Efficient CO2 Reduction to Formate on CsPbI3 Nanocrystals Wrapped with Reduced Graphene Oxide
Corresponding Author: Hongxia Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 161
Abstract
Transformation of greenhouse gas (CO2) into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis. Metal halide perovskite catalysts have shown their potential in promoting CO2 reduction reaction (CO2RR), however, their low phase stability has limited their application perspective. Herein, we present a reduced graphene oxide (rGO) wrapped CsPbI3 perovskite nanocrystal (NC) CO2RR catalyst (CsPbI3/rGO), demonstrating enhanced stability in the aqueous electrolyte. The CsPbI3/rGO catalyst exhibited > 92% Faradaic efficiency toward formate production at a CO2RR current density of ~ 12.7 mA cm−2. Comprehensive characterizations revealed the superior performance of the CsPbI3/rGO catalyst originated from the synergistic effects between the CsPbI3 NCs and rGO, i.e., rGO stabilized the α-CsPbI3 phase and tuned the charge distribution, thus lowered the energy barrier for the protonation process and the formation of *HCOO intermediate, which resulted in high CO2RR selectivity toward formate. This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO2RR toward valuable fuels.
Highlights:
1 A rational design of metal halide perovskites for achieving efficient CO2 reduction reaction was demonstrated.
2 The stability of CsPbI3 perovskite nanocrystal (NCs) in aqueous electrolyte was improved by compositing with reduced graphene oxide (rGO).
3 The CsPbI3/rGO catalyst exhibited > 92% Faradaic efficiency toward formate production with high current density which was associated with the synergistic effects between the CsPbI3 NCs and rGO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- J. Hou, S. Cao, Y. Wu, Z. Gao, F. Liang et al., Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Eur. J. Chem. 23, 9481–9485 (2017). https://doi.org/10.1002/chem.201702237
- Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30, 1704342 (2018). https://doi.org/10.1002/adma.201704342
- S. Mollick, T.N. Mandal, A. Jana, S. Fajal, A.V. Desai et al., Ultrastable luminescent hybrid bromide perovskite@ mof nanocomposites for the degradation of organic pollutants in water. ACS Appl. Nano Mater. 2, 1333–1340 (2019). https://doi.org/10.1021/acsanm.8b02214
- M. Méndez-Galván, B. Alcántar-Vázquez, G. Diaz, I.A. Ibarra, H.A. Lara-García, Metal halide perovskites as an emergent catalyst for CO2 photoreduction: a minireview. React. Chem. Eng. 6, 828–838 (2021). https://doi.org/10.1039/D1RE00039J
- X. Zhu, Y. Lin, J. San Martin, Y. Sun, D. Zhu et al., Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 10, 2843 (2019). https://doi.org/10.1038/s41467-019-10634-x
- H. Huang, H. Yuan, K.P. Janssen, G. Solís-Fernández, Y. Wang et al., Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Lett. 3, 755–759 (2018). https://doi.org/10.1021/acsenergylett.8b00131
- X. Zhu, Y. Lin, Y. Sun, M.C. Beard, Y. Yan, Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141, 733–738 (2019). https://doi.org/10.1021/jacs.8b08720
- K. Chen, X. Deng, G. Dodekatos, H. Tüysüz, Photocatalytic polymerization of 3,4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots. J. Am. Chem. Soc. 139, 12267–12273 (2017). https://doi.org/10.1021/jacs.7b06413
- Y. Wu, Q. Wu, Q. Zhang, Z. Lou, K. Liu et al., An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ. Sci. 15, 1271–1281 (2022). https://doi.org/10.1039/D1EE03679C
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017). https://doi.org/10.1126/science.aam7092
- X. Hou, J. Ren, F. Li, C. Ma, X. Zhang et al., Research progress of perovskite materials as catalysts, in IOP Conference Series: Earth and Environmental Science (2019), p. 032020.
