Developing MXenes from Wireless Communication to Electromagnetic Attenuation
Corresponding Author: Mao‑Sheng Cao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 115
Abstract
There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity. Avoiding the harmful effects of electromagnetic (EM) radiation from wireless communication is a persistent research hot spot. Two-dimensional (2D) materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties. MXenes, as a novel family of 2D materials, have shown excellent properties in various fields, owing to their excellent electrical conductivity, mechanical stability, high flexibility, and ease of processability. To date, research on the utility of MXenes for wireless communication has been actively pursued. Moreover, MXenes have become the leading materials for EM attenuation. Herein, we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication, electromagnetic interference (EMI) shielding, and EM wave absorption. The relationship governing the structural design and the effectiveness for wireless communication, EMI shielding, and EM wave absorption is clearly revealed. Furthermore, our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.
Highlights:
1 The industrial application and foundational research of MXenes at gigahertz frequency are systematically reviewed.
2 The design principles of “lightweight, wide, and strong” are specifically highlighted.
3 Current challenges and future directions for MXenes in wireless communication and electromagnetic attenuation are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.Y. Shin, J.Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 23(18), 2113–2118 (2011). https://doi.org/10.1002/adma.201100345
- K.Y. Shin, M. Kim, J.S. Lee, J. Jang, Highly omnidirectional and frequency controllable carbon/polyaniline-based 2D and 3D monopole antenna. Sci. Rep. 5, 13615 (2015). https://doi.org/10.1038/srep13615
- A. Lamminen, K. Arapov, G. de With, S. Haque, H.G.O. Sandberg et al., Graphene-flakes printed wideband elliptical dipole antenna for low-cost wireless communications applications. IEEE Antennas Wirel. Propag. Lett. 16, 1883–1886 (2017). https://doi.org/10.1109/LAWP.2017.2684907
- I. Puchades, J.E. Rossi, C.D. Cress, E. Naglich, B.J. Landi, Carbon nanotube thin-film antennas. ACS Appl. Mater. Interfaces 8(32), 20986–20992 (2016). https://doi.org/10.1021/acsami.6b05146
- X.J. Huang, T. Leng, K.H. Chang, J.C. Chen, K.S. Novoselov et al., Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Mater. 3(2), 025021 (2016). https://doi.org/10.1088/2053-1583/3/2/025021
- T.A. Elwi, H.M. Al-Rizzo, D.G. Rucker, E. Dervishi, Z.R. Li et al., Multi-walled carbon nanotube-based RF antennas. Nanotechnology 21(4), 045301 (2010). https://doi.org/10.1088/0957-4484/21/4/045301
- G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis et al., Microwave propagation in graphene. Appl. Phys. Lett. 95(7), 073107 (2009). https://doi.org/10.1063/1.3202413
- N.A. Vacirca, J.K. McDonough, K. Jost, Y. Gogotsi, T.P. Kurzweg, Onion-like carbon and carbon nanotube film antennas. Appl. Phys. Lett. 103(7), 073301 (2013). https://doi.org/10.1063/1.4818464
- P.J. Burke, S.D. Li, Z. Yu, Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotechnol. 5(4), 314–334 (2006). https://doi.org/10.1109/TNANO.2006.877430
- M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
- X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
- B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13(1), 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. B-Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- P. He, Z.L. Hou, W.Q. Cao, J. Yuan, M.S. Cao, Rutile TiO2 nanorod with anomalous resonance for charge storage and frequency selective absorption. Ceram. Int. 47(2), 2016–2021 (2021). https://doi.org/10.1016/j.ceramint.2020.09.033
- Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- P. He, Z.L. Hou, K.L. Zhang, J. Li, K. Yin et al., Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52(13), 8258–8267 (2017). https://doi.org/10.1007/s10853-017-1041-6
- M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), 1802479 (2018). https://doi.org/10.1002/smll.201802479
- Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12(1), 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- S.W. Shi, B.Q. Qian, X.Y. Wu, H.L. Sun, H.Q. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58, 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
- G.J. Hayes, J.H. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans. Antennas Propag. 60(5), 2151–2156 (2012). https://doi.org/10.1109/TAP.2012.2189698
- S.H. Kang, C.W. Jung, Transparent patch antenna using metal mesh. IEEE Trans. Antennas Propag. 66(4), 2095–2100 (2018). https://doi.org/10.1109/TAP.2018.2804622
- B. Aissa, M. Nedil, M.A. Habib, E. Haddad, W. Jamroz et al., Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency. Appl. Phys. Lett. 103(6), 063101 (2013). https://doi.org/10.1063/1.4817861
- G.S. Gund, M.G. Jung, K.Y. Shin, H.S. Park, Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems. ACS Nano 13(12), 14114–14121 (2019). https://doi.org/10.1021/acsnano.9b06732
- S. Hong, Y. Kim, C.W. Jung, Transparent microstrip patch antennas with multilayer and metal-mesh films. IEEE Antennas Wirel. Propag. Lett. 16, 772–775 (2017). https://doi.org/10.1109/LAWP.2016.2602389
- G.L. Huang, J.J. Liang, L.Y. Zhao, D.P. He, C.Y.D. Sim, Package-in-dielectric liquid patch antenna based on liquid metal alloy. IEEE Antennas Wirel. Propag. Lett. 18(11), 2360–2364 (2019). https://doi.org/10.1109/LAWP.2019.2932048
- E.A. Bengio, D. Senic, L.W. Taylor, R.J. Headrick, M. King et al., Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 114(20), 203102 (2019). https://doi.org/10.1063/1.5093327
- H.A. Elmobarak, S.K.A. Rahim, M. Abedian, P.J. Soh, G.A.E. Vandenbosch et al., Assessment of multilayered graphene technology for flexible antennas at microwave frequencies. Microw. Opt. Technol. Lett. 59(10), 2604–2610 (2017). https://doi.org/10.1002/mop.30783
