Tailoring Food Biopolymers into Biogels for Regenerative Wound Healing and Versatile Skin Bioelectronics
Corresponding Author: Min Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 153
Abstract
An increasing utilization of wound-related therapeutic materials and skin bioelectronics urges the development of multifunctional biogels for personal therapy and health management. Nevertheless, conventional dressings and skin bioelectronics with single function, mechanical mismatches, and impracticality severely limit their widespread applications in clinical. Herein, we explore a gelling mechanism, fabrication method, and functionalization for broadly applicable food biopolymers-based biogels that unite the challenging needs of elastic yet injectable wound dressing and skin bioelectronics in a single system. We combine our biogels with functional nanomaterials, such as cuttlefish ink nanoparticles and silver nanowires, to endow the biogels with reactive oxygen species scavenging capacity and electrical conductivity, and finally realized the improvement in diabetic wound microenvironment and the monitoring of electrophysiological signals on skin. This line of research work sheds light on preparing food biopolymers-based biogels with multifunctional integration of wound treatment and smart medical treatment.
Highlights:
1 This food biopolymer-based biogel unites the challenging needs of elastic yet injectable wound dressing and skin bioelectronics in a single platform.
2 This is the first demonstration of a hydrogel dressing that satisfies both deep and superficial wounds, and for the accelerated healing of diabetic wounds.
3 Biogel-based flexible skin bioelectronic can serve as a “fever indicator” and monitoring human activities and tiny electrophysiological signals, providing important clinical information for the rehabilitation training of the wounded.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Liu, R. Gao, C. Yang, Z. Feng, W. Ou-Yang et al., ECM-mimetic immunomodulatory hydrogel for methicillin-resistant staphylococcus aureus-infected chronic skin wound healing. Sci. Adv. 8, eabn7006 (2022). https://doi.org/10.1126/sciadv.abn7006
- A. Maleki, J. He, S. Bochani, V. Nosrati, M. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021). https://doi.org/10.1021/acsnano.1c08334
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
- H. Chen, Y. Guo, Z. Zhang, W. Mao, C. Shen et al., Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22, 229–237 (2022). https://doi.org/10.1021/acs.nanolett.1c03693
- H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou et al., ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 258, 120286 (2020). https://doi.org/10.1016/j.biomaterials.2020.120286
- M. Yin, J. Wu, M. Deng, P. Wang, G. Ji et al., Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano 15, 17842–17853 (2021). https://doi.org/10.1021/acsnano.1c06036
- T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
- H. Zhang, X. Sun, J. Wang, Y. Zhang, M. Dong et al., Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv. Funct. Mater. 31, 2100093 (2021). https://doi.org/10.1002/adfm.202100093
- Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo et al., Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
- N. Tang, Y. Zheng, D. Cui, H. Haick, Multifunctional dressing for wound diagnosis and rehabilitation. Adv. Healthc. Mater. 10, 2101292 (2021). https://doi.org/10.1002/adhm.202101292
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- M. Gong, P. Wan, D. Ma, M. Zhong, M. Liao et al., Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 29, 1902127 (2019). https://doi.org/10.1002/adfm.201902127
- L. Lo, J. Zhao, K. Aono, W. Li, Z. Wen et al., Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 16, 11792–11801 (2022). https://doi.org/10.1021/acsnano.2c04962
- G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, e2200261 (2022). https://doi.org/10.1002/adma.202200261
- Y. Jiang, A. Trotsyuk, S. Niu, D. Henn, K. Chen et al., Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. (2022). https://doi.org/10.1038/s41587-022-01528-3
- H. Tang, Y. Li, B. Chen, X. Chen, Y. Han et al., In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16, 7931–17947 (2022). https://doi.org/10.1021/acsnano.2c03414
- Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7, 1902673 (2020). https://doi.org/10.1002/advs.201902673
