Oxidative Molecular Layer Deposition Tailoring Eco-Mimetic Nanoarchitecture to Manipulate Electromagnetic Attenuation and Self-Powered Energy Conversion
Corresponding Author: Mao‑Sheng Cao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 142
Abstract
Advanced electromagnetic devices, as the pillars of the intelligent age, are setting off a grand transformation, redefining the structure of society to present pluralism and diversity. However, the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of "Big Data". Herein, drawing wisdom and inspiration from nature, an eco-mimetic nanoarchitecture is constructed for the first time, highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response. Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition (oMLD), providing a new cognition to frequency-selective microwave absorption. The optimal reflection loss reaches ≈ − 58 dB, and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles. Meanwhile, a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption, covering almost the entire K and Ka bands. More importantly, an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture, which can convert electromagnetic radiation into electric energy for recycling. This work offers a new insight into electromagnetic protection and waste energy recycling, presenting a broad application prospect in radar stealth, information communication, aerospace engineering, etc.
Highlights:
1 Drawing wisdom and inspiration from nature, an eco-mimetic nanoarchitecture is constructed, featuring tunable electromagnetic properties and high-efficiency energy attenuation.
2 Through in-depth insight into the microstructure, the material basis of electromagnetic response is clearly revealed to establish an intrinsic connection between microscopic electronic structure and macroscopic electromagnetic properties.
3 A creative self-powered energy conversion device is constructed, with the integrated functions including electromagnetic protection and waste energy recycling, which offers a new horizon for the fields of energy and environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Horodynski, M. Kühmayer, C. Ferise, S. Rotter, M. Davy, Anti-reflection structure for perfect transmission through complex media. Nature 607(7918), 281–286 (2022). https://doi.org/10.1038/s41586-022-04843-6
- J. Wang, X.Y. Wu, Y.J. Wang, W.Y. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2023). https://doi.org/10.1007/s40820-022-00982-7
- Y.Q. Zheng, Y.X. Liu, D.L. Zhong, S. Nikzad, S.H. Liu et al., Monolithic optical microlithography of high-density elastic circuits. Science 373(6550), 88–94 (2021). https://doi.org/10.1126/science.abh3551
- Z.L. Lu, G. Wang, W.C. Bao, J.L. Li, L.H. Li et al., Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13(9), 2938–2948 (2020). https://doi.org/10.1039/d0ee02104k
- L.J. Yin, Y. Zhao, J. Zhu, M.H. Yang, H.C. Zhao et al., Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 12(1), 4517 (2021). https://doi.org/10.1038/s41467-021-24851-w
- J. Bae, M.S. Kim, T. Oh, B.L. Suh, T.G. Yun et al., Towards watt-scale hydroelectric energy harvesting by Ti3C2TX-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 15(1), 123–135 (2022). https://doi.org/10.1039/d1ee00859e
- J. Xu, L.N. Liu, X.C. Zhang, B. Li, C.L. Zhu et al., Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem. Eng. J. 425, 131700 (2021). https://doi.org/10.1016/j.cej.2021.131700
- Y.L. Liu, Y.H. Chen, F. Wang, Y.J. Cai, C.H. Liang et al., Robust far-field imaging by spatial coherence engineering. Opto-Electronic Adv. 4(12), 210027 (2021). https://doi.org/10.29026/oea.2021.210027
- G.S. Gund, M.G. Jung, K.Y. Shin, H.S. Park, Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems. ACS Nano 13(12), 14114–14121 (2019). https://doi.org/10.1021/acsnano.9b06732
- L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- J. Xu, X. Zhang, Z.B. Zhao, H. Hu, B. Li et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 17(33), 2102032 (2021). https://doi.org/10.1002/smll.202102032
- Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- B.T. Yang, J.F. Fang, C.Y. Xu, H. Cao, R.X. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14(1), 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
- C. Wu, J. Wang, X.H. Zhang, L.X. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15(1), 7 (2023). https://doi.org/10.1007/s40820-022-00963-w
- Y. Wu, L. Chen, Y.X. Han, P.B. Liu, H.H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5522-4
- W.H. Huang, Q. Qiu, X.F. Yang, S.W. Zuo, J.N. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14(1), 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
- R. Zhou, Y.S. Wang, Z.Y. Liu, Y.Q. Pang, J.X. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14(1), 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
- X.C. Zhang, B. Li, J. Xu, X. Zhang, Y.A. Shi et al., Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 33(7), 2210456 (2023). https://doi.org/10.1002/adfm.202210456
- A.M. Abraham, K. Thiel, M. Shakouri, Q.F. Xiao, A. Paterson et al., Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium-sulfur batteries. Adv. Energy Mater. 12(34), 2201494 (2022). https://doi.org/10.1002/aenm.202201494
- J.D. Zhou, W.J. Zhang, Y.C. Lin, J. Cao, Y. Zhou et al., Heterodimensional superlattice with in-plane anomalous hall effect. Nature 609(7925), 46–51 (2022). https://doi.org/10.1038/s41586-022-05031-2
- Z.F. Wang, F. Liu, Manipulation of electron beam propagation by hetero-dimensional graphene junctions. ACS Nano 4(4), 2459–2465 (2010). https://doi.org/10.1021/nn1001722
- M.S. Ergoktas, G. Bakan, E. Kovalska, L.W.L. Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15(7), 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
- X.C. Zhang, Y.A. Shi, J. Xu, Q.Y. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14(1), 27 (2021). https://doi.org/10.1007/s40820-021-00773-6
- X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
- O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci et al., Graphene-based adaptive thermal camouflage. Nano Lett. 18(7), 4541–4548 (2018). https://doi.org/10.1021/acs.nanolett.8b01746
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30(10), 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms7628
- O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
- S.E. Atanasov, M.D. Losego, B. Gong, E. Sachet, J.P. Maria et al., Highly conductive and conformal poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via oxidative molecular layer deposition. Chem. Mater. 26(11), 3471–3478 (2014). https://doi.org/10.1021/cm500825b
- L.L. Yan, X.X. Wang, S.C. Zhao, Y.Q. Li, Z. Gao et al., Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl. Mater. Interf. 9(12), 11116–11125 (2017). https://doi.org/10.1021/acsami.6b16864
- S.G. Im, K.K. Gleason, Systematic control of the electrical conductivity of poly(3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition. Macromolecules 40(18), 6552–6556 (2007). https://doi.org/10.1021/ma0628477
- J.M. Jeon, T.L. Kim, Y.S. Shim, Y.R. Choi, S. Choi et al., Microscopic evidence for strong interaction between Pd and graphene oxide that results in metal-decoration-induced reduction of graphene oxide. Adv. Mater. 29(15), 1605929 (2017). https://doi.org/10.1002/adma.201605929
- L. Guo, F. Liang, X.G. Wen, S.H. Yang, L. He et al., Uniform magnetic chains of hollow cobalt mesospheres from one-pot synthesis and their assembly in solution. Adv. Funct. Mater. 17(3), 425–430 (2007). https://doi.org/10.1002/adfm.200600415
- Z.Y. Shao, Q. Zhu, Y. Sun, Y. Zhang, Y.L. Jiang et al., Phase-reconfiguration-induced NiS/NiFe2O4 composite for performance-enhanced zinc-air batteries. Adv. Mater. 34(15), 2110172 (2022). https://doi.org/10.1002/adma.202110172
- J. Ma, D. Alfè, A. Michaelides, E. Wang, Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80(3), 033407 (2009). https://doi.org/10.1103/PhysRevB.80.033407
- W. Zhang, W.C. Lu, H.X. Zhang, K.M. Ho, C.Z. Wang, Tight-binding calculation studies of vacancy and adatom defects in graphene. J. Phys. Condens. Matter 28(11), 115001 (2016). https://doi.org/10.1088/0953-8984/28/11/115001
