An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield
Corresponding Author: Weiwei Wu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 188
Abstract
A good method of synthesizing Ti3C2Tx (MXene) is critical for ensuring its success in practical applications, e.g., electromagnetic interference shielding, electrochemical energy storage, catalysis, sensors, and biomedicine. The main concerns focus on the moderation of the approach, yield, and product quality. Herein, a modified approach, organic solvent-assisted intercalation and collection, was developed to prepare Ti3C2Tx flakes. The new approach simultaneously solves all the concerns, featuring a low requirement for facility (centrifugation speed < 4000 rpm in whole process), gram-level preparation with remarkable yield (46.3%), a good electrical conductivity (8672 S cm−1), an outstanding capacitive performance (352 F g−1), and easy control over the dimension of Ti3C2Tx flakes (0.47–4.60 μm2). This approach not only gives a superb example for the synthesis of other MXene materials in laboratory, but sheds new light for the future mass production of Ti3C2Tx MXene.
Highlights:
1 An organic solvent-assisted intercalation and collection (OAIC) approach for preparing Ti3C2Tx (MXene) was developed.
2 The features of OAIC approach are the low requirement for facility, gram-level preparation with remarkable yield and easy control over the dimension of Ti3C2Tx flakes.
3 The Ti3C2Tx flakes prepared by OAIC approach showed the outstanding capacitive and rate performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- X. Cai, Y. Luo, B. Liu, H.-M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- Á. Morales-García, F. Calle-Vallejo, F. Illas, MXenes: new horizons in catalysis. ACS Catal. 10, 13487–13503 (2020). https://doi.org/10.1021/acscatal.0c03106
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- X. Li, F. Liu, D. Huang, N. Xue, Y. Dang et al., Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv. Funct. Mater. 30, 2000308 (2020). https://doi.org/10.1002/adfm.202000308
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). Doi: https://doi.org/10.1038/ncomms2664
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- W. Wu, J. Xu, X. Tang, P. Xie, X. Liu et al., Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials. Chem. Mater. 30, 5932–5940 (2018). https://doi.org/10.1021/acs.chemmater.8b01976
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
- X. Huang, P. Wu, A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 30, 1910048 (2020). https://doi.org/10.1002/adfm.201910048
- J. Xu, J. Zhu, C. Gong, Z. Guan, D. Yang et al., Achieving high yield of Ti3C2Tx MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chin. Chem. Lett. 31, 1039–1043 (2020). https://doi.org/10.1016/j.cclet.2020.02.050
- W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019). https://doi.org/10.1002/adma.201902977
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020). https://doi.org/10.1002/adma.202001093
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33, 2008447 (2021). https://doi.org/10.1002/adma.202008447
- S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
- C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu et al., Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10, 27631–27643 (2018). https://doi.org/10.1021/acsami.8b08314
- K. Maleski, C.E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498 (2018). https://doi.org/10.1021/acsami.8b04662
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
- L. Yu, A.S.R. Bati, T.S.L. Grace, M. Batmunkh, J.G. Shapter, Ti3C2Tx (MXene)-silicon heterojunction for efficient photovoltaic cells. Adv. Energy Mater. 9, 1901063 (2019). https://doi.org/10.1002/aenm.201901063
- Z. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30, 1706656 (2018). https://doi.org/10.1002/adma.201706656
- V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug et al., First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. J. Raman Spectrosc. 43, 168–172 (2012). https://doi.org/10.1002/jrs.3036
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- S. Huang, V.N. Mochalin, Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58, 1958–1966 (2019). https://doi.org/10.1021/acs.inorgchem.8b02890
- D. Kim, T.Y. Ko, H. Kim, G.H. Lee, S. Cho et al., Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 13, 13818–13828 (2019). https://doi.org/10.1021/acsnano.9b04088
- H. Xu, A. Ren, J. Wu, Z. Wang, Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 30, 2000907 (2020). https://doi.org/10.1002/adfm.202000907
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200E
