MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self-Powered Motion Sensing
Corresponding Author: Mao‑Sheng Cao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 65
Abstract
Polymeric microwave actuators combining tissue-like softness with programmable microwave-responsive deformation hold great promise for mobile intelligent devices and bionic soft robots. However, their application is challenged by restricted electromagnetic sensitivity and intricate sensing coupling. In this study, a sensitized polymeric microwave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx (MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique space-charge polarization and interfacial polarization, resulting in significant improvements of 230% in the dielectric loss factor and 830% in the apparent efficiency of electromagnetic energy harvest. The sensitized microwave actuation demonstrates as the shortened response time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (up to 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combines driving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) during actuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approach for developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
Highlights:
1 An alternative electromagnetic attenuation pathway is proposed in the MXene-polymer hybrid structure, distinct from conduction loss, for generalizing the results to a wider range of electromagnetic-thermal driven soft materials and devices.
2 By efficiently harvesting and converting electromagnetic energy, the response time of the hybrid polymer to microwave exhibits 87% reduction with merely 0.15 wt% MXene.
3 A new mode of self-powered motion sensing based on deformation-driven piezoelectric effect is developed, enhancing the material’s intelligence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015). https://doi.org/10.1038/nmat4433
- J.M. McCracken, B.R. Donovan, T.J. White, Materials as machines. Adv. Mater. 32, 1906564 (2020). https://doi.org/10.1002/adma.201906564
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007). https://doi.org/10.1038/nmat2010
- M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides et al., Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019). https://doi.org/10.1126/science.aaw2502
- T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011). https://doi.org/10.1063/1.3572338
- J. Uchida, B. Soberats, M. Gupta, T. Kato, Advanced functional liquid crystals. Adv. Mater. 34, 2109063 (2022). https://doi.org/10.1002/adma.202109063
- S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger et al., 25th anniversary : a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014). https://doi.org/10.1002/adma.201303349
- I.H. Kim, S. Choi, J. Lee, J. Jung, J. Yeo et al., Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022). https://doi.org/10.1038/s41565-022-01220-2
- Y. Yang, L. Meng, J. Zhang, Y. Gao, Z. Hao et al., Near-infrared light-driven MXene/liquid crystal elastomer bimorph membranes for closed-loop controlled self-sensing bionic robots. Adv. Sci. 11, e2307862 (2024). https://doi.org/10.1002/advs.202307862
- S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 34, 2309899 (2024). https://doi.org/10.1002/adfm.202309899
- X. Wang, Y. He, Y. Liu, J. Leng, Advances in shape memory polymers: remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R. Rep. 151, 100702 (2022). https://doi.org/10.1016/j.mser.2022.100702
- L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
- L. Chang, Y.-Z. Wang, X.-C. Zhang, L. Li, H.-Z. Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanops on rGO. J. Mater. Sci. Technol. 174, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.06.062
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- Y. Li, J. Wu, P. Yang, L. Song, J. Wang et al., Multi-degree-of-freedom robots powered and controlled by microwaves. Adv. Sci. 9, 2203305 (2022). https://doi.org/10.1002/advs.202203305
- X. Wang, Y. Wang, X. Wang, H. Niu, B. Ridi et al., A study of the microwave actuation of a liquid crystalline elastomer. Soft Matter 16, 7332–7341 (2020). https://doi.org/10.1039/d0sm00493f
- J. Wang, Y. Song, M. Zadan, Y. Shen, V. Chen et al., Wireless actuation for soft electronics-free robots. ACM MobiCom ‘23: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. 2 (2023). https://doi.org/10.1145/3570361.3592494
- A.D.M. Charles, A.N. Rider, S.A. Brown, C.H. Wang, Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Prog. Mater. Sci. 115, 100705 (2021). https://doi.org/10.1016/j.pmatsci.2020.100705
