Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials
Corresponding Author: Weiwei Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 71
Abstract
Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity, good selectivity, fast response/recovery, great stability/repeatability, room-working temperature, low cost, and easy-to-fabricate, for versatile applications. This progress report reviews the advantages and advances of these sensing structures compared with the single constituent, according to five main sensing forms: manipulating/constructing heterojunctions, catalytic reaction, charge transfer, charge carrier transport, molecular binding/sieving, and their combinations. Promises and challenges of the advances of each form are presented and discussed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.
Highlights:
1 This review gives a thinking based on the generic mechanisms rather than simply dividing them as different types of combination of materials, which is unique and valuable for understanding and developing the novel hybrid materials in the future.
2 The hybrid materials, their sensing mechanism, and their applications are systematically reviewed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.D. Kotha, V.M. Gupta, IoT application: a survey. Int. J. Eng. Technol. 7(2.7), 891–896 (2018). https://doi.org/10.14419/ijet.v7i2.7.11089
- W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2018). https://doi.org/10.1002/admt.201800488
- T.T. Dung, Y. Oh, S.-J. Choi, I.-D. Kim, M.-K. Oh, M. Kim, Applications and advances in bioelectronic noses for odour sensing. Sensors 18(1), 103 (2018). https://doi.org/10.3390/s18010103
- J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2015). https://doi.org/10.1002/adma.201503825
- I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61(3), 974–1000 (2013). https://doi.org/10.1016/j.actamat.2012.10.041
- J.F. Fennell, S.F. Liu, J.M. Azzarelli, J.G. Weis, S. Rochat, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55(4), 1266–1281 (2015). https://doi.org/10.1002/anie.201505308
- K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor principles and Applications (CRC Press, London, 2017). https://doi.org/10.1201/9780203735893
- G. Korotcenkov, B.K. Cho, Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuat. B: Chem. 244, 182–210 (2017). https://doi.org/10.1016/j.snb.2016.12.117
- A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015). https://doi.org/10.1021/cr400659h
- I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
- Y. Li, A.-S. Xiao, B. Zou, H.-X. Zhang, K.-L. Yan, Y. Lin, Advances of metal–organic frameworks for gas sensing. Polyhedron 154, 83–97 (2018). https://doi.org/10.1016/j.poly.2018.07.028
- R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater. Des. 156, 154–166 (2018). https://doi.org/10.1016/j.matdes.2018.06.041
- S. Buratti, S. Benedetti, G. Giovanelli, Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur. Food Res. Technol. 243(3), 511–520 (2017). https://doi.org/10.1007/s00217-016-2769-y
- Z. Yang, F. Dong, K. Shimizu, T. Kinoshita, M. Kanamori, A. Morita, N. Watanabe, Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose. J. Food Eng. 92(3), 312–316 (2009). https://doi.org/10.1016/j.jfoodeng.2008.11.014
- R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kashwan, M. Bhuyan, Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuat. B: Chem. 94(2), 228–237 (2003). https://doi.org/10.1016/S0925-4005(03)00367-8
- G.J.A.A. Soler-Illia, O. Azzaroni, Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 40(2), 1107–1150 (2011). https://doi.org/10.1039/C0CS00208A
- J.C. Tan, A.K. Cheetham, Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40(2), 1059–1080 (2011). https://doi.org/10.1039/C0CS00163E
- G. Rogez, C. Massobrio, P. Rabu, M. Drillon, Layered hydroxide hybrid nanostructures: a route to multifunctionality. Chem. Soc. Rev. 40(2), 1031–1058 (2011). https://doi.org/10.1039/C0CS00159G
- C. Laberty-Robert, K. Vallé, F. Pereira, C. Sanchez, Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem. Soc. Rev. 40(2), 961–1005 (2011). https://doi.org/10.1039/C0CS00144A
- J. Le Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40(2), 907–925 (2011). https://doi.org/10.1039/C0CS00059K
- B. Lebeau, P. Innocenzi, Hybrid materials for optics and photonics. Chem. Soc. Rev. 40(2), 886–906 (2011). https://doi.org/10.1039/C0CS00106F
- N. Brun, S. Ungureanu, H. Deleuze, R. Backov, Hybrid foams, colloids and beyond: from design to applications. Chem. Soc. Rev. 40(2), 771–788 (2011). https://doi.org/10.1039/B920518G
- K. Kanamori, K. Nakanishi, Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40(2), 754–770 (2011). https://doi.org/10.1039/C0CS00068J
- C. Sanchez, P. Belleville, M. Popall, L. Nicole, Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40(2), 696–753 (2011). https://doi.org/10.1039/C0CS00136H
- L.-C. Hu, K.J. Shea, Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem. Soc. Rev. 40(2), 688–695 (2011). https://doi.org/10.1039/C0CS00219D
- R. Pardo, M. Zayat, D. Levy, Photochromic organic–inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011). https://doi.org/10.1039/C0CS00065E
- J. Yuan, Y. Xu, A.H.E. Müller, One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem. Soc. Rev. 40(2), 640–655 (2011). https://doi.org/10.1039/C0CS00087F
- T.-H. Tran-Thi, R. Dagnelie, S. Crunaire, L. Nicole, Optical chemical sensors based on hybrid organic–inorganic solgel nanoreactors. Chem. Soc. Rev. 40(2), 621–639 (2011). https://doi.org/10.1039/C0CS00021C
- F. Hoffmann, M. Fröba, Vitalising porous inorganic silica networks with organic functions: PMOs and related hybrid materials. Chem. Soc. Rev. 40(2), 608–620 (2011). https://doi.org/10.1039/C0CS00076K
- M. Vallet-Regí, M. Colilla, B. González, Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40(2), 596–607 (2011). https://doi.org/10.1039/C0CS00025F
- J.-M. Oh, D.-H. Park, J.-H. Choy, Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 40(2), 583–595 (2011). https://doi.org/10.1039/C0CS00051E
- U. Schubert, Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 40(2), 575–582 (2011). https://doi.org/10.1039/C0CS00009D
- A. Mehdi, C. Reye, R. Corriu, From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev. 40(2), 563–574 (2011). https://doi.org/10.1039/B920516K
- L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, B. Julián-López, P. Escribano, Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem. Soc. Rev. 40(2), 536–549 (2011). https://doi.org/10.1039/C0CS00069H
- M. Clemente-León, E. Coronado, C. Martí-Gastaldo, F.M. Romero, Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chem. Soc. Rev. 40(2), 473–497 (2011). https://doi.org/10.1039/C0CS00111B
- C. Sanchez, K.J. Shea, S. Kitagawa, Recent progress in hybrid materials science. Chem. Soc. Rev. 40(2), 471–472 (2011). https://doi.org/10.1039/C1CS90001C
- M. Yao, P. Hu, Y. Cao, W. Xiang, X. Zhang, F. Yuan, Y. Chen, Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuat. B: Chem. 117, 562–569 (2013). https://doi.org/10.1016/j.snb.2012.11.088
- N. Yamazoe, K. Shimanoe, New perspectives of gas sensor technology. Sens. Actuat. B: Chem. 138(1), 100–107 (2009). https://doi.org/10.1016/j.snb.2009.01.023
- D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B: Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
- H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B: Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuat. B: Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003
- Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015). https://doi.org/10.1002/adma.201405589
- T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013). https://doi.org/10.1039/C2CS35379B
- J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
- S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection. Mater. Today 11(3), 28–36 (2008). https://doi.org/10.1016/s1369-7021(08)70017-8
- C.N. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuat. B: Chem. 3(2), 147–155 (1991). https://doi.org/10.1016/0925-4005(91)80207-z
- J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuat. B: Chem. 66(1–3), 277–279 (2000). https://doi.org/10.1016/s0925-4005(00)00381-6
- N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sensor response formula for sensor based on ZnO nanostructures. Sens. Actuat. B: Chem. 144(1), 67–72 (2010). https://doi.org/10.1021/am5081277
- M. Yao, Q. Li, G. Hou, C. Lu, B. Cheng et al., Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Appl. Mater. Interfaces. 7(4), 2856–2866 (2015). https://doi.org/10.1021/am5081277
- I.-S. Hwang, J.-K. Choi, H.-S. Woo, S.-J. Kim, S.-Y. Jung, T.-Y. Seong, I.-D. Kim, J.-H. Lee, Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces. 3(8), 3140–3145 (2011). https://doi.org/10.1021/am200647f
- J.-S. Jang, S.-J. Choi, S.-J. Kim, M. Hakim, I.-D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016). https://doi.org/10.1002/adfm.201600797
- S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, W.-T. Koo, H.L. Tuller, I.-D. Kim, Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv. Mater. 29(36), 1700737 (2017). https://doi.org/10.1002/adma.201700737
- Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Appl. Mater. Interfaces. 4(8), 3797–3804 (2012). https://doi.org/10.1021/am3010303
- S.-Y. Cho, H.-J. Koh, H.-W. Yoo, H.-T. Jung, Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017). https://doi.org/10.1021/acs.chemmater.7b01353
- J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu et al., Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
- Y.J. Hong, J.-W. Yoon, J.-H. Lee, Y.C. Kang, One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem. Eur. J. 20(10), 2737–2741 (2014). https://doi.org/10.1002/chem.201304502
- X. Chen, Z. Guo, W.-H. Xu, H.-B. Yao, M.-Q. Li et al., Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 21(11), 2049–2056 (2011). https://doi.org/10.1002/adfm.201002701
- G. Lu, L.E. Ocola, J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21(24), 2487–2491 (2009). https://doi.org/10.1002/adma.200803536
- L. Guan, S. Wang, W. Gu, J. Zhuang, H. Jin, W. Zhang, T. Zhang, J. Wang, Ultrasensitive room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor. Sens. Actuat. B: Chem. 196, 321–327 (2014). https://doi.org/10.1016/j.snb.2014.02.014
- H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M.A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
- S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134(10), 4905–4917 (2012). https://doi.org/10.1021/ja211683m
- Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23), 12073–12080 (2016). https://doi.org/10.1039/C6NR02540D
- Z. Wang, L. Huang, X. Zhu, X. Zhou, L. Chi, An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv. Mater. 29(38), 1703192 (2017). https://doi.org/10.1002/adma.201703192
- A.R. Jalil, H. Chang, V.K. Bandari, P. Robaschik, J. Zhang et al., Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 28(15), 2971–2977 (2016). https://doi.org/10.1002/adma.201506293
- S. Ji, H. Wang, T. Wang, D. Yan, A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv. Mater. 25(12), 1755–1760 (2013). https://doi.org/10.1002/adma.201204134
- F. Shao, M.W.G. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol et al., Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuat. B: Chem. 181, 130–135 (2013). https://doi.org/10.1016/j.snb.2013.01.067
- J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4(3), 1600319 (2017). https://doi.org/10.1002/advs.201600319
- H. Jin, T.-P. Huynh, H. Haick, Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett. 16(7), 4194–4202 (2016). https://doi.org/10.1021/acs.nanolett.6b01066
- M.W.G. Hoffmann, J. Daniel Prades, L. Mayrhofer, F. Hernandez-Ramirez, T.T. Jaervi, M. Moseler, A. Waag, H. Shen, Highly selective SAM-nanowire hybrid NO2 sensor: insight into charge transfer dynamics and alignment of frontier molecular orbitals. Adv. Funct. Mater. 24(5), 595–602 (2014). https://doi.org/10.1002/adfm.201301478
