Step-by-Step Modulation of Crystalline Features and Exciton Kinetics for 19.2% Efficiency Ortho-Xylene Processed Organic Solar Cells
Corresponding Author: He Yan
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 30
Abstract
With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.
Highlights:
1 A novel fluoro-methoxylated end group for Y-series acceptors is produced, and asymmetric substitution strategy is applied as a step-by-step optimization.
2 19.24% power conversion efficiency is achieved for industrially compatible solvent ortho-xylene processed organic solar cells.
2 Underlying morphological and photo-physical variation is revealed for device performance difference brought by solvent selection, which could set up a template for future research on similar topics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13(1), 44 (2021). https://doi.org/10.1007/s40820-020-00566-3
- P. Bi, J. Wang, Y. Cui, J. Zhang, T. Zhang et al., Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35(16), 2210865 (2023). https://doi.org/10.1002/adma.202210865
- X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu et al., Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35(12), 2208997 (2023). https://doi.org/10.1002/adma.202208997
- L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), 2206269 (2022). https://doi.org/10.1002/adma.202206269
- C. Han, J. Wang, S. Zhang, L. Chen, F. Bi et al., Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 35(10), 2208986 (2023). https://doi.org/10.1002/adma.202208986
- R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan et al., Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations. Energy Environ. Sci. 16(5), 2316–2326 (2023). https://doi.org/10.1039/D3EE00294B
- C. Yan, J. Qin, Y. Wang, G. Li, P. Cheng, Emerging strategies toward mechanically robust organic photovoltaics: focus on active layer. Adv. Energy Mater. 12(26), 2201087 (2022). https://doi.org/10.1002/aenm.202201087
- G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
- R. Ma, C. Yan, P.W.K. Fong, J. Yu, H. Liu et al., In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 15(6), 2479–2488 (2022). https://doi.org/10.1039/D2EE00740A
- Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
- L. Meng, H. Liang, G. Song, M. Li, Y. Huang et al., Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci. China Chem. 66(3), 808–815 (2023). https://doi.org/10.1007/s11426-022-1479-x
- J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang et al., Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. Natl. Sci. Rev. 10(6), nwad085 (2023). https://doi.org/10.1093/nsr/nwad085
- Q. Bai, Q. Liang, H. Li, H. Sun, X. Guo et al., Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells. Aggregate 3(6), e281 (2022). https://doi.org/10.1002/agt2.281
- Q. Fan, R. Ma, Z. Bi, X. Liao, B. Wu et al., 19.28% efficiency and stable polymer solar cells enabled by introducing an nir-absorbing guest acceptor. Adv. Funct. Mater. 33(8), 2211385 (2023). https://doi.org/10.1002/adfm.202211385
- M. Xie, Y. Shi, L. Zhu, J. Zhang, Q. Cheng et al., Selective halogenation of central and end-units of nonfullerene acceptors enables enhanced molecular packing and photovoltaic performance. Energy Environ. Sci. 16(8), 3543–3551 (2023). https://doi.org/10.1039/D3EE01333B
- X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou et al., Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy Environ. Sci. 16(8), 3441–3452 (2023). https://doi.org/10.1039/D3EE01320K
- W. Gao, M. Jiang, Z. Wu, B. Fan, W. Jiang et al., Intramolecular chloro–sulfur interaction and asymmetric side-chain isomerization to balance crystallinity and miscibility in all-small-molecule solar cells. Angew. Chem. Int. Ed. 61(33), e202205168 (2022). https://doi.org/10.1002/anie.202205168
