin film through post-treatment. RSC Adv. 5, 1910–1917 (2015). https://doi.org/10.1039/C4RA09147G
- T. Zou, D. Zhang, T. Xu, X. Peng, H. Zhang et al., Smart fire-safety cotton fabric with fire-warning capability via dual working mechanisms. Cellulose 30, 6015–6030 (2023). https://doi.org/10.1007/s10570-023-05227-3
- T. Cao, X.-L. Shi, Z.-G. Chen, Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci. 131, 101003 (2023). https://doi.org/10.1016/j.pmatsci.2022.101003
- D. Qu, X. Li, H. Wang, G. Chen, Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv. Sci. 6, 1900584 (2019). https://doi.org/10.1002/advs.201900584
- J. Li, Q. Shi, J.R. Röhr, H. Wu, B. Wu et al., Flexible 3D porous MoS2/CNTs architectures with ZT of 0.17 at room temperature for wearable thermoelectric applications. Adv. Funct. Mater. 30(36), 2002508 (2020). https://doi.org/10.1002/adfm.202002508
- W. Zhao, J. Ding, Y. Zou, C.-A. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020). https://doi.org/10.1039/D0CS00204F
- C. Gao, G. Chen, Conducting polymer/carbon p thermoelectric composites: emerging green energy materials. Compos. Sci. Technol. 124, 52–70 (2016). https://doi.org/10.1016/j.compscitech.2016.01.014
- M. He, F. Qiu, Z. Lin, Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6, 1352–1361 (2013). https://doi.org/10.1039/C3EE24193A
- M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121, 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
- Z. Chen, X. Guan, N. Wen, L. Pan, Z. Fan, Construction of flexible, self-supporting, and in-plane anisotropic PEDOT: PSS thermoelectric films via the wet-winding approach. ACS Appl. Polym. Mater. 5, 2905–2916 (2023). https://doi.org/10.1021/acsapm.3c00122
- L. Zhang, Y. Harima, I. Imae, Highly improved thermoelectric performances of PEDOT: PSS/SWCNT composites by solvent treatment. Org. Electron. 51, 304–307 (2017). https://doi.org/10.1016/j.orgel.2017.09.030
- K. Wan, Y. Liu, G. Santagiuliana, G. Barandun, P. Taroni Junior et al., Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Mater. Horiz. 8, 2513–2519 (2021). https://doi.org/10.1039/D1MH00908G
- I. Imae, H. Yamane, K. Imato, Y. Ooyama, Thermoelectric properties of PEDOT: PSS/SWCNT composite films with controlled carrier density. Compos. Commun. 27, 100897 (2021). https://doi.org/10.1016/j.coco.2021.100897
- Y. Zhao, Q. Zeng, C. Jiang, X. Lai, H. Li et al., Self-powered, durable and high fire-safety ionogel towards Internet of Things. Nano Energy 116, 108785 (2023). https://doi.org/10.1016/j.nanoen.2023.108785
- C. Jiang, X. Lai, Z. Wu, H. Li, X. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368–21378 (2022). https://doi.org/10.1039/d2ta05737a
- T. Peng, S. Wang, Z. Xu, T. Tang, Y. Zhao, Multifunctional MXene/aramid nanofiber composite films for efficient electromagnetic interference shielding and repeatable early fire detection. ACS Omega 7, 29161–29170 (2022). https://doi.org/10.1021/acsomega.2c03219
- Y. Zhao, J. Chen, X. Lai, H. Li, X. Zeng et al., Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection. Compos. Part A Appl. Sci. Manuf. 163, 107210 (2022). https://doi.org/10.1016/j.compositesa.2022.107210
- C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
- B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
- Q. Zeng, Y. Zhao, X. Lai, C. Jiang, B. Wang et al., Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chem. Eng. J. 446, 136899 (2022). https://doi.org/10.1016/j.cej.2022.136899
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
- A.A. Ashcheulov, I.V. Gutsul, V.S. Maevski, Device for monitoring the radiation temperature in coal mines. J. Opt. Technol. 67, 281 (2000). https://doi.org/10.1364/JOT.67.000281
- J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30, 1704386 (2018). https://doi.org/10.1002/adma.201704386
- H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39, 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