- W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou et al., APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 6(23), 10976–10989 (2018). https://doi.org/10.1039/c8ta02452a
- Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, X. Duan, A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 10(44), 20578–20586 (2018). https://doi.org/10.1039/C8NR04198A
- B. Esser, J.M. Schnorr, T.M. Swager, Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew. Chem. Int. Ed. 51(23), 5752–5756 (2012). https://doi.org/10.1002/anie.201201042
- P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). https://doi.org/10.1002/anie.201204373
- J.-S. Jang, W.-T. Koo, S.-J. Choi, I.-D. Kim, Metal organic framework-templated chemiresistor: sensing type transition from p-to-n using hollow metal oxide polyhedron via galvanic replacement. J. Am. Chem. Soc. 139(34), 11868–11876 (2017). https://doi.org/10.1021/jacs.7b05246
- M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28, 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
- D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
- J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces. 5(15), 7410–7416 (2013). https://doi.org/10.1021/am4017347
- L. Xiao, S. Xu, G. Yu, S. Liu, Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sens. Actuat. B: Chem. 255, 2002–2010 (2018). https://doi.org/10.1016/j.snb.2017.08.216
- S. Ishihara, J.M. Azzarelli, M. Krikorian, T.M. Swager, Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138(26), 8221–8227 (2016). https://doi.org/10.1021/jacs.6b03869
- M.K. Nakhleh, H. Amal, H. Awad, A.L. Gharra, N. Abu-Saleh, R. Jeries, H. Haick, Z. Abassi, Sensor arrays based on nanoparticles for early detection of kidney injury by breath samples. Nanomed. Nanotechnol. 10(8), 1767–1776 (2014). https://doi.org/10.1016/j.nano.2014.06.007
- Y. Deng, J. Sun, H. Jin, M. Khatib, X. Li et al., Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending. Adv. Healthc. Mater. 7(15), 1800232 (2018). https://doi.org/10.1002/adhm.201800232
- X.M. Sun, Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43(5), 597–601 (2004). https://doi.org/10.1002/anie.200352386
- L. Wang, Z. Lou, T. Fei, T. Zhang, Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications. J. Mater. Chem. 21(48), 19331–19336 (2011). https://doi.org/10.1039/C1JM13354C
- P. Rai, J.-W. Yoon, H.-M. Jeong, S.-J. Hwang, C.-H. Kwak, J.-H. Lee, Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale 6(14), 8292–8299 (2014). https://doi.org/10.1039/c4nr01906g
- P. Rai, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J. Mater. Chem. A 4(1), 264–269 (2016). https://doi.org/10.1039/c5ta08873a
- X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48(48), 9180–9183 (2009). https://doi.org/10.1002/anie.200903926
- X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113(2), 584–589 (2009). https://doi.org/10.1021/jp808233e
- K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensor 1(7), 913–920 (2016). https://doi.org/10.1021/acssensors.6b00323
- N. Ma, K. Suematsu, M. Yuasa, K. Shimanoe, Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl. Mater. Interfaces. 7(28), 15618–15625 (2015). https://doi.org/10.1021/acsami.5b04380
- Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). https://doi.org/10.1039/c3nr06809a
- L. Guo, F. Chen, N. Xie, X. Kou, C. Wang et al., Ultra-sensitive sensing platform based on Pt–ZnO–In2O3 nanofibers for detection of acetone. Sens. Actuat. B: Chem. 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161
- Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl. Mater. Interfaces. 5(6), 2013–2021 (2013). https://doi.org/10.1021/am3028553
- S.-J. Choi, W.-T. Koo, S.-J. Kim, J.-S. Jang, H.L. Tuller, I.-D. Kim, Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
- M. Yao, P. Hu, N. Han, F. Ding, C. Yin, F. Yuan, J. Yang, Y. Chen, ZnO micro-windbreak for enhanced gas diffusion. Sens. Actuat. B: Chem. 186, 614–621 (2013). https://doi.org/10.1016/j.snb.2013.06.057
- Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20(23), 4547–4551 (2008). https://doi.org/10.1002/adma.200800243
- X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50(12), 2738–2741 (2011). https://doi.org/10.1002/anie.201004900
- Y. Shimizu, T. Hyodo, M. Egashira, Meso-to macro-porous oxides as semiconductor gas sensors. Catal. Surv. Asia 8(2), 127–135 (2004). https://doi.org/10.1023/b:cats.0000027014.79515.87
- F. Sun, W. Cai, Y. Li, L. Jia, F. Lu, Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 17(23), 2872–2877 (2005). https://doi.org/10.1002/adma.200500936
- F. Song, H. Su, J. Han, W.M. Lau, W.-J. Moon, D. Zhang, Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J. Phys. Chem. C 116(18), 10274–10281 (2012). https://doi.org/10.1021/jp2118136
- T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 19(4), 653–661 (2009). https://doi.org/10.1002/adfm.200801458
- E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez-Ramirez et al., Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications. Adv. Funct. Mater. 17(11), 1801–1806 (2007). https://doi.org/10.1002/adfm.200600722
- M. D’Arienzo, L. Armelao, A. Cacciamani, C.M. Mari, S. Polizzi et al., One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater. 22(13), 4083–4089 (2010). https://doi.org/10.1021/cm100866g
- M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters. J. Am. Chem. Soc. 133(14), 5296–5304 (2011). https://doi.org/10.1021/ja109511a
- J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–800 (2016). https://doi.org/10.1126/science.aaf5251
- A.J. Therrien, A.J. Hensley, M.D. Marcinkowski, R. Zhang, F.R. Lucci et al., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1(3), 192 (2018). https://doi.org/10.1038/s41929-018-0028-2
- A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
- Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28(4), 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
- B. Jang, K.Y. Lee, J.-S. Noh, W. Lee, Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films. Sens. Actuator. B: Chem. 193, 530–535 (2014). https://doi.org/10.1016/j.snb.2013.11.080
- G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669 (2009). https://doi.org/10.1038/nnano.2009.235
- N. Kahn, O. Lavie, M. Paz, Y. Segev, H. Haick, Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 15(10), 7023–7028 (2015). https://doi.org/10.1021/acs.nanolett.5b03052
- J.-W. Yoon, J.-S. Kim, T.-H. Kim, Y.J. Hong, Y.C. Kang, J.-H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12(31), 4229–4240 (2016). https://doi.org/10.1002/smll.201601507
- C.-L. Zhu, H.-L. Yu, Y. Zhang, T.-S. Wang, Q.-Y. Ouyang et al., Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces. 4(2), 665–671 (2012). https://doi.org/10.1021/am201689x
- S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces. 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a
- S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11(19), 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
- T. Kida, A. Nishiyama, Z. Hua, K. Suematsu, M. Yuasa, K. Shimanoe, WO3 nano lamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30(9), 2571–2579 (2014). https://doi.org/10.1021/la4049105
- Y.-C. Her, B.-Y. Yeh, S.-L. Huang, Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. ACS Appl. Mater. Interfaces. 6(12), 9150–9159 (2014). https://doi.org/10.1021/am5012518
- A. Kumar, S. Samanta, A. Singh, M. Roy, S. Singh et al., Fast response and high sensitivity of ZnO nanowires—cobalt phthalocyanine heterojunction based H2S sensor. ACS Appl. Mater. Interfaces. 7(32), 17713–17724 (2015). https://doi.org/10.1021/acsami.5b03652
- J.H. Kim, A. Katoch, S.H. Kim, S.K. Sang, Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core-shell nanowires. ACS Appl. Mater. Interfaces. 7(28), 15351–15358 (2015). https://doi.org/10.1021/acsami.5b03224
- D. Zhang, Z. Wu, X. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sens. Actuat. B: Chem. 274, 575–586 (2018). https://doi.org/10.1016/j.snb.2018.08.001
- Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, Q. Wei, Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 52(2), 686–695 (2017). https://doi.org/10.1007/s10853-016-0362-1
- M. Villani, D. Calestani, L. Lazzarini, L. Zanotti, R. Mosca, A. Zappettini, Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J. Mater. Chem. 22(12), 5694–5699 (2012). https://doi.org/10.1039/C2JM16164H
- J. Zhai, D. Wang, L. Peng, Y. Lin, X. Li, T. Xie, Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sens. Actuat. B: Chem. 147(1), 234–240 (2010). https://doi.org/10.1016/j.snb.2010.03.003
- J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces. 3(7), 2253–2258 (2011). https://doi.org/10.1021/am200008y
- A. Chizhov, M. Rumyantseva, R. Vasiliev, D. Filatova, K. Drozdov, I. Krylov, A. Abakumov, A. Gaskov, Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuat. B: Chem. 205, 305–312 (2014). https://doi.org/10.1016/j.snb.2014.08.091
- L. Huo, X. Yang, Z. Liu, X. Tian, T. Qi, X. Wang, K. Yu, J. Sun, M. Fan, Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sens. Actuat. B: Chem. 244, 694–700 (2017). https://doi.org/10.1016/j.snb.2017.01.061
- C.-H. Kwak, T.-H. Kim, S.-Y. Jeong, J.-W. Yoon, J.-S. Kim, J.-H. Lee, Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk-shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces. 10(22), 18886–18894 (2018). https://doi.org/10.1021/acsami.8b04245
- E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j
- E.-X. Chen, H.-R. Fu, R. Lin, Y.-X. Tan, J. Zhang, Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material. ACS Appl. Mater. Interfaces. 6(24), 22871–22875 (2014). https://doi.org/10.1021/am5071317
- H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2016). https://doi.org/10.1021/acssensors.5b00236
- M.F. Koudehi, S.M. Pourmortazavi, Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2,4-DNT vapor recognition. Electroanalysis 30(10), 2302–2310 (2018). https://doi.org/10.1002/elan.201700751
- K. Tan, S. Zuluaga, E. Fuentes, E.C. Mattson, J.F. Veyan, H. Wang, J. Li, T. Thonhauser, Y.J. Chabal, Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nat. Commun. 7, 13871 (2016). https://doi.org/10.1038/ncomms13871
- H. Li, M.M. Sadiq, K. Suzuki, R. Ricco, C. Doblin et al., Magnetic metal-organic frameworks for efficient carbon dioxide capture and remote trigger release. Adv. Mater. 28(9), 1839–1844 (2016). https://doi.org/10.1002/adma.201505320
- P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Controlling guest conformation for efficient purification of butadiene. Science 356(6343), 1193–1196 (2017). https://doi.org/10.1126/science.aam7232
- F. Vermoortele, M. Maes, P.Z. Moghadam, M.J. Lennox, F. Ragon et al., p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity. J. Am. Chem. Soc. 133(46), 18526–18529 (2011). https://doi.org/10.1021/ja207287h
- L. Zhang, P. Cui, H. Yang, J. Chen, F. Xiao et al., Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting. Adv. Sci. 3(1), 1500243 (2016). https://doi.org/10.1002/advs.201500243
- M. Zhao, K. Yuan, W. Yun, G. Li, J. Guo, G. Lin, W. Hu, H. Zhao, Z. Tang, Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627), 76 (2016). https://doi.org/10.1038/nature19763
- M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 127(14), 4423–4426 (2015). https://doi.org/10.1002/anie.201411854
- D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
- T. Yamada, M. Sadakiyo, H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131(9), 3144–3145 (2009). https://doi.org/10.1021/ja808681m
- G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 135(20), 7438–7441 (2013). https://doi.org/10.1021/ja402727d
- L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
- G. Xu, G.C. Guo, M.S. Yao, Z.H. Fu, G.E. Wang, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications: 14, vol. 1 (Wiley, Weinheim, 2016), pp. 421–462. https://doi.org/10.1002/9783527693078.ch1
- M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan et al., New porous crystals of extended metal-catecholates. Chem. Mater. 24(18), 3511–3513 (2012). https://doi.org/10.1021/cm301194a