- T. Xu, Z. Luo, R. Ma, Z. Chen, T.A. Dela Peña et al., High-performance organic solar cells containing pyrido[2,3-b]quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62(30), e202304127 (2023). https://doi.org/10.1002/anie.202304127
- Q. Chen, Y.H. Han, L.R. Franco, C.F.N. Marchiori, Z. Genene et al., Effects of flexible conjugation-break spacers of non-conjugated polymer acceptors on photovoltaic and mechanical properties of all-polymer solar cells. Nano-Micro Lett. 14(1), 164 (2022). https://doi.org/10.1007/s40820-022-00884-8
- J. Huang, Z. Ren, Y. Zhang, P.W.-K. Fong, H.T. Chandran et al., Tandem self-powered flexible electrochromic energy supplier for sustainable all-day operations. Adv. Energy Mater. 12(30), 2201042 (2022). https://doi.org/10.1002/aenm.202201042
- Q. Fan, R. Ma, J. Yang, J. Gao, H. Bai et al., Unidirectional sidechain engineering to construct dual-asymmetric acceptors for 19.23 % efficiency organic solar cells with low energy loss and efficient charge transfer. Angew. Chem. Int. Ed. 62(36), e202308307 (2023). https://doi.org/10.1002/anie.202308307
- Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi et al., Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci. 16(7), 3119–3127 (2023). https://doi.org/10.1039/D3EE01164J
- M. Xiao, L. Liu, Y. Meng, B. Fan, W. Su et al., Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Sci. China Chem. 66(5), 1500–1510 (2023). https://doi.org/10.1007/s11426-023-1564-8
- L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6(3), 662–675 (2022). https://doi.org/10.1016/j.joule.2022.02.001
- H. Bai, R. Ma, W. Su, T. A. D. Peña, T. Li, L. Tang, J. Yang, B. Hu, Y. Wang, Z. Bi, Y. Su, Q. Wei, Q. Wu, Y. Duan, Y. Li, J. Wu, Z. Ding, X. Liao, Y. Huang, C. Gao, G. Lu, M. Li, W. Zhu, G. Li, Q. Fan, W. Ma. Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Letters. 15(1), 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
- K. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang et al., Organic solar cells with over 19% efficiency enabled by a 2d-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35(32), 2300363 (2023). https://doi.org/10.1002/adma.202300363
- Z. Luo, Y. Gao, H. Lai, Y. Li, Z. Wu et al., Asymmetric side-chain substitution enables a 3d network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy Environ. Sci. 15(11), 4601–4611 (2022). https://doi.org/10.1039/D2EE01848A
- R. Ma, Q. Fan, T.A. Dela Peña, B. Wu, H. Liu et al., Unveiling the morphological and physical mechanism of burn-in loss alleviation by ternary matrix toward stable and efficient all-polymer solar cells. Adv. Mater. 35(18), 2212275 (2023). https://doi.org/10.1002/adma.202212275
- D. Li, N. Deng, Y. Fu, C. Guo, B. Zhou et al., Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 35(6), 2208211 (2023). https://doi.org/10.1002/adma.202208211
- M. Jiang, H.-F. Zhi, B. Zhang, C. Yang, A. Mahmood et al., Controlling morphology and voltage loss with ternary strategy triggers efficient all-small-molecule organic solar cells. ACS Energy Lett. 8(2), 1058–1067 (2023). https://doi.org/10.1021/acsenergylett.2c02348
- Z. Luo, T. Xu, C.E. Zhang, C. Yang, Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells. Energy Environ. Sci. 16(7), 2732–2758 (2023). https://doi.org/10.1039/D3EE00908D
- C. Zhang, A. Song, Q. Huang, Y. Cao, Z. Zhong et al., All-polymer solar cells and photodetectors with improved stability enabled by terpolymers containing antioxidant side chains. Nano-Micro Lett. 15(1), 140 (2023). https://doi.org/10.1007/s40820-023-01114-5