- K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard et al., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). https://doi.org/10.1021/ja505791r
- V. Adinolfi, W. Peng, G. Walters, O.M. Bakr, E.H. Sargent, The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance. Adv. Mater. 30, 1700764 (2018). https://doi.org/10.1002/adma.201700764
- W. Xiang, S.F. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021). https://doi.org/10.1039/D1EE00157D
- S. Park, W.J. Chang, C.W. Lee, S. Park, H.-Y. Ahn et al., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
- J. Luo, W. Zhang, H. Yang, Q. Fan, F. Xiong et al., Halide perovskite composites for photocatalysis: a mini review. EcoMat 3, e12079 (2021). https://doi.org/10.1002/eom2.12079
- K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13, 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
- S.-H. Guo, J. Zhou, X. Zhao, C.-Y. Sun, S.-Q. You et al., Enhanced CO2 photoreduction via tuning halides in perovskites. J. Catal. 369, 201–208 (2019). https://doi.org/10.1016/j.jcat.2018.11.004
- L.Y. Wu, Y.F. Mu, X.X. Guo, W. Zhang, Z.M. Zhang et al., Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491–9495 (2019). https://doi.org/10.1002/anie.201904537
- C.X. Zhao, Y.F. Bu, W. Gao, Q. Jiang, CO2 reduction mechanism on the Pb(111) surface: effect of solvent and cations. J. Phys. Chem. C 121, 19767–19773 (2017). https://doi.org/10.1021/acs.jpcc.7b04375
- J. García, C. Jiménez, F. Martínez, R. Camarillo, J. Rincón, Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. J. Catal. 367, 72–80 (2018). https://doi.org/10.1016/j.jcat.2018.08.017
- X. Wu, Y. Jiang, Y. Yan, X. Li, S. Luo et al., Tuning surface structure of Pd3Pb/PtnPb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 6, 1902249 (2019). https://doi.org/10.1002/advs.201902249
- E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
- M. Ou, W. Tu, S. Yin, W. Xing, S. Wu et al., Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 13570–13574 (2018). https://doi.org/10.1002/anie.201808930
- M.B. Miller, D.-L. Chen, D.R. Luebke, J.K. Johnson, R.M. Enick, Critical assessment of CO2 solubility in volatile solvents at 298.15 K. J. Chem. Eng. Data 56, 1565–1572 (2011). https://doi.org/10.1021/je101161d
- Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
- Y.-X. Chen, Y.-F. Xu, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals. Sustain. Energy Fuels 4, 2249–2255 (2020). https://doi.org/10.1039/C9SE01218D
- Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen et al., Core@ Shell CsPbBr3 @ Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3, 2656–2662 (2018). https://doi.org/10.1021/acsenergylett.8b01658
- R. Cheng, E. Debroye, J. Hofkens, M.B. Roeffaers, Efficient photocatalytic CO2 reduction with MIL-100 (Fe)-CsPbBr3 composites. Catalysts 10, 1352 (2020). https://doi.org/10.3390/catal10111352
- T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019). https://doi.org/10.1039/C8EE03134G
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- Q. Zhang, H. Nan, Y. Zhou, Y. Gu, M. Tai et al., In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. J. Mater. Chem. C 7, 6795–6804 (2019). https://doi.org/10.1039/C9TC01012B
- L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa et al., Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014). https://doi.org/10.1016/j.elspec.2014.07.003
- D. Raciti, C. Wang, Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). https://doi.org/10.1021/acsenergylett.8b00553
- S. Li, Y. Li, K. Liu, M. Chen, W. Peng et al., Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. J. Colloid Interface Sci. 600, 691–700 (2021). https://doi.org/10.1016/j.jcis.2021.05.034
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
- E.I. Bîru, H. Iovu, Graphene nanocomposites studied by Raman spectroscopy. J. Raman Spectrosc. 179 (2018). https://doi.org/10.5772/intechopen.73487
- A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 032183 (2012). https://doi.org/10.1063/1.4756995
- M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
- S. Xu, A. Libanori, G. Luo, J. Chen, Engineering bandgap of CsPbI3 over 1.7 eV with enhanced stability and transport properties. Iscience 24, 102235 (2021). https://doi.org/10.1016/j.isci.2021.102235
- G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971). https://doi.org/10.1021/j100678a001
- D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334 (2002). https://doi.org/10.1562/0031-8655(2002)075%3c0327:FQYATR%3e2.0.CO;2
