Lightweight and High-Performance Microwave Absorber Based on 2D WS2–RGO Heterostructures
Corresponding Author: Mao‑Sheng Cao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 38
Abstract
Two-dimensional (2D) nanomaterials are categorized as a new class of microwave absorption (MA) materials owing to their high specific surface area and peculiar electronic properties. In this study, 2D WS2–reduced graphene oxide (WS2–rGO) heterostructure nanosheets were synthesized via a facile hydrothermal process; moreover, their dielectric and MA properties were reported for the first time. Remarkably, the maximum reflection loss (RL) of the sample–wax composites containing 40 wt% WS2–rGO was − 41.5 dB at a thickness of 2.7 mm; furthermore, the bandwidth where RL < − 10 dB can reach up to 13.62 GHz (4.38–18 GHz). Synergistic mechanisms derived from the interfacial dielectric coupling and multiple-interface scattering after hybridization of WS2 with rGO were discussed to explain the drastically enhanced microwave absorption performance. The results indicate these lightweight WS2–rGO nanosheets to be potential materials for practical electromagnetic wave-absorbing applications.
Highlights:
1 WS2–rGO nanosheets with ultra-small thicknesses and ultra-lightweight, were successfully prepared by a facile hydrothermal method.
2 The WS2–rGO isomorphic heterostructures exhibited remarkable microwave absorption properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@ SiO2@TiO2 and CoNi@ Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, S. Xi, Y. Du, G. Ji, Z.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- X. Yan, D. Xue, Fabrication and microwave absorption properties of Fe0.64Ni0.36–NiFe2O4 nanocomposite. Nano-Micro Lett. 4(3), 176–179 (2012). https://doi.org/10.1007/BF03353710
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- C. Li, Q. Cao, F. Wang, Y. Xiao, Y. Li, J. Delaunay, H. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47(13), 4981–5037 (2018). https://doi.org/10.1039/C8CS00067K
- P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(8), 5536–5546 (2016). https://doi.org/10.1021/acsami.5b10511
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
- X.H. Li, J. Feng, Y.P. Du, J.T. Bai, H.M. Fan, H.L. Zhang, H. Peng, F.S. Li, One-pot synthesis of CoFe2O4/graphene oxide heterostructures and their conversion into FeCo/graphene heterostructures for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
- P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes. Electrochim. Acta 294, 383–390 (2018). https://doi.org/10.1016/j.electacta.2018.10.112
- D. Chen, Z. Wan, X. Chen, Y. Yuan, J. Zhong, Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr 6 fluorophores. J. Mater. Chem. C 4(45), 6362–6370 (2016). https://doi.org/10.1039/C6TC04036E
- X. Zhang, Y. Huang, P. Liu, Enhanced electromagnetic wave absorption properties of poly(3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). https://doi.org/10.1007/s40820-015-0067-z
- H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679–21685 (2012). https://doi.org/10.1039/C2JM34273A
- X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, M.S. Cao, L. Guo, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. RSC Adv. 6(10), 7471–7478 (2014). https://doi.org/10.1021/am500862g
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
- M. Zong, Y. Huang, N. Zhang, H.W. Wu, Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Mater. Lett. 111(15), 188–191 (2013). https://doi.org/10.1016/j.matlet.2013.08.076
- H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490–493 (2012). https://doi.org/10.1038/nnano.2012.95
- M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou, C.Z. Wang, F. Rehman, M.S. Cao, H.B. Jin, Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/c5nr04670j
- L. Bai, Y. Wang, F. Li, D. An, Z. Zhang, Y. Liu, Enhanced electromagnetic wave absorption properties of MoS2-graphene heterostructure nanosheets prepared by a hydrothermal method. J. Sol-Gel Sci. Technol. 84(1), 104–109 (2017). https://doi.org/10.1007/s10971-017-4478-9