- R. Gui, Y. Liu, Z. Chen, T. Wang, T. Chen et al., Reproducibility in time and space-the molecular weight effects of polymeric materials in organic photovoltaic devices. Small Methods 6(5), 2101548 (2022). https://doi.org/10.1002/smtd.202101548
- Z. Luo, R. Ma, Z. Chen, Y. Xiao, G. Zhang et al., Altering the positions of chlorine and bromine substitution on the end group enables high-performance acceptor and efficient organic solar cells. Adv. Energy Mater. 10(44), 2002649 (2020). https://doi.org/10.1002/aenm.202002649
- L. Yan, H. Zhang, Q. An, M. Jiang, A. Mahmood et al., Regioisomer-free difluoro-monochloro terminal-based hexa-halogenated acceptor with optimized crystal packing for efficient binary organic solar cells. Angew. Chem. Int. Ed. 61(46), e202209454 (2022). https://doi.org/10.1002/anie.202209454
- L. Ma, H. Yao, J. Zhang, Z. Chen, J. Wang et al., Morphology control by tuning electrostatic interactions for efficient polythiophene-based all-polymer solar cells. Chem 9(9), 2518–2529 (2023). https://doi.org/10.1016/j.chempr.2023.04.021
- R. Ma, M. Zeng, Y. Li, T. Liu, Z. Luo et al., Rational anode engineering enables progresses for different types of organic solar cells. Adv. Energy Mater. 11(23), 2100492 (2021). https://doi.org/10.1002/aenm.202100492
- X. Xiong, X. Xue, M. Zhang, T. Hao, Z. Han et al., Melamine-doped cathode interlayer enables high-efficiency organic solar cells. ACS Energy Lett. 6(10), 3582–3589 (2021). https://doi.org/10.1021/acsenergylett.1c01730
- V.V. Brus, Light dependent open-circuit voltage of organic bulk heterojunction solar cells in the presence of surface recombination. Org. Electron. 29, 1–6 (2016). https://doi.org/10.1016/j.orgel.2015.11.025
- J. Wang, C. Han, S. Wen, F. Bi, Z. Hu et al., Achieving 17.94% efficiency all-polymer solar cells by independently induced d/a orderly stacking. Energy Environ. Sci. 16(5), 2327–2337 (2023). https://doi.org/10.1039/D3EE00186E
- J. Vollbrecht, V.V. Brus, On the recombination order of surface recombination under open circuit conditions. Org. Electron. 86, 105905 (2020). https://doi.org/10.1016/j.orgel.2020.105905
- L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 87(20), 203502 (2005). https://doi.org/10.1063/1.2130396
- J. Vollbrecht, J. Lee, S.-J. Ko, V.V. Brus, A. Karki et al., Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. J. Mater. Chem. C 8(43), 15175–15182 (2020). https://doi.org/10.1039/D0TC02136A
- X. Wang, J. Wang, P. Wang, C. Han, F. Bi et al., Embedded host/guest alloy aggregations enable high-performance ternary organic photovoltaics. Adv. Mater. 35, 2305652 (2023). https://doi.org/10.1002/adma.202305652
- Z. Chen, C. He, P. Ran, X. Chen, Y. Zhang et al., Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells. Energy Environ. Sci. 16(8), 3373–3380 (2023). https://doi.org/10.1039/D3EE00602F
- J. Vollbrecht, V.V. Brus, S.-J. Ko, J. Lee, A. Karki et al., Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells. Adv. Energy Mater. 9(32), 1901438 (2019). https://doi.org/10.1002/aenm.201901438
- X. Du, L. Luer, T. Heumueller, J. Wagner, C. Berger, Elucidating the full potential of opv materials utilizing a high-throughput robot-based platform and machine learning. Joule 5(2), 495–506 (2021). https://doi.org/10.1016/j.joule.2020.12.013
- Y. Liang, D. Zhang, Z. Wu, T. Jia, L. Lüer et al., Organic solar cells using oligomer acceptors for improved stability and efficiency. Nat. Energy 7, 1180–1190 (2022). https://doi.org/10.1038/s41560-022-01155-x
- T.A.P. Dela Peña, R. Ma, Z. Xing, Q. Wei, J.I. Khan et al., Interface property-functionality interplay: suppresses bimolecular recombination facilitating above 18% efficiency organic solar cells embracing simplistic fabrication. Energy Environ. Sci. 16, 3416–3429 (2023). https://doi.org/10.1039/D3EE01427D