- A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila et al., Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166), 66–69 (2014). https://doi.org/10.1126/science.1246738
- X. Huang, P. Sheng, Z.Y. Tu, F.J. Zhang, J.H. Wang et al., A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015). https://doi.org/10.1038/ncomms8408
- S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2009). https://doi.org/10.1021/ic802117q
- T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi et al., π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013). https://doi.org/10.1021/ja312380b
- S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer Cu[Cu (pdt)2] composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2008). https://doi.org/10.1021/ic802117q
- X. Ribas, J.C. Dias, J. Morgado, K. Wurst, I.C. Santos et al., Alkaline side-coordination strategy for the design of nickel (II) and nickel (III) bis (1, 2-diselenolene) complex based materials. Inorg. Chem. 43(12), 3631–3641 (2004). https://doi.org/10.1021/ic049860x
- K.J. Erickson, F. Leonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27(22), 3453–3459 (2015). https://doi.org/10.1002/adma.201501078
- S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, M. Dinca, Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 137(5), 1774–1777 (2015). https://doi.org/10.1021/ic049860x
- J. Cui, Z. Xu, An electroactive porous network from covalent metal-dithiolene links. Chem. Commun. 50(30), 3986–3988 (2014). https://doi.org/10.1039/c4cc00408f
- T. Panda, R. Banerjee, High Charge Carrier Mobility in two dimensional indium (III) isophthalic acid based frameworks. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 84(2), 331–336 (2014). https://doi.org/10.1007/s40010-014-0152-6
- D. Chen, H. Xing, Z. Su, C. Wang, Electrical conductivity and electroluminescence of a new anthracene-based metal-organic framework with π-conjugated zigzag chains. Chem. Commun. 52(10), 2019–2022 (2016). https://doi.org/10.1039/C5CC09065B
- L.E. Darago, M.L. Aubrey, C.J. Yu, M.I. Gonzalez, J.R. Long, Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J. Am. Chem. Soc. 137(50), 15703–15711 (2015). https://doi.org/10.1021/jacs.5b10385
- L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, M. Dincă, Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 137(19), 6164–6167 (2015). https://doi.org/10.1021/jacs.5b02897
- D. Sheberla, L. Sun, M.A. Blood-Forsythe, S.L. Er, C.R. Wade, C.K. Brozek, A.N. Aspuru-Guzik, M. Dincă, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014). https://doi.org/10.1021/ja502765n
- T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui et al., Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014). https://doi.org/10.1021/ja507619d
- C. Hermosa, J.V. Alvarez, M.R. Azani, C.J. Gomez-Garcia, M. Fritz et al., Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nat. Commun. 4, 1709 (2013). https://doi.org/10.1038/ncomms2696
- S. Takaishi, Y. Tobu, H. Kitagawa, A. Goto, T. Shimizu, T. Okubo, T. Mitani, R. Ikeda, The NOR observation of Spin-Peierls transition in an antiferromagnetic MX-chain complex NiBr(chxn) (2) Br-2. J. Am. Chem. Soc. 126(6), 1614–1615 (2004). https://doi.org/10.1021/ja039857x
- R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, New insight into the nature of Cu (TCNQ): solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 38(1), 144–156 (1999). https://doi.org/10.1021/ic9812095
- M.G. Campbell, S.F. Liu, T.M. Swager, M. Dinca, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
- M.K. Smith, K.E. Jensen, P.A. Pivak, K.A. Mirica, Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28(15), 5264–5268 (2016). https://doi.org/10.1021/acs.chemmater.6b02528
- M.K. Smith, K.A. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017). https://doi.org/10.1021/jacs.7b08840
- D.F. Altomare, F. Porcelli, A. Picciariello, M. Pinto, M. Di Lena et al., The use of the PEN3 e-nose in the screening of colorectal cancer and polyps. Tech. Coloproctol. 20(6), 405–409 (2016). https://doi.org/10.1007/s10151-016-1457-z
- T.W. Zhang, T.Liu, M. Zhang, Y. Zhang, H. Li et al., NOS.E: a new fast response electronic nose health monitoring system, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018, pp. 4977–4980 (2018). http://doi.org/10.1109/EMBC.2018.8513416
- W. Li, H. Liu, D. Xie, Z. He, X. Pi, Lung cancer screening based on type-different sensor arrays. Sci. Rep. 7(1), 1969 (2017). https://doi.org/10.1038/s41598-017-02154-9
- C.G. Waltman, T.A.T. Marcelissen, J.G.H. van Roermund, Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (aeonose): a preliminary report. Eur. Urol. Focus (2018). https://doi.org/10.1016/j.euf.2018.11.006
- V.N.E. Schuermans, Z. Li, A. Jongen, Z. Wu, J. Shi, J. Ji, N.D. Bouvy, Pilot study: detection of gastric cancer from exhaled air analyzed with an electronic nose in Chinese patients. Surg. Innov. 25(5), 429–434 (2018). https://doi.org/10.1177/1553350618781267
- A. Sanaeifar, H. ZakiDizaji, A. Jafari, M.D.L. Guardia, Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trend. Anal. Chem. 97, 257–271 (2017). https://doi.org/10.1016/j.trac.2017.09.014
- H. Yu, J. Wang, Y. Xu, Identification of adulterated milk using electronic nose. Sens. Mater. 19, 275–285 (2007). https://doi.org/10.1007/978-0-387-71720-3_15
- A.H. Gómez, J. Wang, G. Hu, A.G. Pereira, Electronic nose technique potential monitoring mandarin maturity. Sens. Actuat. B: Chem. 113(1), 347–353 (2006). https://doi.org/10.1016/j.snb.2005.03.090
- A. Blanco-Rodriguez, V.F. Camara, F. Campo, L. Becheran, A. Duran et al., Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 134, 92–100 (2018). https://doi.org/10.1016/j.watres.2018.01.067
- S. Borah, E.L. Hines, M.S. Leeson, D.D. Iliescu, M. Bhuyan, J.W. Gardner, Neural network based electronic nose for classification of tea aroma. Sens. Instrum. Food Qual. Saf. 2(1), 7–14 (2007). https://doi.org/10.1007/s11694-007-9028-7
- L. Wozniak, P. Kalinowski, G. Jasinski, P. Jasinski, FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference. Microelectron. Reliab. 84, 163–169 (2018). https://doi.org/10.1016/j.microrel.2018.03.034
- A.A.S. Ali, A. Farhat, S. Mohamad, A. Amira, F. Bensaali, M. Benammar, A. Bermak, Embedded platform for gas applications using hardware/software co-design and RFID. IEEE Sens. J. 18(11), 4633–4642 (2018). https://doi.org/10.1109/jsen.2018.2822711
- M. Ghasemi-Varnamkhasti, Z.S. Amiri, M. Tohidi, M. Dowlati, S.S. Mohtasebi, A.C. Silva, D.D.S. Fernandes, M.C.U. Araujo, Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta 176, 221–226 (2018). https://doi.org/10.1016/j.talanta.2017.08.024
- S. Cui, J. Wang, L. Yang, J. Wu, X. Wang, Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC-MS combined with chemometrics. J. Pharm. Biomed. Anal. 102, 64–77 (2015). https://doi.org/10.1016/j.jpba.2014.08.030
- J. Gardner, J. Yinon, Electronic Noses and Sensors for the Detection of Explosives (Springer, Netherlands, 2004). https://doi.org/10.1007/1-4020-2319-7
- C. Olguín, N. Laguarda-Miró, L. Pascual, E. García-Breijo, R. Martínez-Mañez, J. Soto, An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sens. Actuat. B: Chem. 202, 31–37 (2014). https://doi.org/10.1016/j.snb.2014.05.060
- B. Wang, T.-P. Huynh, W. Wu, N. Hayek, T.T. Do et al., A highly sensitive diketopyrrolopyrrole-based ambipolar transistor for selective detection and discrimination of xylene isomers. Adv. Mater. 28(21), 4012–4018 (2016). https://doi.org/10.1002/adma.201505641
- R.G. Pavelko, H. Daly, M. Hübner, C. Hardacre, E. Llobet, Time-resolved DRIFTS, MS, and resistance study of SnO2 materials: the role of surface hydroxyl groups in formation of donor states. J. Phys. Chem. C 117(8), 4158–4167 (2013). https://doi.org/10.1021/jp312532u
- A. Oprea, N. Bârsan, U. Weimar, Work function changes in gas sensitive materials: fundamentals and applications. Sens. Actuat. B: Chem. 142(2), 470–493 (2009). https://doi.org/10.1016/j.snb.2009.06.043
- H. Feng, S. Tan, H. Tang, Q. Zheng, Y. Shi et al., Temperature- and coverage-dependent kinetics of photocatalytic reaction of methanol on TiO2 (110) − (1 × 1) surface. J. Phys. Chem. C 120(10), 5503–5514 (2016). https://doi.org/10.1021/acs.jpcc.5b12010
- K.R. Phillips, S.C. Jensen, M. Baron, S.-C. Li, C.M. Friend, Sequential photo-oxidation of methanol to methyl formate on TiO2(110). J. Am. Chem. Soc. 135(2), 574–577 (2013). https://doi.org/10.1021/ja3106797
- J. Wu, H. Shan, W. Chen, X. Gu, P. Tao, C. Song, W. Shang, T. Deng, In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28(44), 9686–9712 (2016). https://doi.org/10.1002/adma.201602519
- K. Kishita, T. Kamino, A. Watabe, K. Kuroda, H. Saka, In situ TEM observation of solid-gas reactions. J. Phys: Conf. Ser. 126(1), 012085 (2008). https://doi.org/10.1088/1742-6596/126/1/012085
- M. Yoosefian, H. Raissi, A. Mola, The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens. Actuat. B: Chem. 212, 55–62 (2015). https://doi.org/10.1016/j.snb.2015.02.004
- V.V. Dobrokhotov, D.N. McIlroy, M.G. Norton, C.A. Berven, Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing. Nanotechnology 17(16), 4135–4142 (2006). https://doi.org/10.1088/0957-4484/17/16/024
- L. Wang, R. Chai, Z. Lou, G. Shen, Highly sensitive hybrid nanofiber-based room-temperature CO sensors: experiments and density functional theory simulations. Nano Res. 11(2), 1029–1037 (2017). https://doi.org/10.1007/s12274-017-1718-9
- A. Omidvar, M. Anafcheh, N.L. Hadipour, Computational studies on carbon nanotube-graphene nanoribbon hybrids by density functional theory calculations. Sci. Iran. 20(3), 1014–1017 (2013). https://doi.org/10.1016/j.scient.2013.05.018
- Z. Guo, N. Liao, M. Zhang, W. Xue, Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor. Appl. Surf. Sci. 453, 336–340 (2018). https://doi.org/10.1016/j.apsusc.2018.05.108
- H. Fu, X. Yang, X. An, W. Fan, X. Jiang, A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuat. B: Chem. 252, 103–115 (2017). https://doi.org/10.1016/j.snb.2017.05.027
- J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43(20), 6920–6937 (2014). https://doi.org/10.1039/c4cs00180j
- D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chem. 18(20), 5391–5411 (2016). https://doi.org/10.1039/c6gc01582d
- C. Gao, J. Wang, H. Xu, Y. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 46(10), 2799–2823 (2017). https://doi.org/10.1039/c6cs00727a
- K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol., C 9(4), 171–192 (2008). https://doi.org/10.1016/j.jphotochemrev.2008.09.001
- Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42(7), 2568–2580 (2013). https://doi.org/10.1039/c2cs35355e
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/b800489g
- Y.Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng et al., Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119(22), 11761–11817 (2019). https://doi.org/10.1021/acs.chemrev.9b00437
- M.-S. Yao, L.-A. Cao, Y.-X. Tang, G.-E. Wang, R.-H. Liu et al., Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. J. Mater. Chem. A 7(31), 18397–18403 (2019). https://doi.org/10.1039/C9TA05226G
- M. Yao, J.-J. Zheng, A.-Q. Wu, G. Xu, S.S. Nagarkar, G. Zhang, M. Tsujimoto, S. Sakaki, S. Horike, K.-I. Otake, Dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem. Int. Ed. 59(1), 172–176 (2020). https://doi.org/10.1002/anie.201909096
- M.S. Yao, J.W. Xiu, Q.Q. Huang, W.-H. Li, W.W. Wu et al., Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58(42), 14915–14919 (2019). https://doi.org/10.1002/anie.201907772
- X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- W. Wu, B. Wang, M. Segev-Bar, W. Dou, F. Niu et al., Free-standing and eco-friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli. Adv. Funct. Mater. 27(40), 1703147 (2017). https://doi.org/10.1002/adfm.201703147
- O.S. Kwon, S.J. Park, J.S. Lee, E. Park, T. Kim et al., Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 12(6), 2797–2802 (2012). https://doi.org/10.1021/nl204587t