- D.Q. Zhang, Y.X. Jia, J.Y. Cheng, S.M. Chen, J.X. Chai et al., High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 758, 62–71 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130
- Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, MoS2 based mixed-dimensional van der Waals heterostructures: a new platform for excellent and controllable microwave absorption performance. ACS Appl. Mater. Interfaces 9(39), 34243–34255 (2017). https://doi.org/10.1021/acsami.7b10114
- M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang, H.J. Yang, X.Y. Fang, J. Yuan, Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
- C.S. Rout, P.D. Joshi, R.V. Kashid, D.S. Joag, M.A. More, A.J. Simbeck, M. Washington, S.K. Nayak, D.J. Late, Superior field emission properties of layered WS2–rGO nanocomposites. Sci. Rep. 3(7476), 3282 (2013). https://doi.org/10.1038/srep03282
- J. Zhang, Q. Wang, L. Wang, X.A. Li, W. Huang, Layer-controllable WS2-reduced graphene oxide heterostructure nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 7, 10391–10397 (2015). https://doi.org/10.1039/c5nr01896j
- R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523–1530 (2012). https://doi.org/10.1021/jz300480w
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G.B. Ji, J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 161(15), 1522–1526 (2011). https://doi.org/10.1016/j.synthmet.2011.04.033
- D.C. Tiwari, P. Dipak, S.K. Dwivedi, T.C. Shami, P. Dwivedi, Py/TiO2 (np)/CNT polymer nanocomposite material for microwave absorption. J. Mater. Sci.: Mater. Electron. 29(2), 1643–1650 (2018). https://doi.org/10.1007/s10854-017-8076-y
- T.K. Zhao, C.L. Hou, H.Y. Zhang, R.X. Zhu, S.F. She, J.G. Wang, T.H. Li, Z.F. Liu, B.Q. Wei, Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, CoxNi100–x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 7(41), 17312–17319 (2015). https://doi.org/10.1039/c5nr03745j
- T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, Co/C nanoparticles with low graphitization degree: a high performance microwave absorbing material. J. Mater. Chem. C 4(8), 1727–1735 (2016). https://doi.org/10.1039/C5TC03874J
- C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys. Chem. Chem. Phys. 17(3), 2228–2234 (2015). https://doi.org/10.1039/c4cp04745a
- X.B. Li, S.W. Yang, J. Sun, P. He, X.P. Pu, G.Q. Ding, Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite. Synth. Met. 194, 52–58 (2014). https://doi.org/10.1016/j.synthmet.2014.04.012
- X. Ding, Y. Huang, S. Li, N. Zhang, J. Wang, 3D architecture reduced graphene oxide–MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Compos. A 90, 424–432 (2016). https://doi.org/10.1016/j.compositesa.2016.08.006
- S. Liu, B. Shen, Y. Niu, M. Xu, Fabrication of WS2-nanoflowers@rGO composite as an anode material for enhanced electrode performance in lithium-ion batteries. J. Colloid Interface Sci. 488, 20–25 (2017). https://doi.org/10.1016/j.jcis.2016.10.083
- T.A. Shifa, F. Wang, Z. Cheng, X. Zhan, Z. Wang, K. Liu, M. Safdaret, L. Sun, L. He, A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction. Nanoscale 7, 14760–14765 (2015). https://doi.org/10.1039/C5NR03704B
- N.T. Shelke, B.R. Karche, Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. J. Alloys Compd. 653, 298–303 (2015). https://doi.org/10.1016/j.jallcom.2015.08.255
- B. Späth, F. Kopnov, H. Cohen, A. Zak, A. Moshkovich, L. Rapoport et al., X-ray photoelectron spectroscopy and tribology studies of annealed fullerene-like WS2 nanoparticles. Phys. Status Solidi 245(9), 51–59 (2010). https://doi.org/10.1002/pssb.200779531
- Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Heterostructure of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
- Y.L. Chen, L. Song, H. Guo, Hydrothermal synthesis of tungsten disulfide/graphene composites and their oxygen reduction properties. J. Inorg. Chem. 32, 633–640 (2016). https://doi.org/10.11862/CJIC.2016.073
- X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2017). https://doi.org/10.1016/j.cej.2017.09.101