- Y. Wei, Z. Cheng, J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019). https://doi.org/10.1039/C8CS00740C
- M. Pols, J.M. Vicent-Luna, I. Filot, A.C. van Duin, S. Tao, Atomistic insights into the degradation of halide perovskites: a reactive force field molecular dynamics study. J. Phys. Chem. Lett. 12, 5519–5525 (2021). https://doi.org/10.1021/acs.jpclett.1c01192
- S. Chatterjee, I. Dutta, Y. Lum, Z. Lai, K.-W. Huang, Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy Environ. Sci. 14, 1194–1246 (2021). https://doi.org/10.1039/D0EE03011B
- J.E. Pander, J.W.J. Lum, B.S. Yeo, The importance of morphology on the activity of lead cathodes for the reduction of carbon dioxide to formate. J. Mater. Chem. A 7, 4093–4101 (2019). https://doi.org/10.1039/C8TA10752A
- B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56, 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
- Y. Yang, J.P. Robbins, L. Ezeonu, Y. Ma, N. Sparta et al., Probing lattice vibrations of stabilized CsPbI3 polymorphs via low-frequency Raman spectroscopy. J. Mater. Chem. C 8, 8896–8903 (2020). https://doi.org/10.1039/D0TC02123G
References
NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
J. Hou, S. Cao, Y. Wu, Z. Gao, F. Liang et al., Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Eur. J. Chem. 23, 9481–9485 (2017). https://doi.org/10.1002/chem.201702237
Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang et al., Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30, 1704342 (2018). https://doi.org/10.1002/adma.201704342
S. Mollick, T.N. Mandal, A. Jana, S. Fajal, A.V. Desai et al., Ultrastable luminescent hybrid bromide perovskite@ mof nanocomposites for the degradation of organic pollutants in water. ACS Appl. Nano Mater. 2, 1333–1340 (2019). https://doi.org/10.1021/acsanm.8b02214
M. Méndez-Galván, B. Alcántar-Vázquez, G. Diaz, I.A. Ibarra, H.A. Lara-García, Metal halide perovskites as an emergent catalyst for CO2 photoreduction: a minireview. React. Chem. Eng. 6, 828–838 (2021). https://doi.org/10.1039/D1RE00039J
X. Zhu, Y. Lin, J. San Martin, Y. Sun, D. Zhu et al., Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 10, 2843 (2019). https://doi.org/10.1038/s41467-019-10634-x
H. Huang, H. Yuan, K.P. Janssen, G. Solís-Fernández, Y. Wang et al., Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Lett. 3, 755–759 (2018). https://doi.org/10.1021/acsenergylett.8b00131
X. Zhu, Y. Lin, Y. Sun, M.C. Beard, Y. Yan, Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 141, 733–738 (2019). https://doi.org/10.1021/jacs.8b08720
K. Chen, X. Deng, G. Dodekatos, H. Tüysüz, Photocatalytic polymerization of 3,4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots. J. Am. Chem. Soc. 139, 12267–12273 (2017). https://doi.org/10.1021/jacs.7b06413
Y. Wu, Q. Wu, Q. Zhang, Z. Lou, K. Liu et al., An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ. Sci. 15, 1271–1281 (2022). https://doi.org/10.1039/D1EE03679C
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017). https://doi.org/10.1126/science.aam7092
X. Hou, J. Ren, F. Li, C. Ma, X. Zhang et al., Research progress of perovskite materials as catalysts, in IOP Conference Series: Earth and Environmental Science (2019), p. 032020.
K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard et al., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). https://doi.org/10.1021/ja505791r
V. Adinolfi, W. Peng, G. Walters, O.M. Bakr, E.H. Sargent, The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance. Adv. Mater. 30, 1700764 (2018). https://doi.org/10.1002/adma.201700764
W. Xiang, S.F. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ. Sci. 14, 2090–2113 (2021). https://doi.org/10.1039/D1EE00157D
S. Park, W.J. Chang, C.W. Lee, S. Park, H.-Y. Ahn et al., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
J. Luo, W. Zhang, H. Yang, Q. Fan, F. Xiong et al., Halide perovskite composites for photocatalysis: a mini review. EcoMat 3, e12079 (2021). https://doi.org/10.1002/eom2.12079
K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13, 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
S.-H. Guo, J. Zhou, X. Zhao, C.-Y. Sun, S.-Q. You et al., Enhanced CO2 photoreduction via tuning halides in perovskites. J. Catal. 369, 201–208 (2019). https://doi.org/10.1016/j.jcat.2018.11.004
L.Y. Wu, Y.F. Mu, X.X. Guo, W. Zhang, Z.M. Zhang et al., Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491–9495 (2019). https://doi.org/10.1002/anie.201904537