- Y.K. Kim, Y. Lee, K.Y. Shin, J. Jang, Highly omnidirectional and frequency tunable multilayer graphene-based monopole patch antennas. J. Mater. Chem. C 7(26), 7915–7921 (2019). https://doi.org/10.1039/c9tc02454a
- H. Saghlatoon, L. Sydanheimo, L. Ukkonen, M. Tentzeris, Optimization of inkjet printing of patch antennas on low-cost fibrous substrates. IEEE Antennas Wirel. Propag. Lett. 13, 915–918 (2014). https://doi.org/10.1109/LAWP.2014.2322572
- L.N. Song, A.C. Myers, J.J. Adams, Y. Zhu, Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6(6), 4248–4253 (2014). https://doi.org/10.1021/am405972e
- R.B.V.B. Simorangkir, Y. Yang, L. Matekovits, K.P. Esselle, Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas Wirel. Propag. Lett. 16, 677–680 (2017). https://doi.org/10.1109/LAWP.2016.2598729
- M. Rizwan, M.W.A. Khan, L. Sydanheimo, J. Virkki, L. Ukkonen, Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate. IEEE Antennas Wirel. Propag. Lett. 16, 3108–3112 (2017). https://doi.org/10.1109/LAWP.2017.2763743
- A. Razaq, A.A. Khan, U. Shakir, A. Arshad, Next generation flexible antennas for radio frequency applications. Trans. Electr. Electron. Mater. 19(5), 311–318 (2018). https://doi.org/10.1007/s42341-018-0051-7
- L. Li, S. Zhao, X.J. Luo, H.B. Zhang, Z.Z. Yu, Smart MXene-based janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
- D. Nepal, W.J. Kennedy, R. Pachter, R.A. Vaia, Toward architected nanocomposites: MXenes and beyond. ACS Nano 15, 21–28 (2021). https://doi.org/10.1021/acsnano.0c09834
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30(10), 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang et al., Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11(13), 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
- X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95(16), 163108 (2009). https://doi.org/10.1063/1.3250170
- M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
- W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015). https://doi.org/10.1039/c5tc02185e
- M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
- A. Sarycheva, A. Polemi, Y.L. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4(9), eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
- Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- M.K. Han, Y.Q. Liu, R. Rakhmanov, C. Israel, M.A. Tajin et al., Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33(1), 2003225 (2021). https://doi.org/10.1002/adma.202003225
- X. Liu, J. Wu, J. He, L. Zhang, Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017). https://doi.org/10.1016/j.matlet.2017.06.101
- S. Hu, S. Li, W. Xu, J. Zhang, Y. Zhou et al., Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceram. Int. 45(16), 19902–19909 (2019). https://doi.org/10.1016/j.ceramint.2019.06.246
- P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
- X.L. Li, X.W. Yin, S. Liang, M.H. Li, L.F. Cheng et al., 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- K. Rajavel, S.B. Luo, Y.J. Wan, X.C. Yu, Y.G. Hu et al., 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. A: Appl. Sci. Manufac. 129, 105693 (2020). https://doi.org/10.1016/j.compositesa.2019.105693
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. B-Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- B. Ji, S.W. Fan, X. Ma, K.Y. Hu, L. Wang et al., Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon 165, 150–162 (2020). https://doi.org/10.1016/j.carbon.2020.04.041
- L.Y. Liang, G.J. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- K. Rajavel, Y.G. Hu, P.L. Zhu, R. Sun, C.P. Wong, MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 399, 125791 (2020). https://doi.org/10.1016/j.cej.2020.125791
- P. Song, H. Qiu, L. Wang, X.Y. Liu, Y.L. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
- K. Raagulan, R. Braveenth, B.M. Kim, K.J. Lim, S.B. Lee et al., An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free-standing and thermally conductive composite from MXene-PAT-poly(p-aminophenol)-polyaniline co-polymer. RSC Adv. 10(3), 1613–1633 (2020). https://doi.org/10.1039/c9ra09522e
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- M.K. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- F. Xie, F.F. Jia, L.H. Zhuo, Z.Q. Lu, L.M. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
- C.X. Weng, T.L. Xing, H. Jin, G.R. Wang, Z.H. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. A: Appl. Sci. Manuf. 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
- C.X. Lei, Y.Z. Zhang, D.Y. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
- H.W. Wei, M.Q. Wang, W.H. Zheng, Z.X. Jiang, Y.D. Huang, 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 46(5), 6199–6204 (2020). https://doi.org/10.1016/j.ceramint.2019.11.087
- Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- C. Cui, C. Xiang, L. Geng, X.X. Lai, R.H. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloy Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
- Q.F. Zhou, K.P. Qian, J.H. Fang, M. Miao, S.M. Cao et al., UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 134, 105899 (2020). https://doi.org/10.1016/j.compositesa.2020.105899
- W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu et al., Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic interference shielding. RSC Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
- W.T. Cao, C. Ma, S. Tan, M.G. Ma, P.B. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
- M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
- R.T. Liu, M. Miao, Y.H. Li, J.F. Zhang, S.M. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- J.Q. Luo, S. Zhao, H.B. Zhang, Z.M. Deng, L.L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6(19), 1900961 (2019). https://doi.org/10.1002/admi.201900961
- Z.H. Zhou, J.Z. Liu, X.X. Zhang, D. Tian, Z.Y. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6(6), 1802040 (2019). https://doi.org/10.1002/admi.201802040