- K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015). https://doi.org/10.1016/j.snb.2015.02.025
- S. Cui, S. Mao, G. Lu, J. Chen, Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J. Phys. Chem. Lett. 4(15), 2441–2454 (2013). https://doi.org/10.1021/jz400976a31d
- S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2(16), 5573–5579 (2014). https://doi.org/10.1039/c3ta13823b
- H.R. Estakhroyeh, E. Rashedi, M. Mehran, Design and construction of electronic nose for multi-purpose applications by sensor array arrangement using IBGSA. J. Intell. Robot. Syst. 92(2), 205–221 (2017). https://doi.org/10.1007/s10846-017-0759-3
- J.L. Herrero, J. Lozano, J.P. Santos, J.I. Suarez, On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere 152, 107–116 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.106
- F. Chang, P. Heinemann, Prediction of human responses to dairy odor using an electronic nose and neural networks. Trans. ASABE 61(2), 399–409 (2018). https://doi.org/10.13031/trans.12177
- J.C. Rodriguez Gamboa, E.S. Albarracin E, A.J. da Silva, L.L. de Andrade-Lima, T.A.E. Ferreira, Wine quality rapid detection using a compact electronic nose system: application focused on spoilage thresholds by acetic acid. Lwt 108, 377–384 (2019). https://doi.org/10.1016/j.lwt.2019.03.074
- M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasebi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006
- A. Gorji-Chakespari, A.M. Nikbakht, F. Sefidkon, M. Ghasemi-Varnamkhasti, J. Brezmes, E. Llobet, Performance comparison of fuzzy ARTMAP and LDA in qualitative classification of iranian rosa damascena essential oils by an electronic nose. Sensors (Basel) 16(5), 636 (2016). https://doi.org/10.3390/s16050636
- W. Dong, J. Zhao, R. Hu, Y. Dong, L. Tan, Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 229, 743–751 (2017). https://doi.org/10.1016/j.foodchem.2017.02.149
- A. Shahid, J.H. Choi, A. Rana, H.S. Kim, Least squares neural network-based wireless E-Nose system using an SnO2 sensor array. Sensors (Basel) 18(5), 1446 (2018). https://doi.org/10.3390/s18051446
- L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015). https://doi.org/10.1039/c4ra14354j
- K. He, Z. Jin, X. Chu, W. Bi, W. Wang, C. Wang, S. Liu, Fast response–recovery time toward acetone by a sensor prepared with Pd doped WO3 nanosheets. RSC Adv. 9(49), 28439–28450 (2019). https://doi.org/10.1039/c9ra04429a
- L. Lv, Y. Wang, P. Cheng, B. Zhang, F. Dang, L. Xu, Ultrasonic spray pyrolysis synthesis of three-dimensional ZnFe2O4-based macroporous spheres for excellent sensitive acetone gas sensor. Sens. Actuat. B: Chem. 297, 126755 (2019). https://doi.org/10.1016/j.snb.2019.126755
- K. Shingange, H. Swart, G.H. Mhlongo, Ultrafast detection of low acetone concentration displayed by Au-loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of Au nanoparticles. ACS Omega 4(21), 19018–19029 (2019). https://doi.org/10.1021/acsomega.9b01989
- C.-L. Hsu, B.-Y. Jhang, C. Kao, T.-J. Hsueh, UV-illumination and Au-nanoparticles enhanced gas sensing of p-type Na-doped ZnO nanowires operating at room temperature. Sens. Actuat. B: Chem. 274, 565–574 (2018). https://doi.org/10.1016/j.snb.2018.08.016
- Y. Zhang, L. Zhou, Y. Liu, D. Liu, F. Liu et al., Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection. J. Colloid Interface Sci. 531, 74–82 (2018). https://doi.org/10.1016/j.jcis.2018.07.052
- Y. Lu, J. Li, J. Han, H.T. Ng, C. Binder, C. Partridge, M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391(4–6), 344–348 (2004). https://doi.org/10.1016/j.cplett.2004.05.029
- H. Li, J. Xu, Y. Zhu, X. Chen, Q. Xiang, Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires. Talanta 82(2), 458–463 (2010). https://doi.org/10.1016/j.talanta.2010.04.053
- J.-Y. Kim, J.-H. Lee, J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Realization of H2S sensing by Pd-functionalized networked CuO nanowires in self-heating mode. Sens. Actuat. B: Chem. 299, 126965 (2019). https://doi.org/10.1016/j.snb.2019.126965
- Y. Yang, C. Tian, J. Wang, L. Sun, K. Shi, W. Zhou, H. Fu, Facile synthesis of novel 3D nanoflower-like Cu(x)O/multilayer graphene composites for room temperature NO(x) gas sensor application. Nanoscale 6(13), 7369–7378 (2014). https://doi.org/10.1039/c4nr00196f
- J. Zhang, D. Zeng, S. Zhao, J. Wu, K. Xu, Q. Zhu, G. Zhang, C. Xie, Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO? Phys. Chem. Chem. Phys. 17(22), 14903–14911 (2015). https://doi.org/10.1039/c5cp01987g
- Q. Huang, D. Zeng, H. Li, C. Xie, Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4(18), 5651–5658 (2012). https://doi.org/10.1039/c2nr31131c
- H. Wang, S. Nie, H. Li, R. Ali, J. Fu et al., 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 4(9), 2343–2350 (2019). https://doi.org/10.1021/acssensors.9b00882
- M. Kooti, S. Keshtkar, M. Askarieh, A. Rashidi, Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuator. B: Chem. 281, 96–106 (2019). https://doi.org/10.1016/j.snb.2018.10.032
- H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song et al., Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces. 8(1), 840–846 (2016). https://doi.org/10.1021/acsami.5b10188
- F. Liang, S. Chen, W. Xie, C. Zou, The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing. J. Phys. Chem. Solids 114, 195–200 (2018). https://doi.org/10.1016/j.jpcs.2017.11.001
- C. Zou, J. Hu, Y. Su, F. Shao, Z. Tao et al., Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front. Mater. 6, 00195 (2019). https://doi.org/10.3389/fmats.2019.00195
- T. Jiang, P. Wan, Z. Ren, S. Yan, Anisotropic polyaniline/SWCNT composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces. 11(41), 38169–38176 (2019). https://doi.org/10.1021/acsami.9b13336
- G.K. Ekaterina Dovgolevsky, U. Tisch, H. Haick, Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly umid atmospheres. Am. Chem. Soc. 114(33), 14042–14049 (2010). https://doi.org/10.1021/jp105810w
- C.H. Park, V. Schroeder, B.J. Kim, T.M. Swager, Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 3(11), 2432–2437 (2018). https://doi.org/10.1021/acssensors.8b00987
- Y. Zilberman, U. Tisch, G. Shuster, W. Pisula, X. Feng, K. Mullen, H. Haick, Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv. Mater. 22(38), 4317–4320 (2010). https://doi.org/10.1002/adma.201001275
- P. Sun, Y. Cai, S. Du, X. Xu, L. You et al., Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuat. B: Chem. 182, 336–343 (2013). https://doi.org/10.1016/j.snb.2013.03.019
- G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuat. B: Chem. 162(1), 82–88 (2012). https://doi.org/10.1016/j.snb.2011.12.039
- D. Gu, X. Li, Y. Zhao, J. Wang, Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens. Actuat. B: Chem. 244, 67–76 (2017). https://doi.org/10.1016/j.snb.2016.12.125
- C.W. Peng Sun, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl. Mater. Interfaces. 7(34), 19119–19125 (2015). https://doi.org/10.1021/acsami.5b04751
- X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors. ACS Appl. Mater. Interfaces. 7(32), 17811–17818 (2015). https://doi.org/10.1021/acsami.5b04118
- C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces. 6(15), 12031–12307 (2014). https://doi.org/10.1021/am501063z
- K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces. 7(21), 11359–12368 (2015). https://doi.org/10.1021/acsami.5b01856
- C. Wu, J. Zhang, X. Wang, C. Xie, S. Shi, D. Zeng, Effect of heterointerface on NO2 sensing properties of in situ formed TiO2 QDs-decorated NiO nanosheets. Nanomaterials 9(11), 1628 (2019). https://doi.org/10.3390/nano9111628
- X. Chang, X. Li, X. Qiao, K. Li, Y. Xiong, X. Li, T. Guo, L. Zhu, Q. Xue, Metal-organic frameworks derived ZnO@MoS nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery. Sens. Actuat. B: Chem. 304, 127430 (2020). https://doi.org/10.1016/j.snb.2019.127430
- K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Enhanced acetone gas sensing response of ZnO/ZnCo2O4 nanotubes synthesized by single capillary electrospinning technology. Sens. Actuat. B: Chem. 252, 511–522 (2017). https://doi.org/10.1016/j.snb.2017.06.034
- J.H. Bang, M.S. Choi, A. Mirzaei, W. Oum, S. Han, S.S. Kim, H.W. Kim, Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46(1), 604–611 (2020). https://doi.org/10.1016/j.ceramint.2019.09.010
- S. Li, A. Liu, Z. Yang, J. He, J. Wang et al., Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuat. B: Chem. 299, 126970 (2019). https://doi.org/10.1016/j.snb.2019.126970
- L. Liu, Y. Wang, Y. Dai, G. Li, S. Wang, T. Li, T. Zhang, S. Qin, In situ growth of NiO@SnO2 hierarchical nanostructures for high performance H2S sensing. ACS Appl. Mater. Interfaces. 11(47), 44829–44836 (2019). https://doi.org/10.1021/acsami.9b13001
- Q. Sun, J. Wang, J. Hao, S. Zheng, P. Wan, T. Wang, H. Fang, Y. Wang, SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 11(29), 13741–13749 (2019). https://doi.org/10.1039/c9nr02780g
- W. Zeng, Y. Liu, J. Mei, C. Tang, K. Luo, S. Li, H. Zhan, Z. He, Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sens. Actuat. B: Chem. 301, 127010 (2019). https://doi.org/10.1016/j.snb.2019.127010
- X. Zhou, W. Feng, C. Wang, X. Hu, X. Li, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2(41), 17683–17690 (2014). https://doi.org/10.1039/c4ta04386c
- L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, Y. Lin, Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915–12920 (2012). https://doi.org/10.1039/c2jm16105b
- T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuat. B: Chem. 258, 1099–1106 (2018). https://doi.org/10.1016/j.snb.2017.12.024
- M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
- X. Wu, S. Xiong, Z. Mao, S. Hu, X. Long, A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chemistry 23(33), 7969–7975 (2017). https://doi.org/10.1002/chem.201700320
- S.S. Nair, N. Illyaskutty, B. Tam, A.O. Yazaydin, K. Emmerich et al., ZnO@ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sens. Actuat. B: Chem. 304, 127184 (2020). https://doi.org/10.1016/j.snb.2019.127184
- P. Wang, X. Zou, H. Tan, S. Wu, L. Jiang, G. Zhu, Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 6(20), 5412–5419 (2018). https://doi.org/10.1039/c8tc00987b
- H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2015). https://doi.org/10.1021/acssensors.5b00236
- M. Drobek, J.H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces. 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062
- L. Dang, G. Zhang, K. Kan, Y. Lin, F. Bai, L. Jing, P. Shen, L. Li, K. Shi, Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature. J. Mater. Chem. A 2(13), 4558–4565 (2014). https://doi.org/10.1039/c3ta15019d
- X. Zhang, Y. Sun, Y. Fan, Z. Liu, Z. Zeng, H. Zhao, X. Wang, J. Xu, Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde. J. Mater. Sci.-Mater. Electron. 30(23), 20624–20637 (2019). https://doi.org/10.1007/s10854-019-02428-0
- S. Javanmardi, S. Nasresfahani, M.H. Sheikhi, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater. Res. Bull. 118, 110496 (2019). https://doi.org/10.1016/j.materresbull.2019.110496
- J.H. Lee, J.H. Kim, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, ppb-Level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors (Basel) 19(19), 4276 (2019). https://doi.org/10.3390/s19194276
- Y. Xia, J. Wang, L. Xu, X. Li, S. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B: Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
- H. Tian, H. Fan, J. Ma, Z. Liu, L. Ma, S. Lei, J. Fang, C. Long, Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 341, 102–111 (2018). https://doi.org/10.1016/j.jhazmat.2017.07.056
- W.-C. Lu, S.S. Kumar, Y.-C. Chen, C.-M. Hsu, H.-N. Lin, Au/Cu2O/ZnO ternary nanocomposite for low concentration NO2 gas sensing at room temperature. Mater. Lett. 256, 126657 (2019). https://doi.org/10.1016/j.matlet.2019.126657
- Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang et al., Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. J. Mater. Sci.-Mater. Electron. 28(22), 17049–17057 (2017). https://doi.org/10.1007/s10854-017-7630-y
- Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu et al., TiO2/InVO4 n–n heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54(21), 13660–13673 (2019). https://doi.org/10.1007/s10853-019-03868-z
- S. Nasresfahani, M.H. Sheikhi, M. Tohidi, A. Zarifkar, Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 89, 161–169 (2017). https://doi.org/10.1016/j.materresbull.2017.01.032
- S. Li, Y. Diao, Z. Yang, J. He, J. Wang et al., Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuator. B: Chem. 276, 526–533 (2018). https://doi.org/10.1016/j.snb.2018.08.120
- B. Liu, Y. Li, L. Gao, F. Zhou, G. Duan, Ultrafine Pt NPs-decorated SnO2/α-Fe2O3 hollow nanospheres with highly enhanced sensing performances for styrene. J. Hazard. Mater. 358, 355–365 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.021
- M. Chen, H. Wang, J. Hu, Y. Zhang, K. Li et al., Near-room-temperature ethanol gas sensor based on mesoporous Ag/Zn–LaFeO3 nanocomposit
References
H.D. Kotha, V.M. Gupta, IoT application: a survey. Int. J. Eng. Technol. 7(2.7), 891–896 (2018). https://doi.org/10.14419/ijet.v7i2.7.11089
W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2018). https://doi.org/10.1002/admt.201800488
T.T. Dung, Y. Oh, S.-J. Choi, I.-D. Kim, M.-K. Oh, M. Kim, Applications and advances in bioelectronic noses for odour sensing. Sensors 18(1), 103 (2018). https://doi.org/10.3390/s18010103
J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2015). https://doi.org/10.1002/adma.201503825
I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61(3), 974–1000 (2013). https://doi.org/10.1016/j.actamat.2012.10.041
J.F. Fennell, S.F. Liu, J.M. Azzarelli, J.G. Weis, S. Rochat, K.A. Mirica, J.B. Ravnsbæk, T.M. Swager, Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55(4), 1266–1281 (2015). https://doi.org/10.1002/anie.201505308
K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor principles and Applications (CRC Press, London, 2017). https://doi.org/10.1201/9780203735893
G. Korotcenkov, B.K. Cho, Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuat. B: Chem. 244, 182–210 (2017). https://doi.org/10.1016/j.snb.2016.12.117
A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015). https://doi.org/10.1021/cr400659h
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
Y. Li, A.-S. Xiao, B. Zou, H.-X. Zhang, K.-L. Yan, Y. Lin, Advances of metal–organic frameworks for gas sensing. Polyhedron 154, 83–97 (2018). https://doi.org/10.1016/j.poly.2018.07.028
R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater. Des. 156, 154–166 (2018). https://doi.org/10.1016/j.matdes.2018.06.041
S. Buratti, S. Benedetti, G. Giovanelli, Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur. Food Res. Technol. 243(3), 511–520 (2017). https://doi.org/10.1007/s00217-016-2769-y
Z. Yang, F. Dong, K. Shimizu, T. Kinoshita, M. Kanamori, A. Morita, N. Watanabe, Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose. J. Food Eng. 92(3), 312–316 (2009). https://doi.org/10.1016/j.jfoodeng.2008.11.014
R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kashwan, M. Bhuyan, Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuat. B: Chem. 94(2), 228–237 (2003). https://doi.org/10.1016/S0925-4005(03)00367-8
G.J.A.A. Soler-Illia, O. Azzaroni, Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 40(2), 1107–1150 (2011). https://doi.org/10.1039/C0CS00208A
J.C. Tan, A.K. Cheetham, Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40(2), 1059–1080 (2011). https://doi.org/10.1039/C0CS00163E
G. Rogez, C. Massobrio, P. Rabu, M. Drillon, Layered hydroxide hybrid nanostructures: a route to multifunctionality. Chem. Soc. Rev. 40(2), 1031–1058 (2011). https://doi.org/10.1039/C0CS00159G
C. Laberty-Robert, K. Vallé, F. Pereira, C. Sanchez, Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem. Soc. Rev. 40(2), 961–1005 (2011). https://doi.org/10.1039/C0CS00144A
J. Le Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40(2), 907–925 (2011). https://doi.org/10.1039/C0CS00059K
B. Lebeau, P. Innocenzi, Hybrid materials for optics and photonics. Chem. Soc. Rev. 40(2), 886–906 (2011). https://doi.org/10.1039/C0CS00106F
N. Brun, S. Ungureanu, H. Deleuze, R. Backov, Hybrid foams, colloids and beyond: from design to applications. Chem. Soc. Rev. 40(2), 771–788 (2011). https://doi.org/10.1039/B920518G
K. Kanamori, K. Nakanishi, Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40(2), 754–770 (2011). https://doi.org/10.1039/C0CS00068J
C. Sanchez, P. Belleville, M. Popall, L. Nicole, Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40(2), 696–753 (2011). https://doi.org/10.1039/C0CS00136H
L.-C. Hu, K.J. Shea, Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem. Soc. Rev. 40(2), 688–695 (2011). https://doi.org/10.1039/C0CS00219D
R. Pardo, M. Zayat, D. Levy, Photochromic organic–inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011). https://doi.org/10.1039/C0CS00065E
J. Yuan, Y. Xu, A.H.E. Müller, One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem. Soc. Rev. 40(2), 640–655 (2011). https://doi.org/10.1039/C0CS00087F
T.-H. Tran-Thi, R. Dagnelie, S. Crunaire, L. Nicole, Optical chemical sensors based on hybrid organic–inorganic solgel nanoreactors. Chem. Soc. Rev. 40(2), 621–639 (2011). https://doi.org/10.1039/C0CS00021C
F. Hoffmann, M. Fröba, Vitalising porous inorganic silica networks with organic functions: PMOs and related hybrid materials. Chem. Soc. Rev. 40(2), 608–620 (2011). https://doi.org/10.1039/C0CS00076K
M. Vallet-Regí, M. Colilla, B. González, Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40(2), 596–607 (2011). https://doi.org/10.1039/C0CS00025F
J.-M. Oh, D.-H. Park, J.-H. Choy, Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 40(2), 583–595 (2011). https://doi.org/10.1039/C0CS00051E
U. Schubert, Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 40(2), 575–582 (2011). https://doi.org/10.1039/C0CS00009D
A. Mehdi, C. Reye, R. Corriu, From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev. 40(2), 563–574 (2011). https://doi.org/10.1039/B920516K
L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, B. Julián-López, P. Escribano, Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem. Soc. Rev. 40(2), 536–549 (2011). https://doi.org/10.1039/C0CS00069H
M. Clemente-León, E. Coronado, C. Martí-Gastaldo, F.M. Romero, Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chem. Soc. Rev. 40(2), 473–497 (2011). https://doi.org/10.1039/C0CS00111B
C. Sanchez, K.J. Shea, S. Kitagawa, Recent progress in hybrid materials science. Chem. Soc. Rev. 40(2), 471–472 (2011). https://doi.org/10.1039/C1CS90001C
M. Yao, P. Hu, Y. Cao, W. Xiang, X. Zhang, F. Yuan, Y. Chen, Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuat. B: Chem. 117, 562–569 (2013). https://doi.org/10.1016/j.snb.2012.11.088
N. Yamazoe, K. Shimanoe, New perspectives of gas sensor technology. Sens. Actuat. B: Chem. 138(1), 100–107 (2009). https://doi.org/10.1016/j.snb.2009.01.023
D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B: Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B: Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuat. B: Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003
Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015). https://doi.org/10.1002/adma.201405589
T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013). https://doi.org/10.1039/C2CS35379B
J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection. Mater. Today 11(3), 28–36 (2008). https://doi.org/10.1016/s1369-7021(08)70017-8
C.N. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuat. B: Chem. 3(2), 147–155 (1991). https://doi.org/10.1016/0925-4005(91)80207-z
J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuat. B: Chem. 66(1–3), 277–279 (2000). https://doi.org/10.1016/s0925-4005(00)00381-6
N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sensor response formula for sensor based on ZnO nanostructures. Sens. Actuat. B: Chem. 144(1), 67–72 (2010). https://doi.org/10.1021/am5081277
M. Yao, Q. Li, G. Hou, C. Lu, B. Cheng et al., Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Appl. Mater. Interfaces. 7(4), 2856–2866 (2015). https://doi.org/10.1021/am5081277
I.-S. Hwang, J.-K. Choi, H.-S. Woo, S.-J. Kim, S.-Y. Jung, T.-Y. Seong, I.-D. Kim, J.-H. Lee, Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces. 3(8), 3140–3145 (2011). https://doi.org/10.1021/am200647f
J.-S. Jang, S.-J. Choi, S.-J. Kim, M. Hakim, I.-D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016). https://doi.org/10.1002/adfm.201600797
S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, W.-T. Koo, H.L. Tuller, I.-D. Kim, Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv. Mater. 29(36), 1700737 (2017). https://doi.org/10.1002/adma.201700737
Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Appl. Mater. Interfaces. 4(8), 3797–3804 (2012). https://doi.org/10.1021/am3010303
S.-Y. Cho, H.-J. Koh, H.-W. Yoo, H.-T. Jung, Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017). https://doi.org/10.1021/acs.chemmater.7b01353
J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu et al., Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
Y.J. Hong, J.-W. Yoon, J.-H. Lee, Y.C. Kang, One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem. Eur. J. 20(10), 2737–2741 (2014). https://doi.org/10.1002/chem.201304502
X. Chen, Z. Guo, W.-H. Xu, H.-B. Yao, M.-Q. Li et al., Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 21(11), 2049–2056 (2011). https://doi.org/10.1002/adfm.201002701
G. Lu, L.E. Ocola, J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21(24), 2487–2491 (2009). https://doi.org/10.1002/adma.200803536
L. Guan, S. Wang, W. Gu, J. Zhuang, H. Jin, W. Zhang, T. Zhang, J. Wang, Ultrasensitive room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor. Sens. Actuat. B: Chem. 196, 321–327 (2014). https://doi.org/10.1016/j.snb.2014.02.014
H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M.A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134(10), 4905–4917 (2012). https://doi.org/10.1021/ja211683m
Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23), 12073–12080 (2016). https://doi.org/10.1039/C6NR02540D
Z. Wang, L. Huang, X. Zhu, X. Zhou, L. Chi, An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv. Mater. 29(38), 1703192 (2017). https://doi.org/10.1002/adma.201703192
A.R. Jalil, H. Chang, V.K. Bandari, P. Robaschik, J. Zhang et al., Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 28(15), 2971–2977 (2016). https://doi.org/10.1002/adma.201506293
S. Ji, H. Wang, T. Wang, D. Yan, A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv. Mater. 25(12), 1755–1760 (2013). https://doi.org/10.1002/adma.201204134
F. Shao, M.W.G. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol et al., Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuat. B: Chem. 181, 130–135 (2013). https://doi.org/10.1016/j.snb.2013.01.067
J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4(3), 1600319 (2017). https://doi.org/10.1002/advs.201600319
H. Jin, T.-P. Huynh, H. Haick, Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett. 16(7), 4194–4202 (2016). https://doi.org/10.1021/acs.nanolett.6b01066
M.W.G. Hoffmann, J. Daniel Prades, L. Mayrhofer, F. Hernandez-Ramirez, T.T. Jaervi, M. Moseler, A. Waag, H. Shen, Highly selective SAM-nanowire hybrid NO2 sensor: insight into charge transfer dynamics and alignment of frontier molecular orbitals. Adv. Funct. Mater. 24(5), 595–602 (2014). https://doi.org/10.1002/adfm.201301478
W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou et al., APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 6(23), 10976–10989 (2018). https://doi.org/10.1039/c8ta02452a
Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, X. Duan, A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 10(44), 20578–20586 (2018). https://doi.org/10.1039/C8NR04198A
B. Esser, J.M. Schnorr, T.M. Swager, Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew. Chem. Int. Ed. 51(23), 5752–5756 (2012). https://doi.org/10.1002/anie.201201042