- J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112(10), 5488–5519 (2012). https://doi.org/10.1021/cr3001109
- X. Jiang, P. Chotard, K. Luo, F. Eckmann, S. Tu et al., Revealing donor–acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv. Energy Mater. 12(14), 2103977 (2022). https://doi.org/10.1002/aenm.202103977
- A. Khasbaatar, A. Cheng, A.L. Jones, J.J. Kwok, S.K. Park et al., Solution aggregate structures of donor polymers determine the morphology and processing resiliency of non-fullerene organic solar cells. Chem. Mater. 35(7), 2713–2729 (2023). https://doi.org/10.1021/acs.chemmater.2c02141
- Y.-F. Shen, H. Zhang, J. Zhang, C. Tian, Y. Shi et al., In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 35(10), 2209030 (2023). https://doi.org/10.1002/adma.202209030
- J. Mai, H. Lu, T.K. Lau, S.H. Peng, C.S. Hsu et al., High efficiency ternary organic solar cell with morphology-compatible polymers. J. Mater. Chem. A 5(23), 11739–11745 (2017). https://doi.org/10.1039/C7TA00292K
- R. Ma, C. Yan, J. Yu, T. Liu, H. Liu et al., High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 7(8), 2547–2556 (2022). https://doi.org/10.1021/acsenergylett.2c01364
- W. Li, M. Chen, J. Cai, E.L.K. Spooner, H. Zhang et al., Molecular order control of non-fullerene acceptors for high-efficiency polymer solar cells. Joule 3(3), 819–833 (2019). https://doi.org/10.1016/j.joule.2018.11.023
- J.W. Lee, C. Sun, T.N.L. Phan, D.C. Lee, Z. Tan et al., Trimerized small-molecule acceptors enable high-performance organic solar cells with high open-circuit voltage and prolonged life-time. Energy Environ. Sci. 16, 3339–3349 (2023). https://doi.org/10.1039/D3EE00272A
- Y. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela et al., The performance-stability conundrum of btp-based organic solar cells. Joule 5(8), 2129–2147 (2021). https://doi.org/10.1016/j.joule.2021.06.006
- R. Ma, H. Li, T.A.D. Peña, X. Xie, P.W.K. Fong et al., Tunable donor aggregation dominance in ternary matrix of all-polymer blends with improved efficiency and stability. Adv. Mater. 35, 2304632 (2023). https://doi.org/10.1002/adma.202304632
- C. Sun, J.W. Lee, Z. Tan, T.N.L. Phan, D. Han et al., Regiospecific incorporation of acetylene linker in high-electron mobility dimerized acceptors for organic solar cells with high efficiency (188%) and long 1-sun lifetime (> 5000 h). Adv. Energy Mater. 13(34), 2301283 (2023). https://doi.org/10.1002/aenm.202301283
- L. Perdigón-Toro, H. Zhang, A. Markina, J. Yuan, S.M. Hosseini et al., Barrierless free charge generation in the high-performance pm6:Y6 bulk heterojunction non-fullerene solar cell. Adv. Mater. 32(9), 1906763 (2020). https://doi.org/10.1002/adma.201906763
- T.A. Dela Peña, J.I. Khan, N. Chaturvedi, R. Ma, Z. Xing et al., Understanding the charge transfer state and energy loss trade-offs in non-fullerene-based organic solar cells. ACS Energy Lett. 6(10), 3408–3416 (2021). https://doi.org/10.1021/acsenergylett.1c01574
- L. Liu, Y. Yan, S. Zhao, T. Wang, W. Zhang et al., Stereoisomeric non-fullerene acceptors-based organic solar cells. Small (2023). https://doi.org/10.1002/smll.202305638
- F.Z. Cui, Z. Chen, J.W. Qiao, P. Lu, X. Du et al., Vertical-phase-locking effect in efficient and stable all-polymer-hosted solar cells. ACS Energy Lett. 7(10), 3709–3717 (2022). https://doi.org/10.1021/acsenergylett.2c01732
- T. Zhang, Y. Xu, H. Yao, J. Zhang, P. Bi et al., Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ. Sci. 16(4), 1581–1589 (2023). https://doi.org/10.1039/D2EE03535A