- Z.X. Liu, W.Y. Wang, J.J. Tan, J. Liu, M.F. Zhu et al., Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 8(21), 7170–7180 (2020). https://doi.org/10.1039/d0tc01249a
- X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li et al., Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- F. Liu, Y.C. Li, S. Hao, Y. Cheng, Y.H. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
- Y. Zhang, W.H. Cheng, W.X. Tian, J.Y. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12(5), 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
- G.M. Weng, J.Y. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan et al., Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
- J. Liu, Z.S. Liu, H.B. Zhang, W. Chen, Z.F. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
- X.M. Fan, M.H. Li, X. Li, F. Ye, J.M. Xue et al., Electromagnetic interference shielding Ti3C2Tx-bonded carbon black films with enhanced absorption performance. Chin. Chem. Lett. 31(4), 1026–1029 (2020). https://doi.org/10.1016/j.cclet.2020.01.030
- Z.S. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
- X. Feng, J. Ning, B.Y. Wang, H.B. Guo, M.Y. Xia et al., Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 72, 104741 (2020). https://doi.org/10.1016/j.nanoen.2020.104741
- M. Miao, R.T. Liu, S. Thaiboonrod, L.Y. Shi, S.M. Cao et al., Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8(9), 3120–3126 (2020). https://doi.org/10.1039/c9tc06361g
- L. Li, Y.X. Cao, X.Y. Liu, J.F. Wang, Y.Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
- J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L. Wang, H. Qiu, P. Song, Y.L. Zhang, Y.J. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. A: Appl. Sci. Manufac. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
- H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- H.Y. Yin, L.L. Bi, Z. Wu, G.X. Wang, M. Li et al., 2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space. Nano Futur. 4(3), 035002 (2020). https://doi.org/10.1088/2399-1984/ab92f5
- X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- M.K. Han, X.W. Yin, K. Hantanasirisakul, X.L. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
- R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang et al., Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
- Z.H. Zeng, C.X. Wang, G. Siqueira, D.X. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
- C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ‘‘mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- L. Geng, P.X. Zhu, Y.J. Wei, R.H. Guo, C. Xiang et al., A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose 26(4), 2833–2847 (2019). https://doi.org/10.1007/s10570-019-02284-5
- X.S. Zhang, X.F. Wang, Z.W. Lei, L.L. Wang, M.W. Tian et al., Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 12(12), 14459–14467 (2020). https://doi.org/10.1021/acsami.0c01182
- W.H. Cheng, Y. Zhang, W.X. Tian, J.J. Liu, J.Y. Lu et al., Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding. Ind. Eng. Chem. Res. 59(31), 14025–14036 (2020). https://doi.org/10.1021/acs.iecr.0c02618
- D.W. Hu, X.Y. Huang, S.T. Li, P.K. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
- Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
- W.J. Yuan, J.Z. Yang, F.X. Yin, Y.B. Li, Y. Ye, Flexible and stretchable MXene/polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
- G. Yin, Y. Wang, W. Wang, D. Yu, Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloid. Surface. A 601, 125047 (2020). https://doi.org/10.1016/j.colsurfa.2020.125047
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. B-Eng. 198, 108250 (2020). https://doi.org/10.1016/j.compositesb.2020.108250
- Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
- W.L. Feng, H. Luo, Y. Wang, S.F. Zeng, L.W. Deng et al., Ti3C2 MXene: a promising microwave absorbing material. RSC Adv. 8(5), 2398–2403 (2018). https://doi.org/10.1039/c7ra12616f
- H. Luo, W.L. Feng, C.W. Liao, L.W. Deng, S. Liu et al., Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. J. Appl. Phys. 123(10), 104103 (2018). https://doi.org/10.1063/1.5008323
- Y. Tong, M. He, Y.M. Zhou, X. Zhong, L.D. Fan et al., Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time. J. Mater. Sci Mater. El. 29(10), 8078–8088 (2018). https://doi.org/10.1007/s10854-018-8814-9
- B.B. Fan, N. Li, B.Z. Dai, S.Y. Shang, L. Guan et al., Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Adv. Powder Technol. 31(2), 808–815 (2020). https://doi.org/10.1016/j.apt.2019.11.035
- G.Z. Cui, X.D. Sun, G.Y. Zhang, Z. Zhang, H. Liu et al., Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl + LiF etchant with diverse etching times. Mater. Lett. 252, 8–10 (2019). https://doi.org/10.1016/j.matlet.2019.05.053
- G.F. Xu, X.X. Wang, S.D. Gong, S. Wei, J.Q. Liu et al., Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 29(35), 355201 (2018). https://doi.org/10.1088/1361-6528/aac8f6
- Z.Y. Jin, Y.F. Fang, X.X. Wang, G.F. Xu, M.L. Liu et al., Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J. Colloid. Interfaces Sci. 537, 306–315 (2019). https://doi.org/10.1016/j.jcis.2018.11.034
- M.K. Han, X.W. Yin, X.L. Li, B. Anasori, L.T. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
- X.L. Li, X.W. Yin, M.K. Han, C.Q. Song, X.N. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
- B.B. Fan, S.Y. Shang, B.Z. Dai, B. Zhao, N. Li et al., 2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption. Ceram. Int. 46(10), 17085–17092 (2020). https://doi.org/10.1016/j.ceramint.2020.04.004
- P.J. Liu, Z.J. Yao, V.M.H. Ng, J.T. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A: Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
- G.L. Zhao, H.P. Lv, Y. Zhou, X.T. Zheng, C. Wu et al., Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 10(49), 42925–42932 (2018). https://doi.org/10.1016/10.1021/acsami.8b16727
- X. Zhang, H.H. Wang, R. Hu, C.Y. Huang, W.J. Zhong et al., Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 484, 383–391 (2019). https://doi.org/10.1016/j.apsusc.2019.03.264
- X. Li, M. Zhang, W.B. You, K. Pei, Q.W. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