- F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015). https://doi.org/10.1038/srep11152
- K. Yu, Y. Liu, J. Leng, Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 4, 2961–2968 (2014). https://doi.org/10.1039/C3RA43258K
- S. Aziz, B. Villacorta, S. Naficy, B. Salahuddin, S. Gao et al., A microwave powered polymeric artificial muscle. Appl. Mater. Today 23, 101021 (2021). https://doi.org/10.1016/j.apmt.2021.101021
- Y.-C. Wang, Y.-Z. Wang, J.-C. Shu, W.-Q. Cao, C.-S. Li et al., Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 33, 2303560 (2023). https://doi.org/10.1002/adfm.202303560
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
- M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18, 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
- Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- H. Liu, H. Tian, X. Li, X. Chen, K. Zhang et al., Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low-melting point alloy. Sci. Adv. 8, eabn722 (2022). https://doi.org/10.1126/sciadv.abn5722
- L. Chen, M. Weng, P. Zhou, F. Huang, C. Liu et al., Actuators: graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 29, 1970025 (2019). https://doi.org/10.1002/adfm.201970025
- E. Acome, S.K. Mitchell, T.G. Morrissey, M.B. Emmett, C. Benjamin et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). https://doi.org/10.1126/science.aao6139
- S. Li, H. Bai, Z. Liu, X. Zhang, C. Huang et al., Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci. Adv. 7, eabg3677 (2021). https://doi.org/10.1126/sciadv.abg3677
- D. Gao, R. Shenoy, S. Yi, J. Lee, M. Xu et al., Synaptic resistor circuits based on Al oxide and Ti silicide for concurrent learning and signal processing in artificial intelligence systems. Adv. Mater. 35, 2210484 (2023). https://doi.org/10.1002/adma.202210484
- S. Han, T. Ma, H. Li, J. Wu, R. Liu et al., Photoferroelectric perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 34, 2309910 (2024). https://doi.org/10.1002/adfm.202309910
- H. Niu, Y. Wang, J. Wang, W. Yang, Y. Dong et al., Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer. RSC Adv. 8, 4857–4866 (2018). https://doi.org/10.1039/c7ra11165g
- T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6, 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
- Z. Jiang, B.B.A. Abbasi, S. Aloko, F. Mokhtari, G.M. Spinks, Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv. Mater. 35, e2210419 (2023). https://doi.org/10.1002/adma.202210419
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, in MXenes. ed. by Y. Gogotsi (Jenny Stanford Publishing, New York, 2023), pp.15–29. https://doi.org/10.1201/9781003306511-4
- Y. Wang, J. Sun, W. Liao, Z. Yang, Liquid crystal elastomer twist fibers toward rotating microengines. Adv. Mater. 34, e2107840 (2022). https://doi.org/10.1002/adma.202107840
- S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
- T.-T. Liu, Y.-H. Zhu, J.-C. Shu, M. Zhang, M.-S. Cao, Patterned MXene-enabled switchable health monitoring and electromagnetic protection for architecture. Mater. Today Phys. 31, 100988 (2023). https://doi.org/10.1016/j.mtphys.2023.100988
- X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 15, 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
- F. Xia, J. Lao, R. Yu, X. Sang, J. Luo et al., Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale 11, 23330–23337 (2019). https://doi.org/10.1039/C9NR07236E
- S. Lai, J. Jeon, S.K. Jang, J. Xu, Y.J. Choi et al., Surface Group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and–O). Nanoscale 7, 19390–19396 (2015). https://doi.org/10.1039/c5nr06513e
- Y. Yang, S. Umrao, S. Lai, S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx film. J. Phys. Chem. Lett. 8, 859–865 (2017). https://doi.org/10.1021/acs.jpclett.6b03064
- T.-T. Liu, Q. Zheng, W.-Q. Cao, Y.-Z. Wang, M. Zhang et al., In situ atomic reconstruction engineering modulating graphene-like MXene-based multifunctional electromagnetic devices covering multi-spectrum. Nano-Micro Lett. 16, 173 (2024). https://doi.org/10.1007/s40820-024-01391-8
- M. Zhang, M.-S. Cao, J.-C. Shu, W.-Q. Cao, L. Li et al., Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R. Rep. 145, 100627 (2021). https://doi.org/10.1016/j.mser.2021.100627
- X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
- J.-C. Shu, M.-S. Cao, M. Zhang, X.-X. Wang, W.-Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019). https://doi.org/10.1002/adfm.201807321
