A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor
Corresponding Author: Jie Yuan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 27
Abstract
It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from − 52.72 to − 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
Highlights:
1 The role of electron transport characteristics in electromagnetic (EM) attenuation can be generalized to other EM functional materials.
2 The integrated functions of efficient EM absorption and green shielding open the view of EM multifunctional materials.
3 A novel sensing mechanism based on intrinsic EM attenuation performance and EM resonance coupling effect is revealed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- Y.Z. Li, Z.H. Liu, L. Li, W.H. Lian, Y.H. He et al., Tandem-mass-tag based proteomic analysis facilitates analyzing critical factors of porous silicon nanoparticles in determining their biological responses under diseased condition. Adv. Sci. 7, 2001129 (2020). https://doi.org/10.1002/advs.202001129
- V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
- S.H. Liu, B. Shen, H.S. Hao, J.W. Zhai, Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J. Mater. Chem. C 7, 15118–15135 (2019). https://doi.org/10.1039/c9tc05253d
- Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai et al., Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 181, 107686 (2019). https://doi.org/10.1016/j,compscitech.2019.107686
- Y. Zhang, C.H. Zhang, Y. Feng, T.D. Zhang, Q.G. Chen et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044
- C. Guan, X.M. Liu, W.N. Ren, X. Li, C.W. Cheng et al., Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017). https://doi.org/10.1002/aenm.201602391
- X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater Sci. 63, 1–57 (2014). https://doi.org/10.1016/j.pmatsci.2014.01.002
- Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- L. Wang, M.Q. Huang, X.F. Yu, W.B. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- X.C. Zhang, J. Xu, H.R. Yuan, S. Zhang, Q.Y. Ouyang et al., Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11, 39100–39108 (2019). https://doi.org/10.1021/acsami.9b13751
- X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11, 4454–44536 (2019). https://doi.org/10.1021/acsami.9b11861
- F. Wu, M.X. Sun, C.C. Chen, T. Zhou, Y.L. Xia et al., Controllable coating of polypyrrole on silicon carbide nanowires as a core shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustain. Chem. Eng. 7, 2100–2106 (2019). https://doi.org/10.1021/acssuschemeng.8b04676
- H.G. Wang, F.B. Meng, F. Huang, C.F. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
- O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms10000
- H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 170634 (2018). https://doi.org/10.1002/adma.201706343
- L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
- Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- Y. Liu, Y.W. Fu, L. Liu, W. Li, J.G. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10, 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
- G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, Broadband patterned magnetic microwave absorber. J. Appl. Phys. 116, 044110 (2014). https://doi.org/10.1063/1.4891475
- N. He, Z.D. He, L. Liu, Y. Lu, F.Q. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 381, 122743 (2020). https://doi.org/10.1016/j.cej.2019.122743
- L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
- K. Zhang, F. Wu, A.M. Xie, M.X. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
- P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486 (2016). https://doi.org/10.1002/adma.201503149
- P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019). https://doi.org/10.1002/adom.201900689
- M. Green, A.T.V. Tran, X.B. Chen, Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv. Mater. Interfaces 7, 2000658 (2020). https://doi.org/10.1002/admi.202000658
- M. Green, A.T.V. Tran, X.B. Chen, Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 199, 108332 (2020). https://doi.org/10.1016/j.compscitech.2020.108332
- M. Green, Y. Li, Z.H. Peng, X.B. Chen, Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. J. Magn. Magn. Mater. 497, 165974 (2020). https://doi.org/10.1016/j.jmmm.2019.165974
- H.R. Lin, M. Green, L.J. Xu, X.B. Chen, B.W. Ma, Microwave absorption of organic metal halide nanotubes. Adv. Mater. Interfaces 7, 1901270 (2020). https://doi.org/10.1002/admi.201901270
- M. Green, X.B. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503–541 (2019). https://doi.org/10.1016/j.jmat.2019.07.003
- M. Green, Z.Q. Liu, P. Xiang, Y. Liu, M.J. Zhou, Doped, conductive SiO2 nanoparticles for large microwave absorption. Light-Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
- Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- H.B. Zhang, Q. Yan, W.G. Zheng, Z.X. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
- H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- W.C. Jiang, F. Wu, Y.J. Jiang, M.X. Sun, K. Zhang et al., Synthesis of hollow Cu1.8S nano-cubes for electromagnetic interference shielding. Nanoscale 9, 10961–10965 (2017). https://doi.org/10.1039/c7nr02819a
- Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- S. Lee, I. Jo, S. Kang, B. Jang, J. Moon et al., Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11, 5318–5324 (2017). https://doi.org/10.1021/acsnano.7b00370
- Q. Zhang, Q.J. Liang, Z. Zhang, Z. Kang, Q.L. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28, 1703801 (2018). https://doi.org/10.1002/adfm.201703801
- X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32, 2002112 (2020). https://doi.org/10.1002/adma.202002112
- S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers a state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012). https://doi.org/10.1016/j.progpolymsci.2011.07.001
- M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stabil. 92, 1421–1432 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023
- K.L. Wu, X.W. Wei, X.M. Zhou, D.H. Wu, X.W. Liu et al., NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitropheno. J. Phys. Chem. 115, 16268–16274 (2011). https://doi.org/10.1021/jp201660w
- Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai et al., Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004). https://doi.org/10.1126/science.1096566
- J.G. Railsback, A.C. Johnston-Peck, J. Wang, J.B. Tracy, Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4, 1913–1920 (2010). https://doi.org/10.1021/nn901736y
- D.H. Ha, L.M. Moreau, S. Honrao, R.G. Hennig, R.D. Robinson, The oxidation of cobalt nanoparticles into kirkendall-hollowed CoO and Co3O4: the diffusion mechanisms and atomic structural transformations. J. Phys. Chem. C 117, 14303–14312 (2013). https://doi.org/10.1021/jp402939e
- W.W. Xia, Y. Yang, Q.P. Meng, Z.P. Deng, M.X. Gong et al., Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy. ACS Nano 12, 7866–7874 (2018). https://doi.org/10.1021/acsnano.8b02170
- L.L. Han, Q.P. Meng, D.L. Wang, Y.M. Zhu, J. Wang et al., Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat. Commun. 7, 13335 (2016). https://doi.org/10.1038/ncomms13335
- A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
- L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete et al., Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). https://doi.org/10.1021/nl201432g
- M.N. Iliev, D. Mazumdar, J.X. Ma, A. Gupta, F. Rigato et al., Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy. Phys. Rev. B 83, 014108 (2011). https://doi.org/10.1103/PhysRevB.83.014108
- V.G. Ivanov, M.V. Abrashev, M.N. Iliev, M.M. Gospodinov, J. Meen et al., Short-range B-site ordering in the inverse spinel ferrite NiFe2O4. Phys. Rev. B 82, 024104 (2010). https://doi.org/10.1103/PhysRevB.82.024104
- J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000). https://doi.org/10.1039/a908800h
References
C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
Y.Z. Li, Z.H. Liu, L. Li, W.H. Lian, Y.H. He et al., Tandem-mass-tag based proteomic analysis facilitates analyzing critical factors of porous silicon nanoparticles in determining their biological responses under diseased condition. Adv. Sci. 7, 2001129 (2020). https://doi.org/10.1002/advs.202001129
V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
S.H. Liu, B. Shen, H.S. Hao, J.W. Zhai, Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications. J. Mater. Chem. C 7, 15118–15135 (2019). https://doi.org/10.1039/c9tc05253d
Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai et al., Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 181, 107686 (2019). https://doi.org/10.1016/j,compscitech.2019.107686
Y. Zhang, C.H. Zhang, Y. Feng, T.D. Zhang, Q.G. Chen et al., Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044
C. Guan, X.M. Liu, W.N. Ren, X. Li, C.W. Cheng et al., Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7, 1602391 (2017). https://doi.org/10.1002/aenm.201602391
X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater Sci. 63, 1–57 (2014). https://doi.org/10.1016/j.pmatsci.2014.01.002
Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
L. Wang, M.Q. Huang, X.F. Yu, W.B. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
X.C. Zhang, J. Xu, H.R. Yuan, S. Zhang, Q.Y. Ouyang et al., Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11, 39100–39108 (2019). https://doi.org/10.1021/acsami.9b13751
X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 11, 4454–44536 (2019). https://doi.org/10.1021/acsami.9b11861
F. Wu, M.X. Sun, C.C. Chen, T. Zhou, Y.L. Xia et al., Controllable coating of polypyrrole on silicon carbide nanowires as a core shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustain. Chem. Eng. 7, 2100–2106 (2019). https://doi.org/10.1021/acssuschemeng.8b04676
H.G. Wang, F.B. Meng, F. Huang, C.F. Jing, Y. Li et al., Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019). https://doi.org/10.1021/acsami.9b01122
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms10000
H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 170634 (2018). https://doi.org/10.1002/adma.201706343