- S.Q. Yan, C. Cao, J. He, L.H. He, Z.W. Qu et al., Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci. Mater. El. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10854-019-00959-0
- N. Li, X. Xie, H.X. Lu, B.B. Fan, X.H. Wang et al., Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
- X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. Appl. Mater. Interfaces 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
- L.Y. Liang, R.S. Yang, G.J. Han, Y.Z. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. Appl. Mater. Interfaces 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
- Y. Liu, S. Zhang, X.L. Su, J. Xu, Y.Y. Li, Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci. 55(24), 10339–10350 (2020). https://doi.org/10.1007/s10853-020-04739-8
- R.X. Deng, B.B. Chen, H.G. Li, K. Zhang, T. Zhang et al., MXene/Co3O4 composite material: stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 488, 921–930 (2019). https://doi.org/10.1016/j.apsusc.2019.05.058
- C.L. Zhou, X.X. Wang, H. Luo, L.W. Deng, S.L. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
- J. He, D.Y. Shan, S.Q. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639
- Y.M. Lei, Z.J. Yao, S.Z. Li, J.T. Zhou, A.A. Haidry et al., Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 46(8), 10006–10015 (2020). https://doi.org/10.1016/j.ceramint.2019.12.189
- T.Q. Hou, B.B. Wang, M.L. Ma, A.L. Feng, Z.Y. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. B-Eng. 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
- H.B. Yang, J.J. Dai, X. Liu, Y. Lin, J.J. Wang et al., Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179–186 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.057
- M. Li, M.K. Han, J. Zhou, Q.H. Deng, X.B. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617
- X.L. Li, X.W. Yin, M.K. Han, C.Q. Song, H.L. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
- B.Z. Dai, B. Zhao, X. Xie, T.T. Su, B.B. Fan et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 6(21), 5690–5697 (2018). https://doi.org/10.1039/c8tc01404c
- Y.C. Qing, H.Y. Nan, F. Luo, W.C. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv. 7(44), 27755–27761 (2017). https://doi.org/10.1039/c7ra02417g
- Y. Qian, H.W. Wei, J.D. Dong, Y.Z. Du, X.J. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757–10762 (2017). https://doi.org/10.1016/j.ceramint.2017.05.082
- T.S. Liu, N. Liu, Q.D. An, Z.Y. Xiao, S.R. Zhai et al., Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J. Alloy. Compd. 802, 445–457 (2019). https://doi.org/10.1016/j.jallcom.2019.06.243
- Y. Tong, M. He, Y.M. Zhou, X. Zhong, L.D. Fan et al., Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Appl. Surf. Sci. 434, 283–293 (2018). https://doi.org/10.1016/j.apsusc.2017.10.140
- H.Y. Wang, H.B. Ma, The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J. Mater. Sci. Mater. El. 30(16), 15250–15256 (2019). https://doi.org/10.1007/s10854-019-01897-7
- H.W. Wei, J.D. Dong, X.J. Fang, W.H. Zheng, Y.T. Sun et al., Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos. Sci. Technol. 169, 52–59 (2019). https://doi.org/10.1016/j.compscitech.2018.10.016
- S.W. Song, J.Q. Liu, C.L. Zhou, Q. Jia, H. Luo et al., Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloy. Compd. 843, 155713 (2020). https://doi.org/10.1016/j.jallcom.2020.155713
- X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- X.L. Li, X.W. Yin, H.L. Xu, M.K. Han, M.H. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
- Y. Wang, J. Yang, Z.F. Chen, Y.L. Hu, A new flexible and ultralight carbon foam/Ti3C2TX MXene hybrid for high-performance electromagnetic wave absorption. RSC Adv. 9(70), 41038–41049 (2019). https://doi.org/10.1039/c9ra09817h
- M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
- Y. Jiang, X. Xie, Y. Chen, Y.J. Liu, R. Yang et al., Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 6(32), 8679–8687 (2018). https://doi.org/10.1039/c8tc02900h
- Y. Tong, M. He, Y.M. Zhou, S.X. Nie, X. Zhong et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustain. Chem. Eng. 6(7), 8212–8222 (2018). https://doi.org/10.1021/acssuschemeng.7b04883
- L.B. Wang, H. Liu, X.L. Lv, G.Z. Cui, G.X. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloy. Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
- S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- H. Koga, T. Inui, I. Miyamoto, T. Sekiguchi, M. Nogi et al., A high-sensitivity printed antenna prepared by rapid low-temperature sintering of silver ink. RSC Adv. 6(87), 84363–84368 (2016). https://doi.org/10.1039/c6ra19687j
- D.Y. Shin, Y. Lee, C.H. Kim, Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films 517(21), 6112–6118 (2009). https://doi.org/10.1016/j.tsf.2009.05.019
- A. Chauraya, W.G. Whittow, J.C. Vardaxoglou, Y. Li, R. Torah et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7(9), 760–767 (2013). https://doi.org/10.1049/iet-map.2013.0076
- Y. Bayram, Y.J. Zhou, B.S. Shim, S.M. Xu, J.A. Zhu et al., E-textile conductors and polymer composites for conformal lightweight antennas. IEEE Trans. Antennas. Propag. 58(8), 2732–2736 (2010). https://doi.org/10.1109/TAP.2010.2050439
- Q.Y. Tang, Y.M. Pan, Y.C. Chan, K.W. Leung, Frequency-tunable soft composite antennas for wireless sensing. Sens. Actuat. A Phys. 179, 137–145 (2012). https://doi.org/10.1016/j.sna.2012.03.024
- Y. Tikhov, J.H. Won, Impedance-matching arrangement for microwave transponder operating over plurality of bent installations of antenna. Electron. Lett. 40(10), 574–575 (2004). https://doi.org/10.1049/el:20040413
- J.S. Lee, M. Kim, C. Lee, S. Cho, J. Oh et al., Platinum-decorated reduced graphene oxide/polyaniline:poly (4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications. Nanoscale 7(8), 3668–3674 (2015). https://doi.org/10.1039/c4nr06189f
References
K.Y. Shin, J.Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 23(18), 2113–2118 (2011). https://doi.org/10.1002/adma.201100345