- D. Chen, S. Yi, P. Fang, Y. Zhong, C. Huang et al., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using octa [(trimethoxysilyl)ethyl]-POSS as cross-linker. React. Funct. Polym. 71, 502–511 (2011). https://doi.org/10.1016/j.reactfunctpolym.2010.12.010
- J. Kong, Y. Tong, J. Sun, Y. Wei, W. Thitsartarn et al., Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Compos. Sci. Technol. 159, 208–215 (2018). https://doi.org/10.1016/j.compscitech.2018.02.018
- L. Zhao, H. Tian, H. Liu, W. Zhang, F. Zhao et al., Bio-inspired soft-rigid hybrid smart artificial muscle based on liquid crystal elastomer and helical metal wire. Small 19, 2206342 (2023). https://doi.org/10.1002/smll.202206342
- N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021). https://doi.org/10.1016/j.nanoen.2020.105567
References
T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015). https://doi.org/10.1038/nmat4433
J.M. McCracken, B.R. Donovan, T.J. White, Materials as machines. Adv. Mater. 32, 1906564 (2020). https://doi.org/10.1002/adma.201906564
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007). https://doi.org/10.1038/nmat2010
M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides et al., Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019). https://doi.org/10.1126/science.aaw2502
T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 142903 (2011). https://doi.org/10.1063/1.3572338
J. Uchida, B. Soberats, M. Gupta, T. Kato, Advanced functional liquid crystals. Adv. Mater. 34, 2109063 (2022). https://doi.org/10.1002/adma.202109063
S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger et al., 25th anniversary : a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014). https://doi.org/10.1002/adma.201303349
I.H. Kim, S. Choi, J. Lee, J. Jung, J. Yeo et al., Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022). https://doi.org/10.1038/s41565-022-01220-2
Y. Yang, L. Meng, J. Zhang, Y. Gao, Z. Hao et al., Near-infrared light-driven MXene/liquid crystal elastomer bimorph membranes for closed-loop controlled self-sensing bionic robots. Adv. Sci. 11, e2307862 (2024). https://doi.org/10.1002/advs.202307862
S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 34, 2309899 (2024). https://doi.org/10.1002/adfm.202309899
X. Wang, Y. He, Y. Liu, J. Leng, Advances in shape memory polymers: remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R. Rep. 151, 100702 (2022). https://doi.org/10.1016/j.mser.2022.100702
L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
L. Chang, Y.-Z. Wang, X.-C. Zhang, L. Li, H.-Z. Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanops on rGO. J. Mater. Sci. Technol. 174, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.06.062
F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
Y. Li, J. Wu, P. Yang, L. Song, J. Wang et al., Multi-degree-of-freedom robots powered and controlled by microwaves. Adv. Sci. 9, 2203305 (2022). https://doi.org/10.1002/advs.202203305
X. Wang, Y. Wang, X. Wang, H. Niu, B. Ridi et al., A study of the microwave actuation of a liquid crystalline elastomer. Soft Matter 16, 7332–7341 (2020). https://doi.org/10.1039/d0sm00493f
J. Wang, Y. Song, M. Zadan, Y. Shen, V. Chen et al., Wireless actuation for soft electronics-free robots. ACM MobiCom ‘23: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. 2 (2023). https://doi.org/10.1145/3570361.3592494
A.D.M. Charles, A.N. Rider, S.A. Brown, C.H. Wang, Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Prog. Mater. Sci. 115, 100705 (2021). https://doi.org/10.1016/j.pmatsci.2020.100705
F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015). https://doi.org/10.1038/srep11152
K. Yu, Y. Liu, J. Leng, Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 4, 2961–2968 (2014). https://doi.org/10.1039/C3RA43258K
S. Aziz, B. Villacorta, S. Naficy, B. Salahuddin, S. Gao et al., A microwave powered polymeric artificial muscle. Appl. Mater. Today 23, 101021 (2021). https://doi.org/10.1016/j.apmt.2021.101021
Y.-C. Wang, Y.-Z. Wang, J.-C. Shu, W.-Q. Cao, C.-S. Li et al., Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 33, 2303560 (2023). https://doi.org/10.1002/adfm.202303560
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642 (2023). https://doi.org/10.1002/adma.202211642
M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang et al., Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18, 373–379 (2023). https://doi.org/10.1038/s41565-022-01308-9
Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
