Effect of rGO Coating on Interconnected Co3O4 Nanosheets and Improved Supercapacitive Behavior of Co3O4/rGO/NF Architecture
Corresponding Author: Junshuai Li
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 38
Abstract
In this study, the effect of reduced graphene oxide (rGO) on interconnected Co3O4 nanosheets and the improved supercapacitive behaviors is reported. By optimizing the experimental parameters, we achieved a specific capacitance of ~1016.4 F g−1 for the Co3O4/rGO/NF (nickel foam) system at a current density of 1 A g−1. However, the Co3O4/NF structure without rGO only delivers a specific capacitance of ~520.0 F g−1 at the same current density. The stability test demonstrates that Co3O4/rGO/NF retains ~95.5% of the initial capacitance value even after 3000 charge–discharge cycles at a high current density of 7 A g−1. Further investigation reveals that capacitance improvement for the Co3O4/rGO/NF structure is mainly because of a higher specific surface area (~87.8 m2 g−1) and a more optimal mesoporous size (4–15 nm) compared to the corresponding values of 67.1 m2 g−1 and 6–25 nm, respectively, for the Co3O4/NF structure. rGO and the thinner Co3O4 nanosheets benefit from the strain relaxation during the charge and discharge processes, improving the cycling stability of Co3O4/rGO/NF.
Highlights:
1 Interconnected Co3O4 nanosheets anchored on rGO-coated nickel foam (NF) are facilely synthesized using a green, simple, and low-cost approach.
2 Because of the high specific surface area and optimal mesopore size distribution, high specific capacitances of ~1016.4 and 767.1 F g−1 are achieved for Co3O4/rGO/NF at current densities of 1 and 5 A g−1, respectively.
3 Excellent stability with ~95.5% capacity retention at a high current density of 7 A g−1 is achieved even after 3000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
- D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). doi:10.1007/s40820-016-0117-1
- M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009). doi:10.1021/n18038579
- J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014). doi:10.1016/j.electacta.2014.03.158
- T. Geng, L. Zhang, H. Wang, K. Zhang, X. Zhou, Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 38(5), 1171–1175 (2015). doi:10.1007/s12034-015-0997-6
- A.N. Naveen, P. Manimaran, S. Selladurai, Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application. J. Mater. Sci. Mater. Electron. 26(11), 8988–9000 (2015). doi:10.1007/s10854-015-3582-2
- Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S.-W. Kong, Y. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.1007/BF03353684
- Y. Chen, X. Zhang, D. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49(2), 573–580 (2011). doi:10.1016/j.carbon.2010.09.060
- W.W. Liu, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J. Mater. Chem. 22(33), 17245–17253 (2012). doi:10.1039/c2jm32659k
- L. Dong, C. Xu, Q. Yang, J. Fang, Y. Li, F. Kang, High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J. Mater. Chem. A 3(8), 4729–4737 (2015). doi:10.1039/C4TA06494A
- X. Guo, S. Qin, S. Bai, H. Yue, Y. Li, Q. Cheng, J. Li, D. He, Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties. J. Phys. D-Appl. Phys. 49(38), 385301 (2016). doi:10.1088/0022-3727/49/38/385301
- K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060–5067 (2011). doi:10.1039/c1ee02421c
- P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 5(22), 12073–12082 (2013). doi:10.1021/am403905x
- C. Xiang, M. Liu, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 226, 65–70 (2013). doi:10.1016/j.jpowsour.2012.10.064
- C. Yuan, Y. Long, L. Hou, J. Li, Y. Sun, X. Zhang, X. Lu, S. Xiong, X.W.D. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22(12), 2560–2566 (2012). doi:10.1002/adfm.201102860
- T.T. Nguyen, V.H. Nguyen, R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, J.-J. Shim, Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci. 53, 71–77 (2016). doi:10.1016/j.solidstatesciences.2016.01.006