K.Y. Shin, M. Kim, J.S. Lee, J. Jang, Highly omnidirectional and frequency controllable carbon/polyaniline-based 2D and 3D monopole antenna. Sci. Rep. 5, 13615 (2015). https://doi.org/10.1038/srep13615
A. Lamminen, K. Arapov, G. de With, S. Haque, H.G.O. Sandberg et al., Graphene-flakes printed wideband elliptical dipole antenna for low-cost wireless communications applications. IEEE Antennas Wirel. Propag. Lett. 16, 1883–1886 (2017). https://doi.org/10.1109/LAWP.2017.2684907
I. Puchades, J.E. Rossi, C.D. Cress, E. Naglich, B.J. Landi, Carbon nanotube thin-film antennas. ACS Appl. Mater. Interfaces 8(32), 20986–20992 (2016). https://doi.org/10.1021/acsami.6b05146
X.J. Huang, T. Leng, K.H. Chang, J.C. Chen, K.S. Novoselov et al., Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Mater. 3(2), 025021 (2016). https://doi.org/10.1088/2053-1583/3/2/025021
T.A. Elwi, H.M. Al-Rizzo, D.G. Rucker, E. Dervishi, Z.R. Li et al., Multi-walled carbon nanotube-based RF antennas. Nanotechnology 21(4), 045301 (2010). https://doi.org/10.1088/0957-4484/21/4/045301
G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis et al., Microwave propagation in graphene. Appl. Phys. Lett. 95(7), 073107 (2009). https://doi.org/10.1063/1.3202413
N.A. Vacirca, J.K. McDonough, K. Jost, Y. Gogotsi, T.P. Kurzweg, Onion-like carbon and carbon nanotube film antennas. Appl. Phys. Lett. 103(7), 073301 (2013). https://doi.org/10.1063/1.4818464
P.J. Burke, S.D. Li, Z. Yu, Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotechnol. 5(4), 314–334 (2006). https://doi.org/10.1109/TNANO.2006.877430
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112
B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13(1), 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). https://doi.org/10.1002/adfm.201807398
D. Zhang, T. Liu, J. Cheng, Q. Cao, G. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11(1), 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
Y. Dai, X. Wu, Z. Liu, H.B. Zhang, Z.Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. B-Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
P. He, Z.L. Hou, W.Q. Cao, J. Yuan, M.S. Cao, Rutile TiO2 nanorod with anomalous resonance for charge storage and frequency selective absorption. Ceram. Int. 47(2), 2016–2021 (2021). https://doi.org/10.1016/j.ceramint.2020.09.033
Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12(1), 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
P. He, Z.L. Hou, K.L. Zhang, J. Li, K. Yin et al., Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52(13), 8258–8267 (2017). https://doi.org/10.1007/s10853-017-1041-6
M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), 1802479 (2018). https://doi.org/10.1002/smll.201802479
Y. Lian, B. Han, D. Liu, Y. Wang, H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12(1), 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
S.W. Shi, B.Q. Qian, X.Y. Wu, H.L. Sun, H.Q. Wang et al., Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58, 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
G.J. Hayes, J.H. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans. Antennas Propag. 60(5), 2151–2156 (2012). https://doi.org/10.1109/TAP.2012.2189698
S.H. Kang, C.W. Jung, Transparent patch antenna using metal mesh. IEEE Trans. Antennas Propag. 66(4), 2095–2100 (2018). https://doi.org/10.1109/TAP.2018.2804622
B. Aissa, M. Nedil, M.A. Habib, E. Haddad, W. Jamroz et al., Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency. Appl. Phys. Lett. 103(6), 063101 (2013). https://doi.org/10.1063/1.4817861
G.S. Gund, M.G. Jung, K.Y. Shin, H.S. Park, Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems. ACS Nano 13(12), 14114–14121 (2019). https://doi.org/10.1021/acsnano.9b06732
S. Hong, Y. Kim, C.W. Jung, Transparent microstrip patch antennas with multilayer and metal-mesh films. IEEE Antennas Wirel. Propag. Lett. 16, 772–775 (2017). https://doi.org/10.1109/LAWP.2016.2602389
G.L. Huang, J.J. Liang, L.Y. Zhao, D.P. He, C.Y.D. Sim, Package-in-dielectric liquid patch antenna based on liquid metal alloy. IEEE Antennas Wirel. Propag. Lett. 18(11), 2360–2364 (2019). https://doi.org/10.1109/LAWP.2019.2932048
E.A. Bengio, D. Senic, L.W. Taylor, R.J. Headrick, M. King et al., Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 114(20), 203102 (2019). https://doi.org/10.1063/1.5093327
H.A. Elmobarak, S.K.A. Rahim, M. Abedian, P.J. Soh, G.A.E. Vandenbosch et al., Assessment of multilayered graphene technology for flexible antennas at microwave frequencies. Microw. Opt. Technol. Lett. 59(10), 2604–2610 (2017). https://doi.org/10.1002/mop.30783
Y.K. Kim, Y. Lee, K.Y. Shin, J. Jang, Highly omnidirectional and frequency tunable multilayer graphene-based monopole patch antennas. J. Mater. Chem. C 7(26), 7915–7921 (2019). https://doi.org/10.1039/c9tc02454a
H. Saghlatoon, L. Sydanheimo, L. Ukkonen, M. Tentzeris, Optimization of inkjet printing of patch antennas on low-cost fibrous substrates. IEEE Antennas Wirel. Propag. Lett. 13, 915–918 (2014). https://doi.org/10.1109/LAWP.2014.2322572
L.N. Song, A.C. Myers, J.J. Adams, Y. Zhu, Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6(6), 4248–4253 (2014). https://doi.org/10.1021/am405972e
R.B.V.B. Simorangkir, Y. Yang, L. Matekovits, K.P. Esselle, Dual-band dual-mode textile antenna on PDMS substrate for body-centric communications. IEEE Antennas Wirel. Propag. Lett. 16, 677–680 (2017). https://doi.org/10.1109/LAWP.2016.2598729
M. Rizwan, M.W.A. Khan, L. Sydanheimo, J. Virkki, L. Ukkonen, Flexible and stretchable brush-painted wearable antenna on a three-dimensional (3-D) printed substrate. IEEE Antennas Wirel. Propag. Lett. 16, 3108–3112 (2017). https://doi.org/10.1109/LAWP.2017.2763743
A. Razaq, A.A. Khan, U. Shakir, A. Arshad, Next generation flexible antennas for radio frequency applications. Trans. Electr. Electron. Mater. 19(5), 311–318 (2018). https://doi.org/10.1007/s42341-018-0051-7
L. Li, S. Zhao, X.J. Luo, H.B. Zhang, Z.Z. Yu, Smart MXene-based janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon 175, 594–602 (2021). https://doi.org/10.1016/j.carbon.2020.10.090