P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). https://doi.org/10.1002/anie.201204373
J.-S. Jang, W.-T. Koo, S.-J. Choi, I.-D. Kim, Metal organic framework-templated chemiresistor: sensing type transition from p-to-n using hollow metal oxide polyhedron via galvanic replacement. J. Am. Chem. Soc. 139(34), 11868–11876 (2017). https://doi.org/10.1021/jacs.7b05246
M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28, 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces. 5(15), 7410–7416 (2013). https://doi.org/10.1021/am4017347
L. Xiao, S. Xu, G. Yu, S. Liu, Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sens. Actuat. B: Chem. 255, 2002–2010 (2018). https://doi.org/10.1016/j.snb.2017.08.216
S. Ishihara, J.M. Azzarelli, M. Krikorian, T.M. Swager, Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138(26), 8221–8227 (2016). https://doi.org/10.1021/jacs.6b03869
M.K. Nakhleh, H. Amal, H. Awad, A.L. Gharra, N. Abu-Saleh, R. Jeries, H. Haick, Z. Abassi, Sensor arrays based on nanoparticles for early detection of kidney injury by breath samples. Nanomed. Nanotechnol. 10(8), 1767–1776 (2014). https://doi.org/10.1016/j.nano.2014.06.007
Y. Deng, J. Sun, H. Jin, M. Khatib, X. Li et al., Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending. Adv. Healthc. Mater. 7(15), 1800232 (2018). https://doi.org/10.1002/adhm.201800232
X.M. Sun, Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43(5), 597–601 (2004). https://doi.org/10.1002/anie.200352386
L. Wang, Z. Lou, T. Fei, T. Zhang, Zinc oxide core-shell hollow microspheres with multi-shelled architecture for gas sensor applications. J. Mater. Chem. 21(48), 19331–19336 (2011). https://doi.org/10.1039/C1JM13354C
P. Rai, J.-W. Yoon, H.-M. Jeong, S.-J. Hwang, C.-H. Kwak, J.-H. Lee, Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale 6(14), 8292–8299 (2014). https://doi.org/10.1039/c4nr01906g
P. Rai, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J. Mater. Chem. A 4(1), 264–269 (2016). https://doi.org/10.1039/c5ta08873a
X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48(48), 9180–9183 (2009). https://doi.org/10.1002/anie.200903926
X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113(2), 584–589 (2009). https://doi.org/10.1021/jp808233e
K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensor 1(7), 913–920 (2016). https://doi.org/10.1021/acssensors.6b00323
N. Ma, K. Suematsu, M. Yuasa, K. Shimanoe, Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl. Mater. Interfaces. 7(28), 15618–15625 (2015). https://doi.org/10.1021/acsami.5b04380
Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). https://doi.org/10.1039/c3nr06809a
L. Guo, F. Chen, N. Xie, X. Kou, C. Wang et al., Ultra-sensitive sensing platform based on Pt–ZnO–In2O3 nanofibers for detection of acetone. Sens. Actuat. B: Chem. 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161
Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl. Mater. Interfaces. 5(6), 2013–2021 (2013). https://doi.org/10.1021/am3028553
S.-J. Choi, W.-T. Koo, S.-J. Kim, J.-S. Jang, H.L. Tuller, I.-D. Kim, Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
M. Yao, P. Hu, N. Han, F. Ding, C. Yin, F. Yuan, J. Yang, Y. Chen, ZnO micro-windbreak for enhanced gas diffusion. Sens. Actuat. B: Chem. 186, 614–621 (2013). https://doi.org/10.1016/j.snb.2013.06.057
Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20(23), 4547–4551 (2008). https://doi.org/10.1002/adma.200800243
X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50(12), 2738–2741 (2011). https://doi.org/10.1002/anie.201004900
Y. Shimizu, T. Hyodo, M. Egashira, Meso-to macro-porous oxides as semiconductor gas sensors. Catal. Surv. Asia 8(2), 127–135 (2004). https://doi.org/10.1023/b:cats.0000027014.79515.87
F. Sun, W. Cai, Y. Li, L. Jia, F. Lu, Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 17(23), 2872–2877 (2005). https://doi.org/10.1002/adma.200500936
F. Song, H. Su, J. Han, W.M. Lau, W.-J. Moon, D. Zhang, Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J. Phys. Chem. C 116(18), 10274–10281 (2012). https://doi.org/10.1021/jp2118136
T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 19(4), 653–661 (2009). https://doi.org/10.1002/adfm.200801458
E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez-Ramirez et al., Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications. Adv. Funct. Mater. 17(11), 1801–1806 (2007). https://doi.org/10.1002/adfm.200600722
M. D’Arienzo, L. Armelao, A. Cacciamani, C.M. Mari, S. Polizzi et al., One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater. 22(13), 4083–4089 (2010). https://doi.org/10.1021/cm100866g
M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters. J. Am. Chem. Soc. 133(14), 5296–5304 (2011). https://doi.org/10.1021/ja109511a
J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–800 (2016). https://doi.org/10.1126/science.aaf5251
A.J. Therrien, A.J. Hensley, M.D. Marcinkowski, R. Zhang, F.R. Lucci et al., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1(3), 192 (2018). https://doi.org/10.1038/s41929-018-0028-2
A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1
Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28(4), 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
B. Jang, K.Y. Lee, J.-S. Noh, W. Lee, Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films. Sens. Actuator. B: Chem. 193, 530–535 (2014). https://doi.org/10.1016/j.snb.2013.11.080
G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669 (2009). https://doi.org/10.1038/nnano.2009.235
N. Kahn, O. Lavie, M. Paz, Y. Segev, H. Haick, Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 15(10), 7023–7028 (2015). https://doi.org/10.1021/acs.nanolett.5b03052
J.-W. Yoon, J.-S. Kim, T.-H. Kim, Y.J. Hong, Y.C. Kang, J.-H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12(31), 4229–4240 (2016). https://doi.org/10.1002/smll.201601507
C.-L. Zhu, H.-L. Yu, Y. Zhang, T.-S. Wang, Q.-Y. Ouyang et al., Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces. 4(2), 665–671 (2012). https://doi.org/10.1021/am201689x
S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces. 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a
S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11(19), 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
T. Kida, A. Nishiyama, Z. Hua, K. Suematsu, M. Yuasa, K. Shimanoe, WO3 nano lamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30(9), 2571–2579 (2014). https://doi.org/10.1021/la4049105
Y.-C. Her, B.-Y. Yeh, S.-L. Huang, Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. ACS Appl. Mater. Interfaces. 6(12), 9150–9159 (2014). https://doi.org/10.1021/am5012518
A. Kumar, S. Samanta, A. Singh, M. Roy, S. Singh et al., Fast response and high sensitivity of ZnO nanowires—cobalt phthalocyanine heterojunction based H2S sensor. ACS Appl. Mater. Interfaces. 7(32), 17713–17724 (2015). https://doi.org/10.1021/acsami.5b03652
J.H. Kim, A. Katoch, S.H. Kim, S.K. Sang, Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core-shell nanowires. ACS Appl. Mater. Interfaces. 7(28), 15351–15358 (2015). https://doi.org/10.1021/acsami.5b03224
D. Zhang, Z. Wu, X. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sens. Actuat. B: Chem. 274, 575–586 (2018). https://doi.org/10.1016/j.snb.2018.08.001
Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, Q. Wei, Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 52(2), 686–695 (2017). https://doi.org/10.1007/s10853-016-0362-1
M. Villani, D. Calestani, L. Lazzarini, L. Zanotti, R. Mosca, A. Zappettini, Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J. Mater. Chem. 22(12), 5694–5699 (2012). https://doi.org/10.1039/C2JM16164H
J. Zhai, D. Wang, L. Peng, Y. Lin, X. Li, T. Xie, Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sens. Actuat. B: Chem. 147(1), 234–240 (2010). https://doi.org/10.1016/j.snb.2010.03.003
J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces. 3(7), 2253–2258 (2011). https://doi.org/10.1021/am200008y
A. Chizhov, M. Rumyantseva, R. Vasiliev, D. Filatova, K. Drozdov, I. Krylov, A. Abakumov, A. Gaskov, Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuat. B: Chem. 205, 305–312 (2014). https://doi.org/10.1016/j.snb.2014.08.091
L. Huo, X. Yang, Z. Liu, X. Tian, T. Qi, X. Wang, K. Yu, J. Sun, M. Fan, Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sens. Actuat. B: Chem. 244, 694–700 (2017). https://doi.org/10.1016/j.snb.2017.01.061
C.-H. Kwak, T.-H. Kim, S.-Y. Jeong, J.-W. Yoon, J.-S. Kim, J.-H. Lee, Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk-shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces. 10(22), 18886–18894 (2018). https://doi.org/10.1021/acsami.8b04245
E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j
E.-X. Chen, H.-R. Fu, R. Lin, Y.-X. Tan, J. Zhang, Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material. ACS Appl. Mater. Interfaces. 6(24), 22871–22875 (2014). https://doi.org/10.1021/am5071317
H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2016). https://doi.org/10.1021/acssensors.5b00236
M.F. Koudehi, S.M. Pourmortazavi, Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2,4-DNT vapor recognition. Electroanalysis 30(10), 2302–2310 (2018). https://doi.org/10.1002/elan.201700751
K. Tan, S. Zuluaga, E. Fuentes, E.C. Mattson, J.F. Veyan, H. Wang, J. Li, T. Thonhauser, Y.J. Chabal, Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nat. Commun. 7, 13871 (2016). https://doi.org/10.1038/ncomms13871
H. Li, M.M. Sadiq, K. Suzuki, R. Ricco, C. Doblin et al., Magnetic metal-organic frameworks for efficient carbon dioxide capture and remote trigger release. Adv. Mater. 28(9), 1839–1844 (2016). https://doi.org/10.1002/adma.201505320
P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Controlling guest conformation for efficient purification of butadiene. Science 356(6343), 1193–1196 (2017). https://doi.org/10.1126/science.aam7232
F. Vermoortele, M. Maes, P.Z. Moghadam, M.J. Lennox, F. Ragon et al., p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity. J. Am. Chem. Soc. 133(46), 18526–18529 (2011). https://doi.org/10.1021/ja207287h
L. Zhang, P. Cui, H. Yang, J. Chen, F. Xiao et al., Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting. Adv. Sci. 3(1), 1500243 (2016). https://doi.org/10.1002/advs.201500243
M. Zhao, K. Yuan, W. Yun, G. Li, J. Guo, G. Lin, W. Hu, H. Zhao, Z. Tang, Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627), 76 (2016). https://doi.org/10.1038/nature19763
M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 127(14), 4423–4426 (2015). https://doi.org/10.1002/anie.201411854
D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
T. Yamada, M. Sadakiyo, H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131(9), 3144–3145 (2009). https://doi.org/10.1021/ja808681m
G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 135(20), 7438–7441 (2013). https://doi.org/10.1021/ja402727d
L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
G. Xu, G.C. Guo, M.S. Yao, Z.H. Fu, G.E. Wang, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications: 14, vol. 1 (Wiley, Weinheim, 2016), pp. 421–462. https://doi.org/10.1002/9783527693078.ch1
M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan et al., New porous crystals of extended metal-catecholates. Chem. Mater. 24(18), 3511–3513 (2012). https://doi.org/10.1021/cm301194a
A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila et al., Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166), 66–69 (2014). https://doi.org/10.1126/science.1246738
X. Huang, P. Sheng, Z.Y. Tu, F.J. Zhang, J.H. Wang et al., A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015). https://doi.org/10.1038/ncomms8408
S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2009). https://doi.org/10.1021/ic802117q
T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi et al., π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013). https://doi.org/10.1021/ja312380b
S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer Cu[Cu (pdt)2] composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2008). https://doi.org/10.1021/ic802117q