- M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010). https://doi.org/10.1038/nmat2858
- C. Andreasen, T.Y. Hao, J. Hatoum, Z.M. Hossain, Strain induced second-order Jahn-Teller reconstruction and magnetic moment modulation at monovacancy in graphene. J. Appl. Phys. 130(3), 034303 (2021). https://doi.org/10.1063/5.0050688
- J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
- J. Wang, S.Z. Wu, J. Ma, L.S. Xie, C.S. Wang et al., Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film. Appl. Phys. Lett. 112(7), 072408 (2018). https://doi.org/10.1063/1.5017687
- L.H. Wu, X. Liu, G.P. Wan, X.G. Peng, Z.Y. He et al., Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers. Chem. Eng. J. 448, 137600 (2022). https://doi.org/10.1016/j.cej.2022.137600
- Y. Wu, Y. Zhao, M. Zhou, S.J. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
References
M. Horodynski, M. Kühmayer, C. Ferise, S. Rotter, M. Davy, Anti-reflection structure for perfect transmission through complex media. Nature 607(7918), 281–286 (2022). https://doi.org/10.1038/s41586-022-04843-6
J. Wang, X.Y. Wu, Y.J. Wang, W.Y. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15(1), 11 (2023). https://doi.org/10.1007/s40820-022-00982-7
Y.Q. Zheng, Y.X. Liu, D.L. Zhong, S. Nikzad, S.H. Liu et al., Monolithic optical microlithography of high-density elastic circuits. Science 373(6550), 88–94 (2021). https://doi.org/10.1126/science.abh3551
Z.L. Lu, G. Wang, W.C. Bao, J.L. Li, L.H. Li et al., Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13(9), 2938–2948 (2020). https://doi.org/10.1039/d0ee02104k
L.J. Yin, Y. Zhao, J. Zhu, M.H. Yang, H.C. Zhao et al., Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 12(1), 4517 (2021). https://doi.org/10.1038/s41467-021-24851-w
J. Bae, M.S. Kim, T. Oh, B.L. Suh, T.G. Yun et al., Towards watt-scale hydroelectric energy harvesting by Ti3C2TX-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 15(1), 123–135 (2022). https://doi.org/10.1039/d1ee00859e
J. Xu, L.N. Liu, X.C. Zhang, B. Li, C.L. Zhu et al., Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem. Eng. J. 425, 131700 (2021). https://doi.org/10.1016/j.cej.2021.131700
Y.L. Liu, Y.H. Chen, F. Wang, Y.J. Cai, C.H. Liang et al., Robust far-field imaging by spatial coherence engineering. Opto-Electronic Adv. 4(12), 210027 (2021). https://doi.org/10.29026/oea.2021.210027
G.S. Gund, M.G. Jung, K.Y. Shin, H.S. Park, Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems. ACS Nano 13(12), 14114–14121 (2019). https://doi.org/10.1021/acsnano.9b06732
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
J. Xu, X. Zhang, Z.B. Zhao, H. Hu, B. Li et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 17(33), 2102032 (2021). https://doi.org/10.1002/smll.202102032
Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
B.T. Yang, J.F. Fang, C.Y. Xu, H. Cao, R.X. Zhang et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 14(1), 170 (2022). https://doi.org/10.1007/s40820-022-00920-7
C. Wu, J. Wang, X.H. Zhang, L.X. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15(1), 7 (2023). https://doi.org/10.1007/s40820-022-00963-w
Y. Wu, L. Chen, Y.X. Han, P.B. Liu, H.H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5522-4
W.H. Huang, Q. Qiu, X.F. Yang, S.W. Zuo, J.N. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14(1), 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
R. Zhou, Y.S. Wang, Z.Y. Liu, Y.Q. Pang, J.X. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14(1), 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
X.C. Zhang, B. Li, J. Xu, X. Zhang, Y.A. Shi et al., Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 33(7), 2210456 (2023). https://doi.org/10.1002/adfm.202210456
A.M. Abraham, K. Thiel, M. Shakouri, Q.F. Xiao, A. Paterson et al., Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium-sulfur batteries. Adv. Energy Mater. 12(34), 2201494 (2022). https://doi.org/10.1002/aenm.202201494