D. Nepal, W.J. Kennedy, R. Pachter, R.A. Vaia, Toward architected nanocomposites: MXenes and beyond. ACS Nano 15, 21–28 (2021). https://doi.org/10.1021/acsnano.0c09834
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30(10), 1908299 (2020). https://doi.org/10.1002/adfm.201908299
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang et al., Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11(13), 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95(16), 163108 (2009). https://doi.org/10.1063/1.3250170
M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen et al., Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949–6956 (2012). https://doi.org/10.1021/am3021069
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3(38), 10017–10022 (2015). https://doi.org/10.1039/c5tc02185e
M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
A. Sarycheva, A. Polemi, Y.L. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4(9), eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
Y. Li, X. Tian, S.P. Gao, L. Jing, K.R. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
M.K. Han, Y.Q. Liu, R. Rakhmanov, C. Israel, M.A. Tajin et al., Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33(1), 2003225 (2021). https://doi.org/10.1002/adma.202003225
X. Liu, J. Wu, J. He, L. Zhang, Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017). https://doi.org/10.1016/j.matlet.2017.06.101
S. Hu, S. Li, W. Xu, J. Zhang, Y. Zhou et al., Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceram. Int. 45(16), 19902–19909 (2019). https://doi.org/10.1016/j.ceramint.2019.06.246
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
X.L. Li, X.W. Yin, S. Liang, M.H. Li, L.F. Cheng et al., 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
R.H. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
K. Rajavel, S.B. Luo, Y.J. Wan, X.C. Yu, Y.G. Hu et al., 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. A: Appl. Sci. Manufac. 129, 105693 (2020). https://doi.org/10.1016/j.compositesa.2019.105693
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. B-Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
B. Ji, S.W. Fan, X. Ma, K.Y. Hu, L. Wang et al., Electromagnetic shielding behavior of heat-treated Ti3C2Tx MXene accompanied by structural and phase changes. Carbon 165, 150–162 (2020). https://doi.org/10.1016/j.carbon.2020.04.041
L.Y. Liang, G.J. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
K. Rajavel, Y.G. Hu, P.L. Zhu, R. Sun, C.P. Wong, MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 399, 125791 (2020). https://doi.org/10.1016/j.cej.2020.125791
P. Song, H. Qiu, L. Wang, X.Y. Liu, Y.L. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
K. Raagulan, R. Braveenth, B.M. Kim, K.J. Lim, S.B. Lee et al., An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free-standing and thermally conductive composite from MXene-PAT-poly(p-aminophenol)-polyaniline co-polymer. RSC Adv. 10(3), 1613–1633 (2020). https://doi.org/10.1039/c9ra09522e
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
M.K. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
F. Xie, F.F. Jia, L.H. Zhuo, Z.Q. Lu, L.M. Si et al., Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11(48), 23382–23391 (2019). https://doi.org/10.1039/c9nr07331k
C.X. Weng, T.L. Xing, H. Jin, G.R. Wang, Z.H. Dai et al., Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. A: Appl. Sci. Manuf. 135, 105927 (2020). https://doi.org/10.1016/j.compositesa.2020.105927
C.X. Lei, Y.Z. Zhang, D.Y. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
H.W. Wei, M.Q. Wang, W.H. Zheng, Z.X. Jiang, Y.D. Huang, 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 46(5), 6199–6204 (2020). https://doi.org/10.1016/j.ceramint.2019.11.087
Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
C. Cui, C. Xiang, L. Geng, X.X. Lai, R.H. Guo et al., Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloy Compd. 788, 1246–1255 (2019). https://doi.org/10.1016/j.jallcom.2019.02.294
Q.F. Zhou, K.P. Qian, J.H. Fang, M. Miao, S.M. Cao et al., UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 134, 105899 (2020). https://doi.org/10.1016/j.compositesa.2020.105899
W. Xin, G.Q. Xi, W.T. Cao, C. Ma, T. Liu et al., Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic interference shielding. RSC Adv. 9(51), 29636–29644 (2019). https://doi.org/10.1039/c9ra06399d
W.T. Cao, C. Ma, S. Tan, M.G. Ma, P.B. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
P. He, M.S. Cao, Y.Z. Cai, J.C. Shu, W.Q. Cao et al., Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157, 80–89 (2020). https://doi.org/10.1016/j.carbon.2019.10.009
M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
R.T. Liu, M. Miao, Y.H. Li, J.F. Zhang, S.M. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
J.Q. Luo, S. Zhao, H.B. Zhang, Z.M. Deng, L.L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
S.J. Wang, D.S. Li, L. Jiang, Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 6(19), 1900961 (2019). https://doi.org/10.1002/admi.201900961
Z.H. Zhou, J.Z. Liu, X.X. Zhang, D. Tian, Z.Y. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6(6), 1802040 (2019). https://doi.org/10.1002/admi.201802040
Z.X. Liu, W.Y. Wang, J.J. Tan, J. Liu, M.F. Zhu et al., Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 8(21), 7170–7180 (2020). https://doi.org/10.1039/d0tc01249a
X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li et al., Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
F. Liu, Y.C. Li, S. Hao, Y. Cheng, Y.H. Zhan et al., Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd. Polym. 243, 116467 (2020). https://doi.org/10.1016/j.carbpol.2020.116467
Y. Zhang, W.H. Cheng, W.X. Tian, J.Y. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12(5), 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
G.M. Weng, J.Y. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan et al., Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