- Z. Li, X. Wang, N. Zheng, A. Saparbaev, J. Zhang et al., Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2d side chain symmetry breaking strategy. Energy Environ. Sci. 15(10), 4338–4348 (2022). https://doi.org/10.1039/D2EE02107B
- Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen et al., Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6(12), 2835–2848 (2022). https://doi.org/10.1016/j.joule.2022.10.005
References
J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu et al., Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13(1), 44 (2021). https://doi.org/10.1007/s40820-020-00566-3
P. Bi, J. Wang, Y. Cui, J. Zhang, T. Zhang et al., Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35(16), 2210865 (2023). https://doi.org/10.1002/adma.202210865
X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu et al., Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35(12), 2208997 (2023). https://doi.org/10.1002/adma.202208997
L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), 2206269 (2022). https://doi.org/10.1002/adma.202206269
C. Han, J. Wang, S. Zhang, L. Chen, F. Bi et al., Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 35(10), 2208986 (2023). https://doi.org/10.1002/adma.202208986
R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan et al., Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations. Energy Environ. Sci. 16(5), 2316–2326 (2023). https://doi.org/10.1039/D3EE00294B
C. Yan, J. Qin, Y. Wang, G. Li, P. Cheng, Emerging strategies toward mechanically robust organic photovoltaics: focus on active layer. Adv. Energy Mater. 12(26), 2201087 (2022). https://doi.org/10.1002/aenm.202201087
G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
R. Ma, C. Yan, P.W.K. Fong, J. Yu, H. Liu et al., In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 15(6), 2479–2488 (2022). https://doi.org/10.1039/D2EE00740A
Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6(1), 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
L. Meng, H. Liang, G. Song, M. Li, Y. Huang et al., Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Sci. China Chem. 66(3), 808–815 (2023). https://doi.org/10.1007/s11426-022-1479-x
J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang et al., Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. Natl. Sci. Rev. 10(6), nwad085 (2023). https://doi.org/10.1093/nsr/nwad085
Q. Bai, Q. Liang, H. Li, H. Sun, X. Guo et al., Recent progress in low-cost noncovalently fused-ring electron acceptors for organic solar cells. Aggregate 3(6), e281 (2022). https://doi.org/10.1002/agt2.281
Q. Fan, R. Ma, Z. Bi, X. Liao, B. Wu et al., 19.28% efficiency and stable polymer solar cells enabled by introducing an nir-absorbing guest acceptor. Adv. Funct. Mater. 33(8), 2211385 (2023). https://doi.org/10.1002/adfm.202211385
M. Xie, Y. Shi, L. Zhu, J. Zhang, Q. Cheng et al., Selective halogenation of central and end-units of nonfullerene acceptors enables enhanced molecular packing and photovoltaic performance. Energy Environ. Sci. 16(8), 3543–3551 (2023). https://doi.org/10.1039/D3EE01333B
X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou et al., Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy Environ. Sci. 16(8), 3441–3452 (2023). https://doi.org/10.1039/D3EE01320K
W. Gao, M. Jiang, Z. Wu, B. Fan, W. Jiang et al., Intramolecular chloro–sulfur interaction and asymmetric side-chain isomerization to balance crystallinity and miscibility in all-small-molecule solar cells. Angew. Chem. Int. Ed. 61(33), e202205168 (2022). https://doi.org/10.1002/anie.202205168
T. Xu, Z. Luo, R. Ma, Z. Chen, T.A. Dela Peña et al., High-performance organic solar cells containing pyrido[2,3-b]quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62(30), e202304127 (2023). https://doi.org/10.1002/anie.202304127