J.D. Zhou, W.J. Zhang, Y.C. Lin, J. Cao, Y. Zhou et al., Heterodimensional superlattice with in-plane anomalous hall effect. Nature 609(7925), 46–51 (2022). https://doi.org/10.1038/s41586-022-05031-2
Z.F. Wang, F. Liu, Manipulation of electron beam propagation by hetero-dimensional graphene junctions. ACS Nano 4(4), 2459–2465 (2010). https://doi.org/10.1021/nn1001722
M.S. Ergoktas, G. Bakan, E. Kovalska, L.W.L. Fevre, R.P. Fields et al., Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics 15(7), 493–498 (2021). https://doi.org/10.1038/s41566-021-00791-1
X.C. Zhang, Y.A. Shi, J. Xu, Q.Y. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14(1), 27 (2021). https://doi.org/10.1007/s40820-021-00773-6
X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci et al., Graphene-based adaptive thermal camouflage. Nano Lett. 18(7), 4541–4548 (2018). https://doi.org/10.1021/acs.nanolett.8b01746
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30(10), 1908299 (2020). https://doi.org/10.1002/adfm.201908299
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015). https://doi.org/10.1038/ncomms7628
O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
S.E. Atanasov, M.D. Losego, B. Gong, E. Sachet, J.P. Maria et al., Highly conductive and conformal poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via oxidative molecular layer deposition. Chem. Mater. 26(11), 3471–3478 (2014). https://doi.org/10.1021/cm500825b
L.L. Yan, X.X. Wang, S.C. Zhao, Y.Q. Li, Z. Gao et al., Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl. Mater. Interf. 9(12), 11116–11125 (2017). https://doi.org/10.1021/acsami.6b16864
S.G. Im, K.K. Gleason, Systematic control of the electrical conductivity of poly(3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition. Macromolecules 40(18), 6552–6556 (2007). https://doi.org/10.1021/ma0628477
J.M. Jeon, T.L. Kim, Y.S. Shim, Y.R. Choi, S. Choi et al., Microscopic evidence for strong interaction between Pd and graphene oxide that results in metal-decoration-induced reduction of graphene oxide. Adv. Mater. 29(15), 1605929 (2017). https://doi.org/10.1002/adma.201605929
L. Guo, F. Liang, X.G. Wen, S.H. Yang, L. He et al., Uniform magnetic chains of hollow cobalt mesospheres from one-pot synthesis and their assembly in solution. Adv. Funct. Mater. 17(3), 425–430 (2007). https://doi.org/10.1002/adfm.200600415
Z.Y. Shao, Q. Zhu, Y. Sun, Y. Zhang, Y.L. Jiang et al., Phase-reconfiguration-induced NiS/NiFe2O4 composite for performance-enhanced zinc-air batteries. Adv. Mater. 34(15), 2110172 (2022). https://doi.org/10.1002/adma.202110172
J. Ma, D. Alfè, A. Michaelides, E. Wang, Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80(3), 033407 (2009). https://doi.org/10.1103/PhysRevB.80.033407
W. Zhang, W.C. Lu, H.X. Zhang, K.M. Ho, C.Z. Wang, Tight-binding calculation studies of vacancy and adatom defects in graphene. J. Phys. Condens. Matter 28(11), 115001 (2016). https://doi.org/10.1088/0953-8984/28/11/115001
M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010). https://doi.org/10.1038/nmat2858
C. Andreasen, T.Y. Hao, J. Hatoum, Z.M. Hossain, Strain induced second-order Jahn-Teller reconstruction and magnetic moment modulation at monovacancy in graphene. J. Appl. Phys. 130(3), 034303 (2021). https://doi.org/10.1063/5.0050688
J.C. Shu, M.S. Cao, Y.L. Zhang, Y.Z. Wang, Q.L. Zhao et al., Atomic-molecular engineering tailoring graphene microlaminates to tune multifunctional antennas. Adv. Funct. Mater. 33, 2212379 (2023). https://doi.org/10.1002/adfm.202212379
J. Wang, S.Z. Wu, J. Ma, L.S. Xie, C.S. Wang et al., Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film. Appl. Phys. Lett. 112(7), 072408 (2018). https://doi.org/10.1063/1.5017687
L.H. Wu, X. Liu, G.P. Wan, X.G. Peng, Z.Y. He et al., Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers. Chem. Eng. J. 448, 137600 (2022). https://doi.org/10.1016/j.cej.2022.137600
Y. Wu, Y. Zhao, M. Zhou, S.J. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14(1), 171 (2022). https://doi.org/10.1007/s40820-022-00906-5