- W.L. Song, M.S. Cao, Z.L. Hou, M.M. Lu, C.Y. Wang, J. Yuan, L.Z. Fan, Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. Appl. Phys. A 116(4), 1779–1783 (2014). https://doi.org/10.1007/s00339-014-8327-1
- J.V. Mantese, A.L. Micheli, D.F. Dungan, R.G. Geyer, J. Baker-Jarvis, J. Grosvenor, Applicability of effective medium theory to ferroelectric/ferrimagnetic composites with composition and frequency–dependent complex permittivities and permeabilities. J. Appl. Phys. 79(3), 1655–1660 (1996). https://doi.org/10.1063/1.361010
- H.L. Zhu, Y.J. Bai, R. Liu, N. Lun, Y.X. Qi, F.D. Han, J.Q. Bi, Synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. J. Mater. Chem. 21(35), 13581–13587 (2011). https://doi.org/10.1039/C1JM11747E
- P.B. Liu, Y. Huang, X. Zhang, NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 112(12), 117–120 (2013). https://doi.org/10.1016/j.matlet.2013.08.126
- D.Q. Zhang, J.X. Chai, J.Y. Cheng, Y.X. Jia, X.Y. Yang, H. Wang, Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide heterostructures and MoS2-based reduced graphene oxide heterostructures with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
- N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- M.S. Cao, C. Han, X.X. Wang, M. Zhang, Y.L. Zhang, J.C. Shu, H.J. Yang, X.Y. Fang, J. Yuan, Graphene nanoheterostructure: excellent electromagnetic properties for electromagnetic wave absorbing and shielding. J. Mater. Chem. C 6, 4586–4602 (2018). https://doi.org/10.1039/c7tc05869a
- X.M. Zhang, G.B. Jin, W. Liu, X.X. Zhang, Q.W. Gao, Y.C. Li, Y.W. Du, A novel Co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016). https://doi.org/10.1039/C6TC00248J
- W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, B. Quan, Y.W. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- J.P. Wang, J. Wang, R. Xu, Y. Sun, B. Zhang, W. Chen, T. Wang, S. Yang, Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene. J. Alloys Compd. 653, 14–21 (2015). https://doi.org/10.1016/j.jallcom.2015.08.278
- B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, Y. Du, Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
- S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
- R. Mehmood, S. Nadeem, S. Masood, Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. J. Magn. Magn. Mater. 401(3), 1006–1014 (2016). https://doi.org/10.1016/j.jmmm.2015.10.102
- Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji, H.Q. Zhao, J.M. Cao, Y.W. Du, Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
- M.O. Valappil, A. Anil, M. Shaijumon, V.K. Pillai, S. Alwarappan, A single-step electrochemical synthesis of luminescent WS2 quantum dots. Chem. Eur. J. 23, 9144–9148 (2017). https://doi.org/10.1002/chem.201701277
References
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@ SiO2@TiO2 and CoNi@ Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, S. Xi, Y. Du, G. Ji, Z.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29(14), 1900163 (2019). https://doi.org/10.1002/adfm.201900163
X. Yan, D. Xue, Fabrication and microwave absorption properties of Fe0.64Ni0.36–NiFe2O4 nanocomposite. Nano-Micro Lett. 4(3), 176–179 (2012). https://doi.org/10.1007/BF03353710
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
C. Li, Q. Cao, F. Wang, Y. Xiao, Y. Li, J. Delaunay, H. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47(13), 4981–5037 (2018). https://doi.org/10.1039/C8CS00067K
P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(8), 5536–5546 (2016). https://doi.org/10.1021/acsami.5b10511
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
X.H. Li, J. Feng, Y.P. Du, J.T. Bai, H.M. Fan, H.L. Zhang, H. Peng, F.S. Li, One-pot synthesis of CoFe2O4/graphene oxide heterostructures and their conversion into FeCo/graphene heterostructures for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes. Electrochim. Acta 294, 383–390 (2018). https://doi.org/10.1016/j.electacta.2018.10.112
D. Chen, Z. Wan, X. Chen, Y. Yuan, J. Zhong, Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr 6 fluorophores. J. Mater. Chem. C 4(45), 6362–6370 (2016). https://doi.org/10.1039/C6TC04036E