X. Ribas, J.C. Dias, J. Morgado, K. Wurst, I.C. Santos et al., Alkaline side-coordination strategy for the design of nickel (II) and nickel (III) bis (1, 2-diselenolene) complex based materials. Inorg. Chem. 43(12), 3631–3641 (2004). https://doi.org/10.1021/ic049860x
K.J. Erickson, F. Leonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27(22), 3453–3459 (2015). https://doi.org/10.1002/adma.201501078
S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, M. Dinca, Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 137(5), 1774–1777 (2015). https://doi.org/10.1021/ic049860x
J. Cui, Z. Xu, An electroactive porous network from covalent metal-dithiolene links. Chem. Commun. 50(30), 3986–3988 (2014). https://doi.org/10.1039/c4cc00408f
T. Panda, R. Banerjee, High Charge Carrier Mobility in two dimensional indium (III) isophthalic acid based frameworks. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 84(2), 331–336 (2014). https://doi.org/10.1007/s40010-014-0152-6
D. Chen, H. Xing, Z. Su, C. Wang, Electrical conductivity and electroluminescence of a new anthracene-based metal-organic framework with π-conjugated zigzag chains. Chem. Commun. 52(10), 2019–2022 (2016). https://doi.org/10.1039/C5CC09065B
L.E. Darago, M.L. Aubrey, C.J. Yu, M.I. Gonzalez, J.R. Long, Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J. Am. Chem. Soc. 137(50), 15703–15711 (2015). https://doi.org/10.1021/jacs.5b10385
L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, M. Dincă, Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 137(19), 6164–6167 (2015). https://doi.org/10.1021/jacs.5b02897
D. Sheberla, L. Sun, M.A. Blood-Forsythe, S.L. Er, C.R. Wade, C.K. Brozek, A.N. Aspuru-Guzik, M. Dincă, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014). https://doi.org/10.1021/ja502765n
T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui et al., Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014). https://doi.org/10.1021/ja507619d
C. Hermosa, J.V. Alvarez, M.R. Azani, C.J. Gomez-Garcia, M. Fritz et al., Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nat. Commun. 4, 1709 (2013). https://doi.org/10.1038/ncomms2696
S. Takaishi, Y. Tobu, H. Kitagawa, A. Goto, T. Shimizu, T. Okubo, T. Mitani, R. Ikeda, The NOR observation of Spin-Peierls transition in an antiferromagnetic MX-chain complex NiBr(chxn) (2) Br-2. J. Am. Chem. Soc. 126(6), 1614–1615 (2004). https://doi.org/10.1021/ja039857x
R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, New insight into the nature of Cu (TCNQ): solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 38(1), 144–156 (1999). https://doi.org/10.1021/ic9812095
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dinca, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
M.K. Smith, K.E. Jensen, P.A. Pivak, K.A. Mirica, Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28(15), 5264–5268 (2016). https://doi.org/10.1021/acs.chemmater.6b02528
M.K. Smith, K.A. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017). https://doi.org/10.1021/jacs.7b08840
D.F. Altomare, F. Porcelli, A. Picciariello, M. Pinto, M. Di Lena et al., The use of the PEN3 e-nose in the screening of colorectal cancer and polyps. Tech. Coloproctol. 20(6), 405–409 (2016). https://doi.org/10.1007/s10151-016-1457-z
T.W. Zhang, T.Liu, M. Zhang, Y. Zhang, H. Li et al., NOS.E: a new fast response electronic nose health monitoring system, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018, pp. 4977–4980 (2018). http://doi.org/10.1109/EMBC.2018.8513416
W. Li, H. Liu, D. Xie, Z. He, X. Pi, Lung cancer screening based on type-different sensor arrays. Sci. Rep. 7(1), 1969 (2017). https://doi.org/10.1038/s41598-017-02154-9
C.G. Waltman, T.A.T. Marcelissen, J.G.H. van Roermund, Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (aeonose): a preliminary report. Eur. Urol. Focus (2018). https://doi.org/10.1016/j.euf.2018.11.006
V.N.E. Schuermans, Z. Li, A. Jongen, Z. Wu, J. Shi, J. Ji, N.D. Bouvy, Pilot study: detection of gastric cancer from exhaled air analyzed with an electronic nose in Chinese patients. Surg. Innov. 25(5), 429–434 (2018). https://doi.org/10.1177/1553350618781267
A. Sanaeifar, H. ZakiDizaji, A. Jafari, M.D.L. Guardia, Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trend. Anal. Chem. 97, 257–271 (2017). https://doi.org/10.1016/j.trac.2017.09.014
H. Yu, J. Wang, Y. Xu, Identification of adulterated milk using electronic nose. Sens. Mater. 19, 275–285 (2007). https://doi.org/10.1007/978-0-387-71720-3_15
A.H. Gómez, J. Wang, G. Hu, A.G. Pereira, Electronic nose technique potential monitoring mandarin maturity. Sens. Actuat. B: Chem. 113(1), 347–353 (2006). https://doi.org/10.1016/j.snb.2005.03.090
A. Blanco-Rodriguez, V.F. Camara, F. Campo, L. Becheran, A. Duran et al., Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 134, 92–100 (2018). https://doi.org/10.1016/j.watres.2018.01.067
S. Borah, E.L. Hines, M.S. Leeson, D.D. Iliescu, M. Bhuyan, J.W. Gardner, Neural network based electronic nose for classification of tea aroma. Sens. Instrum. Food Qual. Saf. 2(1), 7–14 (2007). https://doi.org/10.1007/s11694-007-9028-7
L. Wozniak, P. Kalinowski, G. Jasinski, P. Jasinski, FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference. Microelectron. Reliab. 84, 163–169 (2018). https://doi.org/10.1016/j.microrel.2018.03.034
A.A.S. Ali, A. Farhat, S. Mohamad, A. Amira, F. Bensaali, M. Benammar, A. Bermak, Embedded platform for gas applications using hardware/software co-design and RFID. IEEE Sens. J. 18(11), 4633–4642 (2018). https://doi.org/10.1109/jsen.2018.2822711
M. Ghasemi-Varnamkhasti, Z.S. Amiri, M. Tohidi, M. Dowlati, S.S. Mohtasebi, A.C. Silva, D.D.S. Fernandes, M.C.U. Araujo, Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta 176, 221–226 (2018). https://doi.org/10.1016/j.talanta.2017.08.024
S. Cui, J. Wang, L. Yang, J. Wu, X. Wang, Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC-MS combined with chemometrics. J. Pharm. Biomed. Anal. 102, 64–77 (2015). https://doi.org/10.1016/j.jpba.2014.08.030
J. Gardner, J. Yinon, Electronic Noses and Sensors for the Detection of Explosives (Springer, Netherlands, 2004). https://doi.org/10.1007/1-4020-2319-7
C. Olguín, N. Laguarda-Miró, L. Pascual, E. García-Breijo, R. Martínez-Mañez, J. Soto, An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sens. Actuat. B: Chem. 202, 31–37 (2014). https://doi.org/10.1016/j.snb.2014.05.060
B. Wang, T.-P. Huynh, W. Wu, N. Hayek, T.T. Do et al., A highly sensitive diketopyrrolopyrrole-based ambipolar transistor for selective detection and discrimination of xylene isomers. Adv. Mater. 28(21), 4012–4018 (2016). https://doi.org/10.1002/adma.201505641
R.G. Pavelko, H. Daly, M. Hübner, C. Hardacre, E. Llobet, Time-resolved DRIFTS, MS, and resistance study of SnO2 materials: the role of surface hydroxyl groups in formation of donor states. J. Phys. Chem. C 117(8), 4158–4167 (2013). https://doi.org/10.1021/jp312532u
A. Oprea, N. Bârsan, U. Weimar, Work function changes in gas sensitive materials: fundamentals and applications. Sens. Actuat. B: Chem. 142(2), 470–493 (2009). https://doi.org/10.1016/j.snb.2009.06.043
H. Feng, S. Tan, H. Tang, Q. Zheng, Y. Shi et al., Temperature- and coverage-dependent kinetics of photocatalytic reaction of methanol on TiO2 (110) − (1 × 1) surface. J. Phys. Chem. C 120(10), 5503–5514 (2016). https://doi.org/10.1021/acs.jpcc.5b12010
K.R. Phillips, S.C. Jensen, M. Baron, S.-C. Li, C.M. Friend, Sequential photo-oxidation of methanol to methyl formate on TiO2(110). J. Am. Chem. Soc. 135(2), 574–577 (2013). https://doi.org/10.1021/ja3106797
J. Wu, H. Shan, W. Chen, X. Gu, P. Tao, C. Song, W. Shang, T. Deng, In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28(44), 9686–9712 (2016). https://doi.org/10.1002/adma.201602519
K. Kishita, T. Kamino, A. Watabe, K. Kuroda, H. Saka, In situ TEM observation of solid-gas reactions. J. Phys: Conf. Ser. 126(1), 012085 (2008). https://doi.org/10.1088/1742-6596/126/1/012085
M. Yoosefian, H. Raissi, A. Mola, The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens. Actuat. B: Chem. 212, 55–62 (2015). https://doi.org/10.1016/j.snb.2015.02.004
V.V. Dobrokhotov, D.N. McIlroy, M.G. Norton, C.A. Berven, Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing. Nanotechnology 17(16), 4135–4142 (2006). https://doi.org/10.1088/0957-4484/17/16/024
L. Wang, R. Chai, Z. Lou, G. Shen, Highly sensitive hybrid nanofiber-based room-temperature CO sensors: experiments and density functional theory simulations. Nano Res. 11(2), 1029–1037 (2017). https://doi.org/10.1007/s12274-017-1718-9
A. Omidvar, M. Anafcheh, N.L. Hadipour, Computational studies on carbon nanotube-graphene nanoribbon hybrids by density functional theory calculations. Sci. Iran. 20(3), 1014–1017 (2013). https://doi.org/10.1016/j.scient.2013.05.018
Z. Guo, N. Liao, M. Zhang, W. Xue, Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor. Appl. Surf. Sci. 453, 336–340 (2018). https://doi.org/10.1016/j.apsusc.2018.05.108
H. Fu, X. Yang, X. An, W. Fan, X. Jiang, A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuat. B: Chem. 252, 103–115 (2017). https://doi.org/10.1016/j.snb.2017.05.027
J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43(20), 6920–6937 (2014). https://doi.org/10.1039/c4cs00180j
D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chem. 18(20), 5391–5411 (2016). https://doi.org/10.1039/c6gc01582d
C. Gao, J. Wang, H. Xu, Y. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 46(10), 2799–2823 (2017). https://doi.org/10.1039/c6cs00727a
K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol., C 9(4), 171–192 (2008). https://doi.org/10.1016/j.jphotochemrev.2008.09.001
Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42(7), 2568–2580 (2013). https://doi.org/10.1039/c2cs35355e
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/b800489g
Y.Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng et al., Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119(22), 11761–11817 (2019). https://doi.org/10.1021/acs.chemrev.9b00437
M.-S. Yao, L.-A. Cao, Y.-X. Tang, G.-E. Wang, R.-H. Liu et al., Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. J. Mater. Chem. A 7(31), 18397–18403 (2019). https://doi.org/10.1039/C9TA05226G
M. Yao, J.-J. Zheng, A.-Q. Wu, G. Xu, S.S. Nagarkar, G. Zhang, M. Tsujimoto, S. Sakaki, S. Horike, K.-I. Otake, Dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem. Int. Ed. 59(1), 172–176 (2020). https://doi.org/10.1002/anie.201909096
M.S. Yao, J.W. Xiu, Q.Q. Huang, W.-H. Li, W.W. Wu et al., Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58(42), 14915–14919 (2019). https://doi.org/10.1002/anie.201907772
X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
W. Wu, B. Wang, M. Segev-Bar, W. Dou, F. Niu et al., Free-standing and eco-friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli. Adv. Funct. Mater. 27(40), 1703147 (2017). https://doi.org/10.1002/adfm.201703147
O.S. Kwon, S.J. Park, J.S. Lee, E. Park, T. Kim et al., Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 12(6), 2797–2802 (2012). https://doi.org/10.1021/nl204587t
K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015). https://doi.org/10.1016/j.snb.2015.02.025
S. Cui, S. Mao, G. Lu, J. Chen, Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J. Phys. Chem. Lett. 4(15), 2441–2454 (2013). https://doi.org/10.1021/jz400976a31d
S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2(16), 5573–5579 (2014). https://doi.org/10.1039/c3ta13823b
H.R. Estakhroyeh, E. Rashedi, M. Mehran, Design and construction of electronic nose for multi-purpose applications by sensor array arrangement using IBGSA. J. Intell. Robot. Syst. 92(2), 205–221 (2017). https://doi.org/10.1007/s10846-017-0759-3
J.L. Herrero, J. Lozano, J.P. Santos, J.I. Suarez, On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere 152, 107–116 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.106