Q. Chen, Y.H. Han, L.R. Franco, C.F.N. Marchiori, Z. Genene et al., Effects of flexible conjugation-break spacers of non-conjugated polymer acceptors on photovoltaic and mechanical properties of all-polymer solar cells. Nano-Micro Lett. 14(1), 164 (2022). https://doi.org/10.1007/s40820-022-00884-8
J. Huang, Z. Ren, Y. Zhang, P.W.-K. Fong, H.T. Chandran et al., Tandem self-powered flexible electrochromic energy supplier for sustainable all-day operations. Adv. Energy Mater. 12(30), 2201042 (2022). https://doi.org/10.1002/aenm.202201042
Q. Fan, R. Ma, J. Yang, J. Gao, H. Bai et al., Unidirectional sidechain engineering to construct dual-asymmetric acceptors for 19.23 % efficiency organic solar cells with low energy loss and efficient charge transfer. Angew. Chem. Int. Ed. 62(36), e202308307 (2023). https://doi.org/10.1002/anie.202308307
Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi et al., Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci. 16(7), 3119–3127 (2023). https://doi.org/10.1039/D3EE01164J
M. Xiao, L. Liu, Y. Meng, B. Fan, W. Su et al., Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Sci. China Chem. 66(5), 1500–1510 (2023). https://doi.org/10.1007/s11426-023-1564-8
L. Zhan, S. Li, Y. Li, R. Sun, J. Min et al., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6(3), 662–675 (2022). https://doi.org/10.1016/j.joule.2022.02.001
H. Bai, R. Ma, W. Su, T. A. D. Peña, T. Li, L. Tang, J. Yang, B. Hu, Y. Wang, Z. Bi, Y. Su, Q. Wei, Q. Wu, Y. Duan, Y. Li, J. Wu, Z. Ding, X. Liao, Y. Huang, C. Gao, G. Lu, M. Li, W. Zhu, G. Li, Q. Fan, W. Ma. Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Letters. 15(1), 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
K. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang et al., Organic solar cells with over 19% efficiency enabled by a 2d-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35(32), 2300363 (2023). https://doi.org/10.1002/adma.202300363
Z. Luo, Y. Gao, H. Lai, Y. Li, Z. Wu et al., Asymmetric side-chain substitution enables a 3d network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy Environ. Sci. 15(11), 4601–4611 (2022). https://doi.org/10.1039/D2EE01848A
R. Ma, Q. Fan, T.A. Dela Peña, B. Wu, H. Liu et al., Unveiling the morphological and physical mechanism of burn-in loss alleviation by ternary matrix toward stable and efficient all-polymer solar cells. Adv. Mater. 35(18), 2212275 (2023). https://doi.org/10.1002/adma.202212275
D. Li, N. Deng, Y. Fu, C. Guo, B. Zhou et al., Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 35(6), 2208211 (2023). https://doi.org/10.1002/adma.202208211
M. Jiang, H.-F. Zhi, B. Zhang, C. Yang, A. Mahmood et al., Controlling morphology and voltage loss with ternary strategy triggers efficient all-small-molecule organic solar cells. ACS Energy Lett. 8(2), 1058–1067 (2023). https://doi.org/10.1021/acsenergylett.2c02348
Z. Luo, T. Xu, C.E. Zhang, C. Yang, Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells. Energy Environ. Sci. 16(7), 2732–2758 (2023). https://doi.org/10.1039/D3EE00908D
C. Zhang, A. Song, Q. Huang, Y. Cao, Z. Zhong et al., All-polymer solar cells and photodetectors with improved stability enabled by terpolymers containing antioxidant side chains. Nano-Micro Lett. 15(1), 140 (2023). https://doi.org/10.1007/s40820-023-01114-5
R. Gui, Y. Liu, Z. Chen, T. Wang, T. Chen et al., Reproducibility in time and space-the molecular weight effects of polymeric materials in organic photovoltaic devices. Small Methods 6(5), 2101548 (2022). https://doi.org/10.1002/smtd.202101548
Z. Luo, R. Ma, Z. Chen, Y. Xiao, G. Zhang et al., Altering the positions of chlorine and bromine substitution on the end group enables high-performance acceptor and efficient organic solar cells. Adv. Energy Mater. 10(44), 2002649 (2020). https://doi.org/10.1002/aenm.202002649