- Q. Lei, D. He, L. Ding, F. Kong, P. He et al., Microneedle patches integrated with biomineralized melanin nanops for simultaneous skin tumor photothermal therapy and wound healing. Adv. Funct. Mater. 32, 2113269 (2022). https://doi.org/10.1002/adfm.202113269
- A. Alves, S. Miguel, A, Araujo, M. Valle, A, Navarro et al., Xanthan gum–Konjac glucomannan blend hydrogel for wound healing. Polymers 12, 99 (2020). https://doi.org/10.3390/polym12010099
- X. Yang, T. Gong, D. Li, A. Li, L. Sun et al., Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydr. Polym. 226, 115278 (2019). https://doi.org/10.1016/j.carbpol.2019.115278
- Q. Jiang, Z. Luo, Y. Men, P. Yang, H. Peng et al., Red blood cell membrane-camouflaged melanin nanops for enhanced photothermal therapy. Biomaterials 143, 29–45 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.027
- J. Ma, M. Zhan, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 4, 21060–21071 (2014). https://doi.org/10.1039/C4RA00711E
- J. Patel, B. Maji, N. Moorthy, S. Maiti et al., Xanthan Gum derivatives: review of synthesis, properties and diverse applications. RSC Adv. 10, 27103–27136 (2020). https://doi.org/10.1039/D0RA04366D
- H. Abu Elella, S. Goda, A. Gab-Allah, E. Hong, B. Pandit et al., Xanthan Gum-derived materials for applications in environment and eco-friendly materials: a review. J. Environ. Chem. Eng. 9, 104702 (2021). https://doi.org/10.1016/j.jece.2020.104702
- S. Ye, W. Zongo, R. Shah, J. Li, B. Li et al., Konjac Glucomannan (KGM), deacetylated KGM (Da-KGM), and degraded KGM derivatives: a special focus on colloidal nutrition. J. Agric. Food. Chem. 69, 12921–12932 (2021). https://doi.org/10.1021/acs.jafc.1c03647
- Y. Cao, R. Mezzenga et al., Design principles of food gels. Nat. Food 1, 106–118 (2020). https://doi.org/10.1038/s43016-019-0009-x
- Q. Zeng, Y. Qian, Y. Huang, F. Ding, X. Qi et al., Polydopamine nanop-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 6, 2647–2657 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.035
- H. Deng, Z. Zou, D. Zheng, Y. Peng, W. Liu et al., Nanops from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS Nano 13, 8618–8629 (2019). https://doi.org/10.1021/acsnano.9b02993
- F. Vashahi, R. Martinez, E. Dashtimoghadam, F. Fahimipour, N. Keith et al., Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 8, eabm2469 (2022). https://doi.org/10.1126/sciadv.abm2469
- Y. Qian, Y. Zheng, J. Jin, X. Wu, K. Xu et al., Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 34, 2200521 (2022). https://doi.org/10.1002/adma.202200521
- X. Peng, X. Xu, Y. Deng, X. Xie, L. Xu et al., Ultrafast self-gelling and wet adhesive powder for acute hemostasis and wound healing. Adv. Funct. Mater. 31, 2102583 (2021). https://doi.org/10.1002/adfm.202102583
- J. Zhou, W. Liu, X. Zhao, Y. Xian, W. Wu et al., Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Adv. Sci. 8, e2100505 (2021). https://doi.org/10.1002/advs.202100505
- Z. Jia, J. Gong, Y. Zeng, J. Ran, J. Liu et al., Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31, 2010461 (2021). https://doi.org/10.1002/adfm.202010461
- Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan et al., Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16, 7486–7502 (2020). https://doi.org/10.1021/acsnano.1c10575
- X. Qi, X. Tong, S. You, R. Mao, E. Cai et al., Mild hyperthermia-assisted ROS scavenging hydrogels achieve diabetic wound healing. ACS Macro Lett. 11, 861–867 (2022). https://doi.org/10.1021/acsmacrolett.2c00290
- Y. Liang, J. He, B. Guo et al., Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- H. Wu, F. Li, W. Shao, J. Gao, D. Ling et al., Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Central Sci. 5, 477–485 (2019). https://doi.org/10.1021/acscentsci.8b00850
- Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick et al., Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708–1733 (2022). https://doi.org/10.1021/acsnano.1c08411
- K. Sun, Z. Siprashvili, A. Khavari et al., Advances in skin grafting and treatment of cutaneous wounds. Science 346, 941–945 (2014). https://doi.org/10.1126/science.1253836
- M. Potente, H. Gerhardt, P. Carmeliet et al., Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011). https://doi.org/10.1016/j.cell.2011.08.039
- C. Gurtner, S. Werner, Y. Barrandon, T. Longaker et al., Wound repair and regeneration. Nature 453, 314–321 (2008). https://doi.org/10.1038/nature07039
- J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