F. Chang, P. Heinemann, Prediction of human responses to dairy odor using an electronic nose and neural networks. Trans. ASABE 61(2), 399–409 (2018). https://doi.org/10.13031/trans.12177
J.C. Rodriguez Gamboa, E.S. Albarracin E, A.J. da Silva, L.L. de Andrade-Lima, T.A.E. Ferreira, Wine quality rapid detection using a compact electronic nose system: application focused on spoilage thresholds by acetic acid. Lwt 108, 377–384 (2019). https://doi.org/10.1016/j.lwt.2019.03.074
M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasebi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006
A. Gorji-Chakespari, A.M. Nikbakht, F. Sefidkon, M. Ghasemi-Varnamkhasti, J. Brezmes, E. Llobet, Performance comparison of fuzzy ARTMAP and LDA in qualitative classification of iranian rosa damascena essential oils by an electronic nose. Sensors (Basel) 16(5), 636 (2016). https://doi.org/10.3390/s16050636
W. Dong, J. Zhao, R. Hu, Y. Dong, L. Tan, Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 229, 743–751 (2017). https://doi.org/10.1016/j.foodchem.2017.02.149
A. Shahid, J.H. Choi, A. Rana, H.S. Kim, Least squares neural network-based wireless E-Nose system using an SnO2 sensor array. Sensors (Basel) 18(5), 1446 (2018). https://doi.org/10.3390/s18051446
L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015). https://doi.org/10.1039/c4ra14354j
K. He, Z. Jin, X. Chu, W. Bi, W. Wang, C. Wang, S. Liu, Fast response–recovery time toward acetone by a sensor prepared with Pd doped WO3 nanosheets. RSC Adv. 9(49), 28439–28450 (2019). https://doi.org/10.1039/c9ra04429a
L. Lv, Y. Wang, P. Cheng, B. Zhang, F. Dang, L. Xu, Ultrasonic spray pyrolysis synthesis of three-dimensional ZnFe2O4-based macroporous spheres for excellent sensitive acetone gas sensor. Sens. Actuat. B: Chem. 297, 126755 (2019). https://doi.org/10.1016/j.snb.2019.126755
K. Shingange, H. Swart, G.H. Mhlongo, Ultrafast detection of low acetone concentration displayed by Au-loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of Au nanoparticles. ACS Omega 4(21), 19018–19029 (2019). https://doi.org/10.1021/acsomega.9b01989
C.-L. Hsu, B.-Y. Jhang, C. Kao, T.-J. Hsueh, UV-illumination and Au-nanoparticles enhanced gas sensing of p-type Na-doped ZnO nanowires operating at room temperature. Sens. Actuat. B: Chem. 274, 565–574 (2018). https://doi.org/10.1016/j.snb.2018.08.016
Y. Zhang, L. Zhou, Y. Liu, D. Liu, F. Liu et al., Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection. J. Colloid Interface Sci. 531, 74–82 (2018). https://doi.org/10.1016/j.jcis.2018.07.052
Y. Lu, J. Li, J. Han, H.T. Ng, C. Binder, C. Partridge, M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391(4–6), 344–348 (2004). https://doi.org/10.1016/j.cplett.2004.05.029
H. Li, J. Xu, Y. Zhu, X. Chen, Q. Xiang, Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires. Talanta 82(2), 458–463 (2010). https://doi.org/10.1016/j.talanta.2010.04.053
J.-Y. Kim, J.-H. Lee, J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Realization of H2S sensing by Pd-functionalized networked CuO nanowires in self-heating mode. Sens. Actuat. B: Chem. 299, 126965 (2019). https://doi.org/10.1016/j.snb.2019.126965
Y. Yang, C. Tian, J. Wang, L. Sun, K. Shi, W. Zhou, H. Fu, Facile synthesis of novel 3D nanoflower-like Cu(x)O/multilayer graphene composites for room temperature NO(x) gas sensor application. Nanoscale 6(13), 7369–7378 (2014). https://doi.org/10.1039/c4nr00196f
J. Zhang, D. Zeng, S. Zhao, J. Wu, K. Xu, Q. Zhu, G. Zhang, C. Xie, Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO? Phys. Chem. Chem. Phys. 17(22), 14903–14911 (2015). https://doi.org/10.1039/c5cp01987g
Q. Huang, D. Zeng, H. Li, C. Xie, Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4(18), 5651–5658 (2012). https://doi.org/10.1039/c2nr31131c
H. Wang, S. Nie, H. Li, R. Ali, J. Fu et al., 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 4(9), 2343–2350 (2019). https://doi.org/10.1021/acssensors.9b00882
M. Kooti, S. Keshtkar, M. Askarieh, A. Rashidi, Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuator. B: Chem. 281, 96–106 (2019). https://doi.org/10.1016/j.snb.2018.10.032
H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song et al., Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces. 8(1), 840–846 (2016). https://doi.org/10.1021/acsami.5b10188
F. Liang, S. Chen, W. Xie, C. Zou, The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing. J. Phys. Chem. Solids 114, 195–200 (2018). https://doi.org/10.1016/j.jpcs.2017.11.001
C. Zou, J. Hu, Y. Su, F. Shao, Z. Tao et al., Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front. Mater. 6, 00195 (2019). https://doi.org/10.3389/fmats.2019.00195
T. Jiang, P. Wan, Z. Ren, S. Yan, Anisotropic polyaniline/SWCNT composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces. 11(41), 38169–38176 (2019). https://doi.org/10.1021/acsami.9b13336
G.K. Ekaterina Dovgolevsky, U. Tisch, H. Haick, Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly umid atmospheres. Am. Chem. Soc. 114(33), 14042–14049 (2010). https://doi.org/10.1021/jp105810w
C.H. Park, V. Schroeder, B.J. Kim, T.M. Swager, Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 3(11), 2432–2437 (2018). https://doi.org/10.1021/acssensors.8b00987
Y. Zilberman, U. Tisch, G. Shuster, W. Pisula, X. Feng, K. Mullen, H. Haick, Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv. Mater. 22(38), 4317–4320 (2010). https://doi.org/10.1002/adma.201001275
P. Sun, Y. Cai, S. Du, X. Xu, L. You et al., Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuat. B: Chem. 182, 336–343 (2013). https://doi.org/10.1016/j.snb.2013.03.019
G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuat. B: Chem. 162(1), 82–88 (2012). https://doi.org/10.1016/j.snb.2011.12.039
D. Gu, X. Li, Y. Zhao, J. Wang, Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens. Actuat. B: Chem. 244, 67–76 (2017). https://doi.org/10.1016/j.snb.2016.12.125
C.W. Peng Sun, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl. Mater. Interfaces. 7(34), 19119–19125 (2015). https://doi.org/10.1021/acsami.5b04751
X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors. ACS Appl. Mater. Interfaces. 7(32), 17811–17818 (2015). https://doi.org/10.1021/acsami.5b04118
C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces. 6(15), 12031–12307 (2014). https://doi.org/10.1021/am501063z
K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces. 7(21), 11359–12368 (2015). https://doi.org/10.1021/acsami.5b01856
C. Wu, J. Zhang, X. Wang, C. Xie, S. Shi, D. Zeng, Effect of heterointerface on NO2 sensing properties of in situ formed TiO2 QDs-decorated NiO nanosheets. Nanomaterials 9(11), 1628 (2019). https://doi.org/10.3390/nano9111628
X. Chang, X. Li, X. Qiao, K. Li, Y. Xiong, X. Li, T. Guo, L. Zhu, Q. Xue, Metal-organic frameworks derived ZnO@MoS nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery. Sens. Actuat. B: Chem. 304, 127430 (2020). https://doi.org/10.1016/j.snb.2019.127430
K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Enhanced acetone gas sensing response of ZnO/ZnCo2O4 nanotubes synthesized by single capillary electrospinning technology. Sens. Actuat. B: Chem. 252, 511–522 (2017). https://doi.org/10.1016/j.snb.2017.06.034
J.H. Bang, M.S. Choi, A. Mirzaei, W. Oum, S. Han, S.S. Kim, H.W. Kim, Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46(1), 604–611 (2020). https://doi.org/10.1016/j.ceramint.2019.09.010
S. Li, A. Liu, Z. Yang, J. He, J. Wang et al., Room temperature gas sensor based on tin dioxide@ polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuat. B: Chem. 299, 126970 (2019). https://doi.org/10.1016/j.snb.2019.126970
L. Liu, Y. Wang, Y. Dai, G. Li, S. Wang, T. Li, T. Zhang, S. Qin, In situ growth of NiO@SnO2 hierarchical nanostructures for high performance H2S sensing. ACS Appl. Mater. Interfaces. 11(47), 44829–44836 (2019). https://doi.org/10.1021/acsami.9b13001
Q. Sun, J. Wang, J. Hao, S. Zheng, P. Wan, T. Wang, H. Fang, Y. Wang, SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 11(29), 13741–13749 (2019). https://doi.org/10.1039/c9nr02780g
W. Zeng, Y. Liu, J. Mei, C. Tang, K. Luo, S. Li, H. Zhan, Z. He, Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sens. Actuat. B: Chem. 301, 127010 (2019). https://doi.org/10.1016/j.snb.2019.127010
X. Zhou, W. Feng, C. Wang, X. Hu, X. Li, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2(41), 17683–17690 (2014). https://doi.org/10.1039/c4ta04386c
L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, Y. Lin, Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915–12920 (2012). https://doi.org/10.1039/c2jm16105b
T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuat. B: Chem. 258, 1099–1106 (2018). https://doi.org/10.1016/j.snb.2017.12.024
M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
X. Wu, S. Xiong, Z. Mao, S. Hu, X. Long, A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chemistry 23(33), 7969–7975 (2017). https://doi.org/10.1002/chem.201700320
S.S. Nair, N. Illyaskutty, B. Tam, A.O. Yazaydin, K. Emmerich et al., ZnO@ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sens. Actuat. B: Chem. 304, 127184 (2020). https://doi.org/10.1016/j.snb.2019.127184
P. Wang, X. Zou, H. Tan, S. Wu, L. Jiang, G. Zhu, Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 6(20), 5412–5419 (2018). https://doi.org/10.1039/c8tc00987b
H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2015). https://doi.org/10.1021/acssensors.5b00236
M. Drobek, J.H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces. 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062
L. Dang, G. Zhang, K. Kan, Y. Lin, F. Bai, L. Jing, P. Shen, L. Li, K. Shi, Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature. J. Mater. Chem. A 2(13), 4558–4565 (2014). https://doi.org/10.1039/c3ta15019d
X. Zhang, Y. Sun, Y. Fan, Z. Liu, Z. Zeng, H. Zhao, X. Wang, J. Xu, Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde. J. Mater. Sci.-Mater. Electron. 30(23), 20624–20637 (2019). https://doi.org/10.1007/s10854-019-02428-0
S. Javanmardi, S. Nasresfahani, M.H. Sheikhi, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater. Res. Bull. 118, 110496 (2019). https://doi.org/10.1016/j.materresbull.2019.110496
J.H. Lee, J.H. Kim, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, ppb-Level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors (Basel) 19(19), 4276 (2019). https://doi.org/10.3390/s19194276
Y. Xia, J. Wang, L. Xu, X. Li, S. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B: Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
H. Tian, H. Fan, J. Ma, Z. Liu, L. Ma, S. Lei, J. Fang, C. Long, Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 341, 102–111 (2018). https://doi.org/10.1016/j.jhazmat.2017.07.056
W.-C. Lu, S.S. Kumar, Y.-C. Chen, C.-M. Hsu, H.-N. Lin, Au/Cu2O/ZnO ternary nanocomposite for low concentration NO2 gas sensing at room temperature. Mater. Lett. 256, 126657 (2019). https://doi.org/10.1016/j.matlet.2019.126657
Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang et al., Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. J. Mater. Sci.-Mater. Electron. 28(22), 17049–17057 (2017). https://doi.org/10.1007/s10854-017-7630-y
Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu et al., TiO2/InVO4 n–n heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54(21), 13660–13673 (2019). https://doi.org/10.1007/s10853-019-03868-z
S. Nasresfahani, M.H. Sheikhi, M. Tohidi, A. Zarifkar, Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 89, 161–169 (2017). https://doi.org/10.1016/j.materresbull.2017.01.032
S. Li, Y. Diao, Z. Yang, J. He, J. Wang et al., Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuator. B: Chem. 276, 526–533 (2018). https://doi.org/10.1016/j.snb.2018.08.120
B. Liu, Y. Li, L. Gao, F. Zhou, G. Duan, Ultrafine Pt NPs-decorated SnO2/α-Fe2O3 hollow nanospheres with highly enhanced sensing performances for styrene. J. Hazard. Mater. 358, 355–365 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.021
M. Chen, H. Wang, J. Hu, Y. Zhang, K. Li et al., Near-room-temperature ethanol gas sensor based on mesoporous Ag/Zn–LaFeO3 nanocomposit