L. Yan, H. Zhang, Q. An, M. Jiang, A. Mahmood et al., Regioisomer-free difluoro-monochloro terminal-based hexa-halogenated acceptor with optimized crystal packing for efficient binary organic solar cells. Angew. Chem. Int. Ed. 61(46), e202209454 (2022). https://doi.org/10.1002/anie.202209454
L. Ma, H. Yao, J. Zhang, Z. Chen, J. Wang et al., Morphology control by tuning electrostatic interactions for efficient polythiophene-based all-polymer solar cells. Chem 9(9), 2518–2529 (2023). https://doi.org/10.1016/j.chempr.2023.04.021
R. Ma, M. Zeng, Y. Li, T. Liu, Z. Luo et al., Rational anode engineering enables progresses for different types of organic solar cells. Adv. Energy Mater. 11(23), 2100492 (2021). https://doi.org/10.1002/aenm.202100492
X. Xiong, X. Xue, M. Zhang, T. Hao, Z. Han et al., Melamine-doped cathode interlayer enables high-efficiency organic solar cells. ACS Energy Lett. 6(10), 3582–3589 (2021). https://doi.org/10.1021/acsenergylett.1c01730
V.V. Brus, Light dependent open-circuit voltage of organic bulk heterojunction solar cells in the presence of surface recombination. Org. Electron. 29, 1–6 (2016). https://doi.org/10.1016/j.orgel.2015.11.025
J. Wang, C. Han, S. Wen, F. Bi, Z. Hu et al., Achieving 17.94% efficiency all-polymer solar cells by independently induced d/a orderly stacking. Energy Environ. Sci. 16(5), 2327–2337 (2023). https://doi.org/10.1039/D3EE00186E
J. Vollbrecht, V.V. Brus, On the recombination order of surface recombination under open circuit conditions. Org. Electron. 86, 105905 (2020). https://doi.org/10.1016/j.orgel.2020.105905
L.J.A. Koster, V.D. Mihailetchi, H. Xie, P.W.M. Blom, Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Appl. Phys. Lett. 87(20), 203502 (2005). https://doi.org/10.1063/1.2130396
J. Vollbrecht, J. Lee, S.-J. Ko, V.V. Brus, A. Karki et al., Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. J. Mater. Chem. C 8(43), 15175–15182 (2020). https://doi.org/10.1039/D0TC02136A
X. Wang, J. Wang, P. Wang, C. Han, F. Bi et al., Embedded host/guest alloy aggregations enable high-performance ternary organic photovoltaics. Adv. Mater. 35, 2305652 (2023). https://doi.org/10.1002/adma.202305652
Z. Chen, C. He, P. Ran, X. Chen, Y. Zhang et al., Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells. Energy Environ. Sci. 16(8), 3373–3380 (2023). https://doi.org/10.1039/D3EE00602F
J. Vollbrecht, V.V. Brus, S.-J. Ko, J. Lee, A. Karki et al., Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells. Adv. Energy Mater. 9(32), 1901438 (2019). https://doi.org/10.1002/aenm.201901438
X. Du, L. Luer, T. Heumueller, J. Wagner, C. Berger, Elucidating the full potential of opv materials utilizing a high-throughput robot-based platform and machine learning. Joule 5(2), 495–506 (2021). https://doi.org/10.1016/j.joule.2020.12.013
Y. Liang, D. Zhang, Z. Wu, T. Jia, L. Lüer et al., Organic solar cells using oligomer acceptors for improved stability and efficiency. Nat. Energy 7, 1180–1190 (2022). https://doi.org/10.1038/s41560-022-01155-x
T.A.P. Dela Peña, R. Ma, Z. Xing, Q. Wei, J.I. Khan et al., Interface property-functionality interplay: suppresses bimolecular recombination facilitating above 18% efficiency organic solar cells embracing simplistic fabrication. Energy Environ. Sci. 16, 3416–3429 (2023). https://doi.org/10.1039/D3EE01427D
J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112(10), 5488–5519 (2012). https://doi.org/10.1021/cr3001109
X. Jiang, P. Chotard, K. Luo, F. Eckmann, S. Tu et al., Revealing donor–acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv. Energy Mater. 12(14), 2103977 (2022). https://doi.org/10.1002/aenm.202103977