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/nn1006368
- Y. Sun, W. Zhang, D. Li, L. Gao, C. Hou, Y. Zhang, Y. Liu, Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J. Alloys Compd. 649, 579–584 (2015). doi:10.1016/j.jallcom.2015.07.212
- Y. Zou, I.A. Kinloch, R.A.W. Dryfe, Mesoporous vertical Co3O4 nanosheet arrays on nitrogen-doped graphene foam with enhanced charge-storage performance. ACS Appl. Mater. Interfaces 7(41), 22831–22838 (2015). doi:10.1021/acsami.5b05095
- J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). doi:10.1039/c2jm15863a
- X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012). doi:10.1021/nn300097q
- L. Wang, X. Wang, X. Xiao, F. Xu, Y. Sun, Z. Li, Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim. Acta 111, 937–945 (2013). doi:10.1016/j.electacta.2013.08.094
- L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112(18), 7270–7277 (2008). doi:10.1021/jp0773029
- B. Varghese, C.H. Teo, Y. Zhu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, V.B.C. Tan, C.T. Lim, C.H. Sow, Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 17(12), 1932–1939 (2007). doi:10.1002/adfm.200700038
- A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy 64, 234–241 (2014). doi:10.1016/j.energy.2013.10.016
- C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5(7), 7883–7887 (2012). doi:10.1039/c2ee21745g
- W. Hong, J. Wang, Z. Li, S. Yang, Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93, 435–441 (2015). doi:10.1016/j.energy.2015.09.053
- S. Min, C. Zhao, G. Chen, Z. Zhang, X. Qian, One-pot hydrothermal synthesis of 3D flower like rGO/Co3O4/Ni(OH)2 composite film on nickel foam for high-performance supercapacitors. Electrochim. Acta 135, 336–344 (2014). doi:10.1016/j.electacta.2014.05.032
- C.Z. Yuan, L. Zhang, L. Hou, G. Pang, W.-C. Oh, One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets–reduced graphene oxide for electrochemical capacitors. RSC Adv. 4(28), 14408–14413 (2014). doi:10.1039/c4ra00762j
- Y.G. Zhu, Y. Wang, Y. Shi, Z.X. Huang, L. Fu, H.Y. Yang, Phase transformation induced capacitance activation for 3D graphene-CoO nanorod pseudocapacitor. Adv. Energy Mater. 4(9), 1079–1098 (2014). doi:10.1002/aenm.201301788
- B. Wang, X. He, H. Li, Q. Liu, J. Wang, L. Yu, H. Yan, Z. Li, P. Wang, Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core-shell composite. J. Mater. Chem. A 2(32), 12968–12973 (2014). doi:10.1039/C4TA02380C
- M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, X. Ji, An asymmetric ultracapacitors utilizing α-Co(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim. Acta 141, 234–240 (2014). doi:10.1016/j.electacta.2014.07.075
- X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q
- X. Chen, F. Zhang, Z. Yang, S. Huang, One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 243, 555–561 (2013). doi:10.1016/j.jpowsour.2013.04.076
References
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). doi:10.1007/s40820-016-0117-1
M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009). doi:10.1021/n18038579
J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127–135 (2014). doi:10.1016/j.electacta.2014.03.158
T. Geng, L. Zhang, H. Wang, K. Zhang, X. Zhou, Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 38(5), 1171–1175 (2015). doi:10.1007/s12034-015-0997-6
A.N. Naveen, P. Manimaran, S. Selladurai, Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application. J. Mater. Sci. Mater. Electron. 26(11), 8988–9000 (2015). doi:10.1007/s10854-015-3582-2
Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, E.S.-W. Kong, Y. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.1007/BF03353684
Y. Chen, X. Zhang, D. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49(2), 573–580 (2011). doi:10.1016/j.carbon.2010.09.060
W.W. Liu, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J. Mater. Chem. 22(33), 17245–17253 (2012). doi:10.1039/c2jm32659k