- T.T. Tung, C. Pham-Huu, I. Janowska, T. Kim, M. Castro et al., Hybrid films of graphene and carbon nanotubes for high performance chemical and temperature sensing applications. Small 11, 3485–3493 (2015). https://doi.org/10.1002/smll.201403693
- C. Zeng, P. Stenier, K. Chen, K. Wan, M. Dong et al., Optimization of thermoelectric properties of carbon nanotube veils by defect engineering. Mater. Horiz. 10, 3601–3609 (2023). https://doi.org/10.1039/d3mh00525a
- D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-MXene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
- F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, e2002159 (2020). https://doi.org/10.1002/adma.202002159
- Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.-Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34, e2108560 (2022). https://doi.org/10.1002/adma.202108560
- C.-Y. Yang, W.-L. Jin, J. Wang, Y.-F. Ding, S. Nong et al., Enhancing the n-type conductivity and thermoelectric performance of donor-acceptor copolymers through donor engineering. Adv. Mater. 30, e1802850 (2018). https://doi.org/10.1002/adma.201802850
- Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renew. Sustain. Energy Rev. 137, 110448 (2021). https://doi.org/10.1016/j.rser.2020.110448
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- W. Ding, P. Liu, Z. Bai, Y. Wang, G. Liu et al., Constructing layered MXene/CNTs composite film with 2D–3D sandwich structure for high thermoelectric performance. Adv. Mater. Interfaces 7, 2001340 (2020). https://doi.org/10.1002/admi.202001340
- J. Wei, D. Wu, C. Liu, F. Zhong, G. Cao et al., Free-standing p-type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance. Chem. Eng. J. 439, 135706 (2022). https://doi.org/10.1016/j.cej.2022.135706
- K. Song, I. Ganguly, I. Eastin, A.B. Dichiara, Lignin-modified carbon nanotube/graphene hybrid coating as efficient flame retardant. Int. J. Mol. Sci. 18, 2368 (2017). https://doi.org/10.3390/ijms18112368
- B. Yu, B. Tawiah, L.Q. Wang, A.C. Yin Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
- M. Mao, K.-X. Yu, C.-F. Cao, L.-X. Gong, G.-D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
- J. Guo, X. Wang, T. Wang, Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 101, 063537 (2007). https://doi.org/10.1063/1.2714679
- C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 369, 8–17 (2019). https://doi.org/10.1016/j.cej.2019.03.045
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
- H. He, Y. Qin, J. Liu, Y. Wang, J. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
- J.R. Qualey, Fire test comparisons of smoke detector response times. Fire Technol. 36, 89–108 (2000). https://doi.org/10.1023/A:1015498224060
References
D.M.J.S. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324, 481–484 (2009). https://doi.org/10.1126/science.1163886
L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 150, 100698 (2022). https://doi.org/10.1016/j.mser.2022.100690
X. Li, A. Vázquez-López, J.S. Del Río Sáez, D.-Y. Wang, Recent advances on early-stage fire-warning systems: mechanism, performance, and perspective. Nano-Micro Lett. 14, 197 (2022). https://doi.org/10.1007/s40820-022-00938-x
L. Liu, J. Feng, Y. Xue, V. Chevali, Y. Zhang et al., 2D MXenes for fire retardancy and fire-arning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2022). https://doi.org/10.1002/adfm.202212124
S. Araby, B. Philips, Q. Meng, J. Ma, T. Laoui et al., Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B Eng. 212, 108675 (2021). https://doi.org/10.1016/j.compositesb.2021.108675
J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68, 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
T. Fu, X. Zhao, L. Chen, W. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29, 1806586 (2019). https://doi.org/10.1002/adfm.201806586
L. Chen, H.-B. Zhao, Y.-P. Ni, T. Fu, W.-S. Wu et al., 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G