C.X. Zhao, Y.F. Bu, W. Gao, Q. Jiang, CO2 reduction mechanism on the Pb(111) surface: effect of solvent and cations. J. Phys. Chem. C 121, 19767–19773 (2017). https://doi.org/10.1021/acs.jpcc.7b04375
J. García, C. Jiménez, F. Martínez, R. Camarillo, J. Rincón, Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. J. Catal. 367, 72–80 (2018). https://doi.org/10.1016/j.jcat.2018.08.017
X. Wu, Y. Jiang, Y. Yan, X. Li, S. Luo et al., Tuning surface structure of Pd3Pb/PtnPb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 6, 1902249 (2019). https://doi.org/10.1002/advs.201902249
E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar et al., Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022). https://doi.org/10.1039/D1EE02714J
M. Ou, W. Tu, S. Yin, W. Xing, S. Wu et al., Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 13570–13574 (2018). https://doi.org/10.1002/anie.201808930
M.B. Miller, D.-L. Chen, D.R. Luebke, J.K. Johnson, R.M. Enick, Critical assessment of CO2 solubility in volatile solvents at 298.15 K. J. Chem. Eng. Data 56, 1565–1572 (2011). https://doi.org/10.1021/je101161d
Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen et al., A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
Y.-X. Chen, Y.-F. Xu, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals. Sustain. Energy Fuels 4, 2249–2255 (2020). https://doi.org/10.1039/C9SE01218D
Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen et al., Core@ Shell CsPbBr3 @ Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3, 2656–2662 (2018). https://doi.org/10.1021/acsenergylett.8b01658
R. Cheng, E. Debroye, J. Hofkens, M.B. Roeffaers, Efficient photocatalytic CO2 reduction with MIL-100 (Fe)-CsPbBr3 composites. Catalysts 10, 1352 (2020). https://doi.org/10.3390/catal10111352
T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019). https://doi.org/10.1039/C8EE03134G
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
Q. Zhang, H. Nan, Y. Zhou, Y. Gu, M. Tai et al., In situ growth of α-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. J. Mater. Chem. C 7, 6795–6804 (2019). https://doi.org/10.1039/C9TC01012B
L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa et al., Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014). https://doi.org/10.1016/j.elspec.2014.07.003
D. Raciti, C. Wang, Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). https://doi.org/10.1021/acsenergylett.8b00553
S. Li, Y. Li, K. Liu, M. Chen, W. Peng et al., Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. J. Colloid Interface Sci. 600, 691–700 (2021). https://doi.org/10.1016/j.jcis.2021.05.034
X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
E.I. Bîru, H. Iovu, Graphene nanocomposites studied by Raman spectroscopy. J. Raman Spectrosc. 179 (2018). https://doi.org/10.5772/intechopen.73487
A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 032183 (2012). https://doi.org/10.1063/1.4756995
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
S. Xu, A. Libanori, G. Luo, J. Chen, Engineering bandgap of CsPbI3 over 1.7 eV with enhanced stability and transport properties. Iscience 24, 102235 (2021). https://doi.org/10.1016/j.isci.2021.102235
G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971). https://doi.org/10.1021/j100678a001
D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334 (2002). https://doi.org/10.1562/0031-8655(2002)075%3c0327:FQYATR%3e2.0.CO;2
Y. Wei, Z. Cheng, J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019). https://doi.org/10.1039/C8CS00740C
M. Pols, J.M. Vicent-Luna, I. Filot, A.C. van Duin, S. Tao, Atomistic insights into the degradation of halide perovskites: a reactive force field molecular dynamics study. J. Phys. Chem. Lett. 12, 5519–5525 (2021). https://doi.org/10.1021/acs.jpclett.1c01192
S. Chatterjee, I. Dutta, Y. Lum, Z. Lai, K.-W. Huang, Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy Environ. Sci. 14, 1194–1246 (2021). https://doi.org/10.1039/D0EE03011B
J.E. Pander, J.W.J. Lum, B.S. Yeo, The importance of morphology on the activity of lead cathodes for the reduction of carbon dioxide to formate. J. Mater. Chem. A 7, 4093–4101 (2019). https://doi.org/10.1039/C8TA10752A
B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56, 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
Y. Yang, J.P. Robbins, L. Ezeonu, Y. Ma, N. Sparta et al., Probing lattice vibrations of stabilized CsPbI3 polymorphs via low-frequency Raman spectroscopy. J. Mater. Chem. C 8, 8896–8903 (2020). https://doi.org/10.1039/D0TC02123G