L. Dong, C. Xu, Q. Yang, J. Fang, Y. Li, F. Kang, High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J. Mater. Chem. A 3(8), 4729–4737 (2015). doi:10.1039/C4TA06494A
X. Guo, S. Qin, S. Bai, H. Yue, Y. Li, Q. Cheng, J. Li, D. He, Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties. J. Phys. D-Appl. Phys. 49(38), 385301 (2016). doi:10.1088/0022-3727/49/38/385301
K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4(12), 5060–5067 (2011). doi:10.1039/c1ee02421c
P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 5(22), 12073–12082 (2013). doi:10.1021/am403905x
C. Xiang, M. Liu, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 226, 65–70 (2013). doi:10.1016/j.jpowsour.2012.10.064
C. Yuan, Y. Long, L. Hou, J. Li, Y. Sun, X. Zhang, X. Lu, S. Xiong, X.W.D. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22(12), 2560–2566 (2012). doi:10.1002/adfm.201102860
T.T. Nguyen, V.H. Nguyen, R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, J.-J. Shim, Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci. 53, 71–77 (2016). doi:10.1016/j.solidstatesciences.2016.01.006
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/nn1006368
Y. Sun, W. Zhang, D. Li, L. Gao, C. Hou, Y. Zhang, Y. Liu, Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J. Alloys Compd. 649, 579–584 (2015). doi:10.1016/j.jallcom.2015.07.212
Y. Zou, I.A. Kinloch, R.A.W. Dryfe, Mesoporous vertical Co3O4 nanosheet arrays on nitrogen-doped graphene foam with enhanced charge-storage performance. ACS Appl. Mater. Interfaces 7(41), 22831–22838 (2015). doi:10.1021/acsami.5b05095
J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). doi:10.1039/c2jm15863a
X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D Graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206–3213 (2012). doi:10.1021/nn300097q
L. Wang, X. Wang, X. Xiao, F. Xu, Y. Sun, Z. Li, Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim. Acta 111, 937–945 (2013). doi:10.1016/j.electacta.2013.08.094
L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112(18), 7270–7277 (2008). doi:10.1021/jp0773029
B. Varghese, C.H. Teo, Y. Zhu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, V.B.C. Tan, C.T. Lim, C.H. Sow, Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 17(12), 1932–1939 (2007). doi:10.1002/adfm.200700038
A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy 64, 234–241 (2014). doi:10.1016/j.energy.2013.10.016
C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5(7), 7883–7887 (2012). doi:10.1039/c2ee21745g
W. Hong, J. Wang, Z. Li, S. Yang, Fabrication of Co3O4@Co-Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93, 435–441 (2015). doi:10.1016/j.energy.2015.09.053
S. Min, C. Zhao, G. Chen, Z. Zhang, X. Qian, One-pot hydrothermal synthesis of 3D flower like rGO/Co3O4/Ni(OH)2 composite film on nickel foam for high-performance supercapacitors. Electrochim. Acta 135, 336–344 (2014). doi:10.1016/j.electacta.2014.05.032
C.Z. Yuan, L. Zhang, L. Hou, G. Pang, W.-C. Oh, One-step hydrothermal fabrication of strongly coupled Co3O4 nanosheets–reduced graphene oxide for electrochemical capacitors. RSC Adv. 4(28), 14408–14413 (2014). doi:10.1039/c4ra00762j
Y.G. Zhu, Y. Wang, Y. Shi, Z.X. Huang, L. Fu, H.Y. Yang, Phase transformation induced capacitance activation for 3D graphene-CoO nanorod pseudocapacitor. Adv. Energy Mater. 4(9), 1079–1098 (2014). doi:10.1002/aenm.201301788
B. Wang, X. He, H. Li, Q. Liu, J. Wang, L. Yu, H. Yan, Z. Li, P. Wang, Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core-shell composite. J. Mater. Chem. A 2(32), 12968–12973 (2014). doi:10.1039/C4TA02380C
M. Jing, Y. Yang, Y. Zhu, H. Hou, Z. Wu, X. Ji, An asymmetric ultracapacitors utilizing α-Co(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim. Acta 141, 234–240 (2014). doi:10.1016/j.electacta.2014.07.075
X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q
X. Chen, F. Zhang, Z. Yang, S. Huang, One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 243, 555–561 (2013). doi:10.1016/j.jpowsour.2013.04.076