L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. Part B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
Q. Zeng, B. Wang, X. Lai, H. Li, Z. Chen et al., Multifunctional MXene-coated cotton fabric with enhanced thermopower for smart fire protection. Compos. Part A Appl. Sci. Manuf. 164, 107305 (2023). https://doi.org/10.1016/j.compositesa.2022.107305
Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen et al., Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31, e1807916 (2019). https://doi.org/10.1002/adma.201807916
H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16, 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
G. Li, Y. Hu, J. Chen, L. Liang, Z. Liu et al., Thermoelectric and photoelectric dual modulated sensors for human internet of things application in accurate fire recognition and warning. Adv. Funct. Mater. 33, 2303861 (2023). https://doi.org/10.1002/adfm.202303861
Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu et al., Wearable thermoelectric materials and devices for self-owered electronic systems. Adv. Mater. 33, 2102990 (2021). https://doi.org/10.1002/adma.202102990
S. Liu, H. Deng, Y. Zhao, S. Ren, Q. Fu, The optimization of thermoelectric properties in a PEDOT: PSS thin film through post-treatment. RSC Adv. 5, 1910–1917 (2015). https://doi.org/10.1039/C4RA09147G
T. Zou, D. Zhang, T. Xu, X. Peng, H. Zhang et al., Smart fire-safety cotton fabric with fire-warning capability via dual working mechanisms. Cellulose 30, 6015–6030 (2023). https://doi.org/10.1007/s10570-023-05227-3
T. Cao, X.-L. Shi, Z.-G. Chen, Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci. 131, 101003 (2023). https://doi.org/10.1016/j.pmatsci.2022.101003
D. Qu, X. Li, H. Wang, G. Chen, Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv. Sci. 6, 1900584 (2019). https://doi.org/10.1002/advs.201900584
J. Li, Q. Shi, J.R. Röhr, H. Wu, B. Wu et al., Flexible 3D porous MoS2/CNTs architectures with ZT of 0.17 at room temperature for wearable thermoelectric applications. Adv. Funct. Mater. 30(36), 2002508 (2020). https://doi.org/10.1002/adfm.202002508
W. Zhao, J. Ding, Y. Zou, C.-A. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020). https://doi.org/10.1039/D0CS00204F
C. Gao, G. Chen, Conducting polymer/carbon p thermoelectric composites: emerging green energy materials. Compos. Sci. Technol. 124, 52–70 (2016). https://doi.org/10.1016/j.compscitech.2016.01.014
M. He, F. Qiu, Z. Lin, Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6, 1352–1361 (2013). https://doi.org/10.1039/C3EE24193A
M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121, 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
Z. Chen, X. Guan, N. Wen, L. Pan, Z. Fan, Construction of flexible, self-supporting, and in-plane anisotropic PEDOT: PSS thermoelectric films via the wet-winding approach. ACS Appl. Polym. Mater. 5, 2905–2916 (2023). https://doi.org/10.1021/acsapm.3c00122
L. Zhang, Y. Harima, I. Imae, Highly improved thermoelectric performances of PEDOT: PSS/SWCNT composites by solvent treatment. Org. Electron. 51, 304–307 (2017). https://doi.org/10.1016/j.orgel.2017.09.030
K. Wan, Y. Liu, G. Santagiuliana, G. Barandun, P. Taroni Junior et al., Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Mater. Horiz. 8, 2513–2519 (2021). https://doi.org/10.1039/D1MH00908G
I. Imae, H. Yamane, K. Imato, Y. Ooyama, Thermoelectric properties of PEDOT: PSS/SWCNT composite films with controlled carrier density. Compos. Commun. 27, 100897 (2021). https://doi.org/10.1016/j.coco.2021.100897
Y. Zhao, Q. Zeng, C. Jiang, X. Lai, H. Li et al., Self-powered, durable and high fire-safety ionogel towards Internet of Things. Nano Energy 116, 108785 (2023). https://doi.org/10.1016/j.nanoen.2023.108785
C. Jiang, X. Lai, Z. Wu, H. Li, X. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368–21378 (2022). https://doi.org/10.1039/d2ta05737a