X. Zhang, Y. Huang, P. Liu, Enhanced electromagnetic wave absorption properties of poly(3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). https://doi.org/10.1007/s40820-015-0067-z
H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 22(40), 21679–21685 (2012). https://doi.org/10.1039/C2JM34273A
X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, M.S. Cao, L. Guo, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. RSC Adv. 6(10), 7471–7478 (2014). https://doi.org/10.1021/am500862g
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2012). https://doi.org/10.1021/nn2024557
M. Zong, Y. Huang, N. Zhang, H.W. Wu, Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Mater. Lett. 111(15), 188–191 (2013). https://doi.org/10.1016/j.matlet.2013.08.076
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490–493 (2012). https://doi.org/10.1038/nnano.2012.95
M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou, C.Z. Wang, F. Rehman, M.S. Cao, H.B. Jin, Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7(38), 15734–15740 (2015). https://doi.org/10.1039/c5nr04670j
L. Bai, Y. Wang, F. Li, D. An, Z. Zhang, Y. Liu, Enhanced electromagnetic wave absorption properties of MoS2-graphene heterostructure nanosheets prepared by a hydrothermal method. J. Sol-Gel Sci. Technol. 84(1), 104–109 (2017). https://doi.org/10.1007/s10971-017-4478-9
D.Q. Zhang, Y.X. Jia, J.Y. Cheng, S.M. Chen, J.X. Chai et al., High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 758, 62–71 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130
Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, Y. Du, MoS2 based mixed-dimensional van der Waals heterostructures: a new platform for excellent and controllable microwave absorption performance. ACS Appl. Mater. Interfaces 9(39), 34243–34255 (2017). https://doi.org/10.1021/acsami.7b10114
M.S. Cao, J.C. Shu, X.X. Wang, X. Wang, M. Zhang, H.J. Yang, X.Y. Fang, J. Yuan, Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Ann. Phys. 531(4), 1800390 (2019). https://doi.org/10.1002/andp.201800390
C.S. Rout, P.D. Joshi, R.V. Kashid, D.S. Joag, M.A. More, A.J. Simbeck, M. Washington, S.K. Nayak, D.J. Late, Superior field emission properties of layered WS2–rGO nanocomposites. Sci. Rep. 3(7476), 3282 (2013). https://doi.org/10.1038/srep03282
J. Zhang, Q. Wang, L. Wang, X.A. Li, W. Huang, Layer-controllable WS2-reduced graphene oxide heterostructure nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 7, 10391–10397 (2015). https://doi.org/10.1039/c5nr01896j
R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523–1530 (2012). https://doi.org/10.1021/jz300480w
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G.B. Ji, J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth. Met. 161(15), 1522–1526 (2011). https://doi.org/10.1016/j.synthmet.2011.04.033
D.C. Tiwari, P. Dipak, S.K. Dwivedi, T.C. Shami, P. Dwivedi, Py/TiO2 (np)/CNT polymer nanocomposite material for microwave absorption. J. Mater. Sci.: Mater. Electron. 29(2), 1643–1650 (2018). https://doi.org/10.1007/s10854-017-8076-y
T.K. Zhao, C.L. Hou, H.Y. Zhang, R.X. Zhu, S.F. She, J.G. Wang, T.H. Li, Z.F. Liu, B.Q. Wei, Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, CoxNi100–x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 7(41), 17312–17319 (2015). https://doi.org/10.1039/c5nr03745j
T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, Co/C nanoparticles with low graphitization degree: a high performance microwave absorbing material. J. Mater. Chem. C 4(8), 1727–1735 (2016). https://doi.org/10.1039/C5TC03874J
C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen, C. Gao, Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys. Chem. Chem. Phys. 17(3), 2228–2234 (2015). https://doi.org/10.1039/c4cp04745a
X.B. Li, S.W. Yang, J. Sun, P. He, X.P. Pu, G.Q. Ding, Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite. Synth. Met. 194, 52–58 (2014). https://doi.org/10.1016/j.synthmet.2014.04.012
X. Ding, Y. Huang, S. Li, N. Zhang, J. Wang, 3D architecture reduced graphene oxide–MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Compos. A 90, 424–432 (2016). https://doi.org/10.1016/j.compositesa.2016.08.006