A. Khasbaatar, A. Cheng, A.L. Jones, J.J. Kwok, S.K. Park et al., Solution aggregate structures of donor polymers determine the morphology and processing resiliency of non-fullerene organic solar cells. Chem. Mater. 35(7), 2713–2729 (2023). https://doi.org/10.1021/acs.chemmater.2c02141
Y.-F. Shen, H. Zhang, J. Zhang, C. Tian, Y. Shi et al., In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 35(10), 2209030 (2023). https://doi.org/10.1002/adma.202209030
J. Mai, H. Lu, T.K. Lau, S.H. Peng, C.S. Hsu et al., High efficiency ternary organic solar cell with morphology-compatible polymers. J. Mater. Chem. A 5(23), 11739–11745 (2017). https://doi.org/10.1039/C7TA00292K
R. Ma, C. Yan, J. Yu, T. Liu, H. Liu et al., High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 7(8), 2547–2556 (2022). https://doi.org/10.1021/acsenergylett.2c01364
W. Li, M. Chen, J. Cai, E.L.K. Spooner, H. Zhang et al., Molecular order control of non-fullerene acceptors for high-efficiency polymer solar cells. Joule 3(3), 819–833 (2019). https://doi.org/10.1016/j.joule.2018.11.023
J.W. Lee, C. Sun, T.N.L. Phan, D.C. Lee, Z. Tan et al., Trimerized small-molecule acceptors enable high-performance organic solar cells with high open-circuit voltage and prolonged life-time. Energy Environ. Sci. 16, 3339–3349 (2023). https://doi.org/10.1039/D3EE00272A
Y. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela et al., The performance-stability conundrum of btp-based organic solar cells. Joule 5(8), 2129–2147 (2021). https://doi.org/10.1016/j.joule.2021.06.006
R. Ma, H. Li, T.A.D. Peña, X. Xie, P.W.K. Fong et al., Tunable donor aggregation dominance in ternary matrix of all-polymer blends with improved efficiency and stability. Adv. Mater. 35, 2304632 (2023). https://doi.org/10.1002/adma.202304632
C. Sun, J.W. Lee, Z. Tan, T.N.L. Phan, D. Han et al., Regiospecific incorporation of acetylene linker in high-electron mobility dimerized acceptors for organic solar cells with high efficiency (188%) and long 1-sun lifetime (> 5000 h). Adv. Energy Mater. 13(34), 2301283 (2023). https://doi.org/10.1002/aenm.202301283
L. Perdigón-Toro, H. Zhang, A. Markina, J. Yuan, S.M. Hosseini et al., Barrierless free charge generation in the high-performance pm6:Y6 bulk heterojunction non-fullerene solar cell. Adv. Mater. 32(9), 1906763 (2020). https://doi.org/10.1002/adma.201906763
T.A. Dela Peña, J.I. Khan, N. Chaturvedi, R. Ma, Z. Xing et al., Understanding the charge transfer state and energy loss trade-offs in non-fullerene-based organic solar cells. ACS Energy Lett. 6(10), 3408–3416 (2021). https://doi.org/10.1021/acsenergylett.1c01574
L. Liu, Y. Yan, S. Zhao, T. Wang, W. Zhang et al., Stereoisomeric non-fullerene acceptors-based organic solar cells. Small (2023). https://doi.org/10.1002/smll.202305638
F.Z. Cui, Z. Chen, J.W. Qiao, P. Lu, X. Du et al., Vertical-phase-locking effect in efficient and stable all-polymer-hosted solar cells. ACS Energy Lett. 7(10), 3709–3717 (2022). https://doi.org/10.1021/acsenergylett.2c01732
T. Zhang, Y. Xu, H. Yao, J. Zhang, P. Bi et al., Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ. Sci. 16(4), 1581–1589 (2023). https://doi.org/10.1039/D2EE03535A
Z. Li, X. Wang, N. Zheng, A. Saparbaev, J. Zhang et al., Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2d side chain symmetry breaking strategy. Energy Environ. Sci. 15(10), 4338–4348 (2022). https://doi.org/10.1039/D2EE02107B
Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen et al., Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6(12), 2835–2848 (2022). https://doi.org/10.1016/j.joule.2022.10.005