- Q. Zeng, F. Wang, R. Hu, X. Ding, Y. Lu et al., Debonding-on-demand polymeric wound patches for minimal adhesion and clinical communication. Adv. Sci. 9, 2202635 (2022). https://doi.org/10.1002/advs.202202635
- M. Lin, Z. Zheng, L. Yang, M. Luo, L. Fu et al., A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 34, e2107309 (2021). https://doi.org/10.1002/adma.202107309
- G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren et al., Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 14, 218–228 (2020). https://doi.org/10.1021/acsnano.9b07874
- J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686 (2022). https://doi.org/10.1002/adfm.202204686
- N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib et al., Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 34, 2106842 (2022). https://doi.org/10.1002/adma.202106842
References
W. Liu, R. Gao, C. Yang, Z. Feng, W. Ou-Yang et al., ECM-mimetic immunomodulatory hydrogel for methicillin-resistant staphylococcus aureus-infected chronic skin wound healing. Sci. Adv. 8, eabn7006 (2022). https://doi.org/10.1126/sciadv.abn7006
A. Maleki, J. He, S. Bochani, V. Nosrati, M. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021). https://doi.org/10.1021/acsnano.1c08334
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2022). https://doi.org/10.1007/s40820-021-00751-y
H. Chen, Y. Guo, Z. Zhang, W. Mao, C. Shen et al., Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22, 229–237 (2022). https://doi.org/10.1021/acs.nanolett.1c03693
H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou et al., ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 258, 120286 (2020). https://doi.org/10.1016/j.biomaterials.2020.120286
M. Yin, J. Wu, M. Deng, P. Wang, G. Ji et al., Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano 15, 17842–17853 (2021). https://doi.org/10.1021/acsnano.1c06036
T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
H. Zhang, X. Sun, J. Wang, Y. Zhang, M. Dong et al., Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv. Funct. Mater. 31, 2100093 (2021). https://doi.org/10.1002/adfm.202100093
Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo et al., Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
N. Tang, Y. Zheng, D. Cui, H. Haick, Multifunctional dressing for wound diagnosis and rehabilitation. Adv. Healthc. Mater. 10, 2101292 (2021). https://doi.org/10.1002/adhm.202101292
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
M. Gong, P. Wan, D. Ma, M. Zhong, M. Liao et al., Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 29, 1902127 (2019). https://doi.org/10.1002/adfm.201902127
L. Lo, J. Zhao, K. Aono, W. Li, Z. Wen et al., Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 16, 11792–11801 (2022). https://doi.org/10.1021/acsnano.2c04962
G. Li, K. Huang, J. Deng, M. Guo, M. Cai et al., Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, e2200261 (2022). https://doi.org/10.1002/adma.202200261
Y. Jiang, A. Trotsyuk, S. Niu, D. Henn, K. Chen et al., Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. (2022). https://doi.org/10.1038/s41587-022-01528-3
H. Tang, Y. Li, B. Chen, X. Chen, Y. Han et al., In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16, 7931–17947 (2022). https://doi.org/10.1021/acsnano.2c03414
Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7, 1902673 (2020). https://doi.org/10.1002/advs.201902673
Q. Lei, D. He, L. Ding, F. Kong, P. He et al., Microneedle patches integrated with biomineralized melanin nanops for simultaneous skin tumor photothermal therapy and wound healing. Adv. Funct. Mater. 32, 2113269 (2022). https://doi.org/10.1002/adfm.202113269
A. Alves, S. Miguel, A, Araujo, M. Valle, A, Navarro et al., Xanthan gum–Konjac glucomannan blend hydrogel for wound healing. Polymers 12, 99 (2020). https://doi.org/10.3390/polym12010099
X. Yang, T. Gong, D. Li, A. Li, L. Sun et al., Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydr. Polym. 226, 115278 (2019). https://doi.org/10.1016/j.carbpol.2019.115278
Q. Jiang, Z. Luo, Y. Men, P. Yang, H. Peng et al., Red blood cell membrane-camouflaged melanin nanops for enhanced photothermal therapy. Biomaterials 143, 29–45 (2017). https://doi.org/10.1016/j.biomaterials.2017.07.027
J. Ma, M. Zhan, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 4, 21060–21071 (2014). https://doi.org/10.1039/C4RA00711E