J. Liu, Z.S. Liu, H.B. Zhang, W. Chen, Z.F. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
X.M. Fan, M.H. Li, X. Li, F. Ye, J.M. Xue et al., Electromagnetic interference shielding Ti3C2Tx-bonded carbon black films with enhanced absorption performance. Chin. Chem. Lett. 31(4), 1026–1029 (2020). https://doi.org/10.1016/j.cclet.2020.01.030
Z.S. Liu, Y. Zhang, H.B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
X. Feng, J. Ning, B.Y. Wang, H.B. Guo, M.Y. Xia et al., Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy 72, 104741 (2020). https://doi.org/10.1016/j.nanoen.2020.104741
M. Miao, R.T. Liu, S. Thaiboonrod, L.Y. Shi, S.M. Cao et al., Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8(9), 3120–3126 (2020). https://doi.org/10.1039/c9tc06361g
L. Li, Y.X. Cao, X.Y. Liu, J.F. Wang, Y.Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L. Wang, H. Qiu, P. Song, Y.L. Zhang, Y.J. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. A: Appl. Sci. Manufac. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
H.Y. Yin, L.L. Bi, Z. Wu, G.X. Wang, M. Li et al., 2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space. Nano Futur. 4(3), 035002 (2020). https://doi.org/10.1088/2399-1984/ab92f5
X.Y. Wu, B.Y. Han, H.B. Zhang, X. Xie, T.X. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
M.K. Han, X.W. Yin, K. Hantanasirisakul, X.L. Li, A. Iqbal et al., Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang et al., Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
Z.H. Zeng, C.X. Wang, G. Siqueira, D.X. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim et al., Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046–38054 (2019). https://doi.org/10.1021/acsami.9b12550
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ‘‘mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
L. Geng, P.X. Zhu, Y.J. Wei, R.H. Guo, C. Xiang et al., A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose 26(4), 2833–2847 (2019). https://doi.org/10.1007/s10570-019-02284-5
X.S. Zhang, X.F. Wang, Z.W. Lei, L.L. Wang, M.W. Tian et al., Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 12(12), 14459–14467 (2020). https://doi.org/10.1021/acsami.0c01182
W.H. Cheng, Y. Zhang, W.X. Tian, J.J. Liu, J.Y. Lu et al., Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding. Ind. Eng. Chem. Res. 59(31), 14025–14036 (2020). https://doi.org/10.1021/acs.iecr.0c02618
D.W. Hu, X.Y. Huang, S.T. Li, P.K. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie et al., Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019). https://doi.org/10.1002/adfm.201806819
W.J. Yuan, J.Z. Yang, F.X. Yin, Y.B. Li, Y. Ye, Flexible and stretchable MXene/polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
G. Yin, Y. Wang, W. Wang, D. Yu, Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloid. Surface. A 601, 125047 (2020). https://doi.org/10.1016/j.colsurfa.2020.125047
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. B-Eng. 198, 108250 (2020). https://doi.org/10.1016/j.compositesb.2020.108250
Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42(14), 16412–16416 (2016). https://doi.org/10.1016/j.ceramint.2016.07.150
W.L. Feng, H. Luo, Y. Wang, S.F. Zeng, L.W. Deng et al., Ti3C2 MXene: a promising microwave absorbing material. RSC Adv. 8(5), 2398–2403 (2018). https://doi.org/10.1039/c7ra12616f
H. Luo, W.L. Feng, C.W. Liao, L.W. Deng, S. Liu et al., Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. J. Appl. Phys. 123(10), 104103 (2018). https://doi.org/10.1063/1.5008323
Y. Tong, M. He, Y.M. Zhou, X. Zhong, L.D. Fan et al., Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time. J. Mater. Sci Mater. El. 29(10), 8078–8088 (2018). https://doi.org/10.1007/s10854-018-8814-9
B.B. Fan, N. Li, B.Z. Dai, S.Y. Shang, L. Guan et al., Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Adv. Powder Technol. 31(2), 808–815 (2020). https://doi.org/10.1016/j.apt.2019.11.035
G.Z. Cui, X.D. Sun, G.Y. Zhang, Z. Zhang, H. Liu et al., Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl + LiF etchant with diverse etching times. Mater. Lett. 252, 8–10 (2019). https://doi.org/10.1016/j.matlet.2019.05.053
G.F. Xu, X.X. Wang, S.D. Gong, S. Wei, J.Q. Liu et al., Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 29(35), 355201 (2018). https://doi.org/10.1088/1361-6528/aac8f6
Z.Y. Jin, Y.F. Fang, X.X. Wang, G.F. Xu, M.L. Liu et al., Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J. Colloid. Interfaces Sci. 537, 306–315 (2019). https://doi.org/10.1016/j.jcis.2018.11.034
M.K. Han, X.W. Yin, X.L. Li, B. Anasori, L.T. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
X.L. Li, X.W. Yin, M.K. Han, C.Q. Song, X.N. Sun et al., A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
B.B. Fan, S.Y. Shang, B.Z. Dai, B. Zhao, N. Li et al., 2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption. Ceram. Int. 46(10), 17085–17092 (2020). https://doi.org/10.1016/j.ceramint.2020.04.004
P.J. Liu, Z.J. Yao, V.M.H. Ng, J.T. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A: Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
G.L. Zhao, H.P. Lv, Y. Zhou, X.T. Zheng, C. Wu et al., Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 10(49), 42925–42932 (2018). https://doi.org/10.1016/10.1021/acsami.8b16727
X. Zhang, H.H. Wang, R. Hu, C.Y. Huang, W.J. Zhong et al., Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 484, 383–391 (2019). https://doi.org/10.1016/j.apsusc.2019.03.264
X. Li, M. Zhang, W.B. You, K. Pei, Q.W. Zeng et al., Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. Appl. Mater. Interfaces 12(15), 18138–18147 (2020). https://doi.org/10.1021/acsami.0c00935
S.Q. Yan, C. Cao, J. He, L.H. He, Z.W. Qu et al., Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci. Mater. El. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10854-019-00959-0
N. Li, X. Xie, H.X. Lu, B.B. Fan, X.H. Wang et al., Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 45(17), 22880–22888 (2019). https://doi.org/10.1016/j.ceramint.2019.07.331