S. Liu, B. Shen, Y. Niu, M. Xu, Fabrication of WS2-nanoflowers@rGO composite as an anode material for enhanced electrode performance in lithium-ion batteries. J. Colloid Interface Sci. 488, 20–25 (2017). https://doi.org/10.1016/j.jcis.2016.10.083
T.A. Shifa, F. Wang, Z. Cheng, X. Zhan, Z. Wang, K. Liu, M. Safdaret, L. Sun, L. He, A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction. Nanoscale 7, 14760–14765 (2015). https://doi.org/10.1039/C5NR03704B
N.T. Shelke, B.R. Karche, Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. J. Alloys Compd. 653, 298–303 (2015). https://doi.org/10.1016/j.jallcom.2015.08.255
B. Späth, F. Kopnov, H. Cohen, A. Zak, A. Moshkovich, L. Rapoport et al., X-ray photoelectron spectroscopy and tribology studies of annealed fullerene-like WS2 nanoparticles. Phys. Status Solidi 245(9), 51–59 (2010). https://doi.org/10.1002/pssb.200779531
Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Heterostructure of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
Y.L. Chen, L. Song, H. Guo, Hydrothermal synthesis of tungsten disulfide/graphene composites and their oxygen reduction properties. J. Inorg. Chem. 32, 633–640 (2016). https://doi.org/10.11862/CJIC.2016.073
X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2017). https://doi.org/10.1016/j.cej.2017.09.101
W.L. Song, M.S. Cao, Z.L. Hou, M.M. Lu, C.Y. Wang, J. Yuan, L.Z. Fan, Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. Appl. Phys. A 116(4), 1779–1783 (2014). https://doi.org/10.1007/s00339-014-8327-1
J.V. Mantese, A.L. Micheli, D.F. Dungan, R.G. Geyer, J. Baker-Jarvis, J. Grosvenor, Applicability of effective medium theory to ferroelectric/ferrimagnetic composites with composition and frequency–dependent complex permittivities and permeabilities. J. Appl. Phys. 79(3), 1655–1660 (1996). https://doi.org/10.1063/1.361010
H.L. Zhu, Y.J. Bai, R. Liu, N. Lun, Y.X. Qi, F.D. Han, J.Q. Bi, Synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. J. Mater. Chem. 21(35), 13581–13587 (2011). https://doi.org/10.1039/C1JM11747E
P.B. Liu, Y. Huang, X. Zhang, NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 112(12), 117–120 (2013). https://doi.org/10.1016/j.matlet.2013.08.126
D.Q. Zhang, J.X. Chai, J.Y. Cheng, Y.X. Jia, X.Y. Yang, H. Wang, Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide heterostructures and MoS2-based reduced graphene oxide heterostructures with hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152
N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
M.S. Cao, C. Han, X.X. Wang, M. Zhang, Y.L. Zhang, J.C. Shu, H.J. Yang, X.Y. Fang, J. Yuan, Graphene nanoheterostructure: excellent electromagnetic properties for electromagnetic wave absorbing and shielding. J. Mater. Chem. C 6, 4586–4602 (2018). https://doi.org/10.1039/c7tc05869a
X.M. Zhang, G.B. Jin, W. Liu, X.X. Zhang, Q.W. Gao, Y.C. Li, Y.W. Du, A novel Co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016). https://doi.org/10.1039/C6TC00248J
W. Liu, Q.W. Shao, G.B. Ji, X.H. Liang, B. Quan, Y.W. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
J.P. Wang, J. Wang, R. Xu, Y. Sun, B. Zhang, W. Chen, T. Wang, S. Yang, Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene. J. Alloys Compd. 653, 14–21 (2015). https://doi.org/10.1016/j.jallcom.2015.08.278
B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, Y. Du, Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 9(11), 9964–9974 (2017). https://doi.org/10.1021/acsami.6b15788
S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
R. Mehmood, S. Nadeem, S. Masood, Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer. J. Magn. Magn. Mater. 401(3), 1006–1014 (2016). https://doi.org/10.1016/j.jmmm.2015.10.102
Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji, H.Q. Zhao, J.M. Cao, Y.W. Du, Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
M.O. Valappil, A. Anil, M. Shaijumon, V.K. Pillai, S. Alwarappan, A single-step electrochemical synthesis of luminescent WS2 quantum dots. Chem. Eur. J. 23, 9144–9148 (2017). https://doi.org/10.1002/chem.201701277