J. Patel, B. Maji, N. Moorthy, S. Maiti et al., Xanthan Gum derivatives: review of synthesis, properties and diverse applications. RSC Adv. 10, 27103–27136 (2020). https://doi.org/10.1039/D0RA04366D
H. Abu Elella, S. Goda, A. Gab-Allah, E. Hong, B. Pandit et al., Xanthan Gum-derived materials for applications in environment and eco-friendly materials: a review. J. Environ. Chem. Eng. 9, 104702 (2021). https://doi.org/10.1016/j.jece.2020.104702
S. Ye, W. Zongo, R. Shah, J. Li, B. Li et al., Konjac Glucomannan (KGM), deacetylated KGM (Da-KGM), and degraded KGM derivatives: a special focus on colloidal nutrition. J. Agric. Food. Chem. 69, 12921–12932 (2021). https://doi.org/10.1021/acs.jafc.1c03647
Y. Cao, R. Mezzenga et al., Design principles of food gels. Nat. Food 1, 106–118 (2020). https://doi.org/10.1038/s43016-019-0009-x
Q. Zeng, Y. Qian, Y. Huang, F. Ding, X. Qi et al., Polydopamine nanop-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 6, 2647–2657 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.035
H. Deng, Z. Zou, D. Zheng, Y. Peng, W. Liu et al., Nanops from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS Nano 13, 8618–8629 (2019). https://doi.org/10.1021/acsnano.9b02993
F. Vashahi, R. Martinez, E. Dashtimoghadam, F. Fahimipour, N. Keith et al., Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 8, eabm2469 (2022). https://doi.org/10.1126/sciadv.abm2469
Y. Qian, Y. Zheng, J. Jin, X. Wu, K. Xu et al., Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 34, 2200521 (2022). https://doi.org/10.1002/adma.202200521
X. Peng, X. Xu, Y. Deng, X. Xie, L. Xu et al., Ultrafast self-gelling and wet adhesive powder for acute hemostasis and wound healing. Adv. Funct. Mater. 31, 2102583 (2021). https://doi.org/10.1002/adfm.202102583
J. Zhou, W. Liu, X. Zhao, Y. Xian, W. Wu et al., Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Adv. Sci. 8, e2100505 (2021). https://doi.org/10.1002/advs.202100505
Z. Jia, J. Gong, Y. Zeng, J. Ran, J. Liu et al., Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31, 2010461 (2021). https://doi.org/10.1002/adfm.202010461
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan et al., Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16, 7486–7502 (2020). https://doi.org/10.1021/acsnano.1c10575
X. Qi, X. Tong, S. You, R. Mao, E. Cai et al., Mild hyperthermia-assisted ROS scavenging hydrogels achieve diabetic wound healing. ACS Macro Lett. 11, 861–867 (2022). https://doi.org/10.1021/acsmacrolett.2c00290
Y. Liang, J. He, B. Guo et al., Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
H. Wu, F. Li, W. Shao, J. Gao, D. Ling et al., Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Central Sci. 5, 477–485 (2019). https://doi.org/10.1021/acscentsci.8b00850
Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick et al., Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708–1733 (2022). https://doi.org/10.1021/acsnano.1c08411
K. Sun, Z. Siprashvili, A. Khavari et al., Advances in skin grafting and treatment of cutaneous wounds. Science 346, 941–945 (2014). https://doi.org/10.1126/science.1253836
M. Potente, H. Gerhardt, P. Carmeliet et al., Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011). https://doi.org/10.1016/j.cell.2011.08.039
C. Gurtner, S. Werner, Y. Barrandon, T. Longaker et al., Wound repair and regeneration. Nature 453, 314–321 (2008). https://doi.org/10.1038/nature07039
J. Li, Y. Ma, D. Huang, Z. Wang, Z. Zhang et al., High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 14, 132 (2022). https://doi.org/10.1007/s40820-022-00870-0
Q. Zeng, F. Wang, R. Hu, X. Ding, Y. Lu et al., Debonding-on-demand polymeric wound patches for minimal adhesion and clinical communication. Adv. Sci. 9, 2202635 (2022). https://doi.org/10.1002/advs.202202635
M. Lin, Z. Zheng, L. Yang, M. Luo, L. Fu et al., A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 34, e2107309 (2021). https://doi.org/10.1002/adma.202107309
G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren et al., Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 14, 218–228 (2020). https://doi.org/10.1021/acsnano.9b07874
J. Liu, H. Wang, T. Liu, Q. Wu, Y. Ding et al., Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 32, 2204686 (2022). https://doi.org/10.1002/adfm.202204686
N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib et al., Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 34, 2106842 (2022). https://doi.org/10.1002/adma.202106842