H. Liu, H. Tian, X. Li, X. Chen, K. Zhang et al., Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low-melting point alloy. Sci. Adv. 8, eabn722 (2022). https://doi.org/10.1126/sciadv.abn5722
L. Chen, M. Weng, P. Zhou, F. Huang, C. Liu et al., Actuators: graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 29, 1970025 (2019). https://doi.org/10.1002/adfm.201970025
E. Acome, S.K. Mitchell, T.G. Morrissey, M.B. Emmett, C. Benjamin et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). https://doi.org/10.1126/science.aao6139
S. Li, H. Bai, Z. Liu, X. Zhang, C. Huang et al., Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci. Adv. 7, eabg3677 (2021). https://doi.org/10.1126/sciadv.abg3677
D. Gao, R. Shenoy, S. Yi, J. Lee, M. Xu et al., Synaptic resistor circuits based on Al oxide and Ti silicide for concurrent learning and signal processing in artificial intelligence systems. Adv. Mater. 35, 2210484 (2023). https://doi.org/10.1002/adma.202210484
S. Han, T. Ma, H. Li, J. Wu, R. Liu et al., Photoferroelectric perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 34, 2309910 (2024). https://doi.org/10.1002/adfm.202309910
H. Niu, Y. Wang, J. Wang, W. Yang, Y. Dong et al., Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer. RSC Adv. 8, 4857–4866 (2018). https://doi.org/10.1039/c7ra11165g
T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6, 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
Z. Jiang, B.B.A. Abbasi, S. Aloko, F. Mokhtari, G.M. Spinks, Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv. Mater. 35, e2210419 (2023). https://doi.org/10.1002/adma.202210419
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, in MXenes. ed. by Y. Gogotsi (Jenny Stanford Publishing, New York, 2023), pp.15–29. https://doi.org/10.1201/9781003306511-4
Y. Wang, J. Sun, W. Liao, Z. Yang, Liquid crystal elastomer twist fibers toward rotating microengines. Adv. Mater. 34, e2107840 (2022). https://doi.org/10.1002/adma.202107840
S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita et al., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016). https://doi.org/10.1021/acsnano.5b06958
T.-T. Liu, Y.-H. Zhu, J.-C. Shu, M. Zhang, M.-S. Cao, Patterned MXene-enabled switchable health monitoring and electromagnetic protection for architecture. Mater. Today Phys. 31, 100988 (2023). https://doi.org/10.1016/j.mtphys.2023.100988
X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 15, 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
F. Xia, J. Lao, R. Yu, X. Sang, J. Luo et al., Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale 11, 23330–23337 (2019). https://doi.org/10.1039/C9NR07236E
S. Lai, J. Jeon, S.K. Jang, J. Xu, Y.J. Choi et al., Surface Group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and–O). Nanoscale 7, 19390–19396 (2015). https://doi.org/10.1039/c5nr06513e
Y. Yang, S. Umrao, S. Lai, S. Lee, Large-area highly conductive transparent two-dimensional Ti2CTx film. J. Phys. Chem. Lett. 8, 859–865 (2017). https://doi.org/10.1021/acs.jpclett.6b03064
T.-T. Liu, Q. Zheng, W.-Q. Cao, Y.-Z. Wang, M. Zhang et al., In situ atomic reconstruction engineering modulating graphene-like MXene-based multifunctional electromagnetic devices covering multi-spectrum. Nano-Micro Lett. 16, 173 (2024). https://doi.org/10.1007/s40820-024-01391-8
M. Zhang, M.-S. Cao, J.-C. Shu, W.-Q. Cao, L. Li et al., Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R. Rep. 145, 100627 (2021). https://doi.org/10.1016/j.mser.2021.100627
X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018). https://doi.org/10.1002/smll.201800987
J.-C. Shu, M.-S. Cao, M. Zhang, X.-X. Wang, W.-Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019). https://doi.org/10.1002/adfm.201807321
D. Chen, S. Yi, P. Fang, Y. Zhong, C. Huang et al., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using octa [(trimethoxysilyl)ethyl]-POSS as cross-linker. React. Funct. Polym. 71, 502–511 (2011). https://doi.org/10.1016/j.reactfunctpolym.2010.12.010
J. Kong, Y. Tong, J. Sun, Y. Wei, W. Thitsartarn et al., Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Compos. Sci. Technol. 159, 208–215 (2018). https://doi.org/10.1016/j.compscitech.2018.02.018
L. Zhao, H. Tian, H. Liu, W. Zhang, F. Zhao et al., Bio-inspired soft-rigid hybrid smart artificial muscle based on liquid crystal elastomer and helical metal wire. Small 19, 2206342 (2023). https://doi.org/10.1002/smll.202206342
N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021). https://doi.org/10.1016/j.nanoen.2020.105567