- J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11, 2003025 (2021). https://doi.org/10.1002/aenm.202003025
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
- Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- J. Tang, T.S. Mathis, N. Kurra, A. Sarycheva, X. Xiao et al., Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. 58, 17849–17855 (2019). https://doi.org/10.1002/anie.201911604
- Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/C6EE01717G
References
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
X. Cai, Y. Luo, B. Liu, H.-M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
Á. Morales-García, F. Calle-Vallejo, F. Illas, MXenes: new horizons in catalysis. ACS Catal. 10, 13487–13503 (2020). https://doi.org/10.1021/acscatal.0c03106
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
X. Li, F. Liu, D. Huang, N. Xue, Y. Dang et al., Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv. Funct. Mater. 30, 2000308 (2020). https://doi.org/10.1002/adfm.202000308
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). Doi: https://doi.org/10.1038/ncomms2664
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
W. Wu, J. Xu, X. Tang, P. Xie, X. Liu et al., Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials. Chem. Mater. 30, 5932–5940 (2018). https://doi.org/10.1021/acs.chemmater.8b01976
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
F. Han, S. Luo, L. Xie, J. Zhu, W. Wei et al., Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 11, 8443–8452 (2019). https://doi.org/10.1021/acsami.8b22339
X. Huang, P. Wu, A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 30, 1910048 (2020). https://doi.org/10.1002/adfm.201910048
J. Xu, J. Zhu, C. Gong, Z. Guan, D. Yang et al., Achieving high yield of Ti3C2Tx MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chin. Chem. Lett. 31, 1039–1043 (2020). https://doi.org/10.1016/j.cclet.2020.02.050
W. Tian, A. VahidMohammadi, M.S. Reid, Z. Wang, L. Ouyang et al., Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019). https://doi.org/10.1002/adma.201902977
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020). https://doi.org/10.1002/adma.202001093
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201600255
K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017). https://doi.org/10.1021/acs.chemmater.6b04830
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao et al., Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). https://doi.org/10.1038/ncomms4754
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33, 2008447 (2021). https://doi.org/10.1002/adma.202008447
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu et al., Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10, 27631–27643 (2018). https://doi.org/10.1021/acsami.8b08314
K. Maleski, C.E. Ren, M.-Q. Zhao, B. Anasori, Y. Gogotsi, Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10, 24491–24498 (2018). https://doi.org/10.1021/acsami.8b04662
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
L. Yu, A.S.R. Bati, T.S.L. Grace, M. Batmunkh, J.G. Shapter, Ti3C2Tx (MXene)-silicon heterojunction for efficient photovoltaic cells. Adv. Energy Mater. 9, 1901063 (2019). https://doi.org/10.1002/aenm.201901063
Z. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30, 1706656 (2018). https://doi.org/10.1002/adma.201706656
V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug et al., First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. J. Raman Spectrosc. 43, 168–172 (2012). https://doi.org/10.1002/jrs.3036
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi et al., Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016). https://doi.org/10.1021/acs.chemmater.6b01275
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
S. Huang, V.N. Mochalin, Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58, 1958–1966 (2019). https://doi.org/10.1021/acs.inorgchem.8b02890
D. Kim, T.Y. Ko, H. Kim, G.H. Lee, S. Cho et al., Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 13, 13818–13828 (2019). https://doi.org/10.1021/acsnano.9b04088
H. Xu, A. Ren, J. Wu, Z. Wang, Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 30, 2000907 (2020). https://doi.org/10.1002/adfm.202000907
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200E
J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11, 2003025 (2021). https://doi.org/10.1002/aenm.202003025
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
J. Tang, T.S. Mathis, N. Kurra, A. Sarycheva, X. Xiao et al., Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. 58, 17849–17855 (2019). https://doi.org/10.1002/anie.201911604
Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9, 2847–2854 (2016). https://doi.org/10.1039/C6EE01717G