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
Y. Liu, Y.W. Fu, L. Liu, W. Li, J.G. Guan et al., Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 10, 16511–16520 (2018). https://doi.org/10.1021/acsami.8b02770
G.H. He, Y.P. Duan, H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, Broadband patterned magnetic microwave absorber. J. Appl. Phys. 116, 044110 (2014). https://doi.org/10.1063/1.4891475
N. He, Z.D. He, L. Liu, Y. Lu, F.Q. Wang et al., Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem. Eng. J. 381, 122743 (2020). https://doi.org/10.1016/j.cej.2019.122743
L.X. Huang, Y.P. Duan, X.H. Dai, Y.S. Zeng, G.J. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15, 1902730 (2019). https://doi.org/10.1002/smll.201902730
K. Zhang, F. Wu, A.M. Xie, M.X. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486 (2016). https://doi.org/10.1002/adma.201503149
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019). https://doi.org/10.1002/adom.201900689
M. Green, A.T.V. Tran, X.B. Chen, Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery. Adv. Mater. Interfaces 7, 2000658 (2020). https://doi.org/10.1002/admi.202000658
M. Green, A.T.V. Tran, X.B. Chen, Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 199, 108332 (2020). https://doi.org/10.1016/j.compscitech.2020.108332
M. Green, Y. Li, Z.H. Peng, X.B. Chen, Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. J. Magn. Magn. Mater. 497, 165974 (2020). https://doi.org/10.1016/j.jmmm.2019.165974
H.R. Lin, M. Green, L.J. Xu, X.B. Chen, B.W. Ma, Microwave absorption of organic metal halide nanotubes. Adv. Mater. Interfaces 7, 1901270 (2020). https://doi.org/10.1002/admi.201901270
M. Green, X.B. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503–541 (2019). https://doi.org/10.1016/j.jmat.2019.07.003
M. Green, Z.Q. Liu, P. Xiang, Y. Liu, M.J. Zhou, Doped, conductive SiO2 nanoparticles for large microwave absorption. Light-Sci. Appl. 7, 87 (2018). https://doi.org/10.1038/s41377-018-0088-8
Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
H.B. Zhang, Q. Yan, W.G. Zheng, Z.X. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011). https://doi.org/10.1021/am200021v
H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
W.C. Jiang, F. Wu, Y.J. Jiang, M.X. Sun, K. Zhang et al., Synthesis of hollow Cu1.8S nano-cubes for electromagnetic interference shielding. Nanoscale 9, 10961–10965 (2017). https://doi.org/10.1039/c7nr02819a
Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451
S. Lee, I. Jo, S. Kang, B. Jang, J. Moon et al., Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11, 5318–5324 (2017). https://doi.org/10.1021/acsnano.7b00370
Q. Zhang, Q.J. Liang, Z. Zhang, Z. Kang, Q.L. Liao et al., Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 28, 1703801 (2018). https://doi.org/10.1002/adfm.201703801
X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32, 2002112 (2020). https://doi.org/10.1002/adma.202002112
S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers a state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012). https://doi.org/10.1016/j.progpolymsci.2011.07.001
M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stabil. 92, 1421–1432 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023
K.L. Wu, X.W. Wei, X.M. Zhou, D.H. Wu, X.W. Liu et al., NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitropheno. J. Phys. Chem. 115, 16268–16274 (2011). https://doi.org/10.1021/jp201660w
Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai et al., Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004). https://doi.org/10.1126/science.1096566
J.G. Railsback, A.C. Johnston-Peck, J. Wang, J.B. Tracy, Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4, 1913–1920 (2010). https://doi.org/10.1021/nn901736y
D.H. Ha, L.M. Moreau, S. Honrao, R.G. Hennig, R.D. Robinson, The oxidation of cobalt nanoparticles into kirkendall-hollowed CoO and Co3O4: the diffusion mechanisms and atomic structural transformations. J. Phys. Chem. C 117, 14303–14312 (2013). https://doi.org/10.1021/jp402939e
W.W. Xia, Y. Yang, Q.P. Meng, Z.P. Deng, M.X. Gong et al., Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy. ACS Nano 12, 7866–7874 (2018). https://doi.org/10.1021/acsnano.8b02170
L.L. Han, Q.P. Meng, D.L. Wang, Y.M. Zhu, J. Wang et al., Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat. Commun. 7, 13335 (2016). https://doi.org/10.1038/ncomms13335
A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete et al., Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). https://doi.org/10.1021/nl201432g
M.N. Iliev, D. Mazumdar, J.X. Ma, A. Gupta, F. Rigato et al., Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy. Phys. Rev. B 83, 014108 (2011). https://doi.org/10.1103/PhysRevB.83.014108
V.G. Ivanov, M.V. Abrashev, M.N. Iliev, M.M. Gospodinov, J. Meen et al., Short-range B-site ordering in the inverse spinel ferrite NiFe2O4. Phys. Rev. B 82, 024104 (2010). https://doi.org/10.1103/PhysRevB.82.024104
J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000). https://doi.org/10.1039/a908800h