T. Peng, S. Wang, Z. Xu, T. Tang, Y. Zhao, Multifunctional MXene/aramid nanofiber composite films for efficient electromagnetic interference shielding and repeatable early fire detection. ACS Omega 7, 29161–29170 (2022). https://doi.org/10.1021/acsomega.2c03219
Y. Zhao, J. Chen, X. Lai, H. Li, X. Zeng et al., Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection. Compos. Part A Appl. Sci. Manuf. 163, 107210 (2022). https://doi.org/10.1016/j.compositesa.2022.107210
C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
Q. Zeng, Y. Zhao, X. Lai, C. Jiang, B. Wang et al., Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chem. Eng. J. 446, 136899 (2022). https://doi.org/10.1016/j.cej.2022.136899
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
A.A. Ashcheulov, I.V. Gutsul, V.S. Maevski, Device for monitoring the radiation temperature in coal mines. J. Opt. Technol. 67, 281 (2000). https://doi.org/10.1364/JOT.67.000281
J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30, 1704386 (2018). https://doi.org/10.1002/adma.201704386
H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39, 627–655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
T.T. Tung, C. Pham-Huu, I. Janowska, T. Kim, M. Castro et al., Hybrid films of graphene and carbon nanotubes for high performance chemical and temperature sensing applications. Small 11, 3485–3493 (2015). https://doi.org/10.1002/smll.201403693
C. Zeng, P. Stenier, K. Chen, K. Wan, M. Dong et al., Optimization of thermoelectric properties of carbon nanotube veils by defect engineering. Mater. Horiz. 10, 3601–3609 (2023). https://doi.org/10.1039/d3mh00525a
D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-MXene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, e2002159 (2020). https://doi.org/10.1002/adma.202002159
Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.-Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34, e2108560 (2022). https://doi.org/10.1002/adma.202108560
C.-Y. Yang, W.-L. Jin, J. Wang, Y.-F. Ding, S. Nong et al., Enhancing the n-type conductivity and thermoelectric performance of donor-acceptor copolymers through donor engineering. Adv. Mater. 30, e1802850 (2018). https://doi.org/10.1002/adma.201802850
Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renew. Sustain. Energy Rev. 137, 110448 (2021). https://doi.org/10.1016/j.rser.2020.110448
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
W. Ding, P. Liu, Z. Bai, Y. Wang, G. Liu et al., Constructing layered MXene/CNTs composite film with 2D–3D sandwich structure for high thermoelectric performance. Adv. Mater. Interfaces 7, 2001340 (2020). https://doi.org/10.1002/admi.202001340
J. Wei, D. Wu, C. Liu, F. Zhong, G. Cao et al., Free-standing p-type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance. Chem. Eng. J. 439, 135706 (2022). https://doi.org/10.1016/j.cej.2022.135706
K. Song, I. Ganguly, I. Eastin, A.B. Dichiara, Lignin-modified carbon nanotube/graphene hybrid coating as efficient flame retardant. Int. J. Mol. Sci. 18, 2368 (2017). https://doi.org/10.3390/ijms18112368
B. Yu, B. Tawiah, L.Q. Wang, A.C. Yin Yuen, Z.C. Zhang et al., Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110–119 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.026
M. Mao, K.-X. Yu, C.-F. Cao, L.-X. Gong, G.-D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
J. Guo, X. Wang, T. Wang, Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 101, 063537 (2007). https://doi.org/10.1063/1.2714679
C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 369, 8–17 (2019). https://doi.org/10.1016/j.cej.2019.03.045
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
H. He, Y. Qin, J. Liu, Y. Wang, J. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
J.R. Qualey, Fire test comparisons of smoke detector response times. Fire Technol. 36, 89–108 (2000). https://doi.org/10.1023/A:1015498224060