X. Li, W.B. You, L. Wang, J.W. Liu, Z.C. Wu et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. Appl. Mater. Interfaces 11(47), 44536–44544 (2019). https://doi.org/10.1021/acsami.9b11861
L.Y. Liang, R.S. Yang, G.J. Han, Y.Z. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. Appl. Mater. Interfaces 12(2), 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
Y. Liu, S. Zhang, X.L. Su, J. Xu, Y.Y. Li, Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci. 55(24), 10339–10350 (2020). https://doi.org/10.1007/s10853-020-04739-8
R.X. Deng, B.B. Chen, H.G. Li, K. Zhang, T. Zhang et al., MXene/Co3O4 composite material: stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 488, 921–930 (2019). https://doi.org/10.1016/j.apsusc.2019.05.058
C.L. Zhou, X.X. Wang, H. Luo, L.W. Deng, S.L. Wang et al., Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 494, 540–550 (2019). https://doi.org/10.1016/j.apsusc.2019.07.208
J. He, D.Y. Shan, S.Q. Yan, H. Luo, C. Cao et al., Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 492, 165639 (2019). https://doi.org/10.1016/j.jmmm.2019.165639
Y.M. Lei, Z.J. Yao, S.Z. Li, J.T. Zhou, A.A. Haidry et al., Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 46(8), 10006–10015 (2020). https://doi.org/10.1016/j.ceramint.2019.12.189
T.Q. Hou, B.B. Wang, M.L. Ma, A.L. Feng, Z.Y. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. B-Eng. 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
H.B. Yang, J.J. Dai, X. Liu, Y. Lin, J.J. Wang et al., Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179–186 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.057
M. Li, M.K. Han, J. Zhou, Q.H. Deng, X.B. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617
X.L. Li, X.W. Yin, M.K. Han, C.Q. Song, H.L. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5(16), 4068–4074 (2017). https://doi.org/10.1039/c6tc05226f
B.Z. Dai, B. Zhao, X. Xie, T.T. Su, B.B. Fan et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 6(21), 5690–5697 (2018). https://doi.org/10.1039/c8tc01404c
Y.C. Qing, H.Y. Nan, F. Luo, W.C. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv. 7(44), 27755–27761 (2017). https://doi.org/10.1039/c7ra02417g
Y. Qian, H.W. Wei, J.D. Dong, Y.Z. Du, X.J. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757–10762 (2017). https://doi.org/10.1016/j.ceramint.2017.05.082
T.S. Liu, N. Liu, Q.D. An, Z.Y. Xiao, S.R. Zhai et al., Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J. Alloy. Compd. 802, 445–457 (2019). https://doi.org/10.1016/j.jallcom.2019.06.243
Y. Tong, M. He, Y.M. Zhou, X. Zhong, L.D. Fan et al., Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Appl. Surf. Sci. 434, 283–293 (2018). https://doi.org/10.1016/j.apsusc.2017.10.140
H.Y. Wang, H.B. Ma, The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J. Mater. Sci. Mater. El. 30(16), 15250–15256 (2019). https://doi.org/10.1007/s10854-019-01897-7
H.W. Wei, J.D. Dong, X.J. Fang, W.H. Zheng, Y.T. Sun et al., Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos. Sci. Technol. 169, 52–59 (2019). https://doi.org/10.1016/j.compscitech.2018.10.016
S.W. Song, J.Q. Liu, C.L. Zhou, Q. Jia, H. Luo et al., Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloy. Compd. 843, 155713 (2020). https://doi.org/10.1016/j.jallcom.2020.155713
X.L. Li, X.W. Yin, C.Q. Song, M.K. Han, H.L. Xu et al., Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
X.L. Li, X.W. Yin, H.L. Xu, M.K. Han, M.H. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
Y. Wang, J. Yang, Z.F. Chen, Y.L. Hu, A new flexible and ultralight carbon foam/Ti3C2TX MXene hybrid for high-performance electromagnetic wave absorption. RSC Adv. 9(70), 41038–41049 (2019). https://doi.org/10.1039/c9ra09817h
M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang et al., Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. Appl. Mater. Interfaces 12(29), 33128–33138 (2020). https://doi.org/10.1021/acsami.0c09726
Y. Jiang, X. Xie, Y. Chen, Y.J. Liu, R. Yang et al., Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 6(32), 8679–8687 (2018). https://doi.org/10.1039/c8tc02900h
Y. Tong, M. He, Y.M. Zhou, S.X. Nie, X. Zhong et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustain. Chem. Eng. 6(7), 8212–8222 (2018). https://doi.org/10.1021/acssuschemeng.7b04883
L.B. Wang, H. Liu, X.L. Lv, G.Z. Cui, G.X. Gu, Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloy. Compd. 828, 154251 (2020). https://doi.org/10.1016/j.jallcom.2020.154251
S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14(7), 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
H. Koga, T. Inui, I. Miyamoto, T. Sekiguchi, M. Nogi et al., A high-sensitivity printed antenna prepared by rapid low-temperature sintering of silver ink. RSC Adv. 6(87), 84363–84368 (2016). https://doi.org/10.1039/c6ra19687j
D.Y. Shin, Y. Lee, C.H. Kim, Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films 517(21), 6112–6118 (2009). https://doi.org/10.1016/j.tsf.2009.05.019
A. Chauraya, W.G. Whittow, J.C. Vardaxoglou, Y. Li, R. Torah et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7(9), 760–767 (2013). https://doi.org/10.1049/iet-map.2013.0076
Y. Bayram, Y.J. Zhou, B.S. Shim, S.M. Xu, J.A. Zhu et al., E-textile conductors and polymer composites for conformal lightweight antennas. IEEE Trans. Antennas. Propag. 58(8), 2732–2736 (2010). https://doi.org/10.1109/TAP.2010.2050439
Q.Y. Tang, Y.M. Pan, Y.C. Chan, K.W. Leung, Frequency-tunable soft composite antennas for wireless sensing. Sens. Actuat. A Phys. 179, 137–145 (2012). https://doi.org/10.1016/j.sna.2012.03.024
Y. Tikhov, J.H. Won, Impedance-matching arrangement for microwave transponder operating over plurality of bent installations of antenna. Electron. Lett. 40(10), 574–575 (2004). https://doi.org/10.1049/el:20040413
J.S. Lee, M. Kim, C. Lee, S. Cho, J. Oh et al., Platinum-decorated reduced graphene oxide/polyaniline:poly (4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications. Nanoscale 7(8), 3668–3674 (2015). https://doi.org/10.1039/c4nr06189f