MXenes for Solar Cells
Corresponding Author: Yali Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 78
Abstract
Application of two-dimensional MXene materials in photovoltaics has attracted increasing attention since the first report in 2018 due to their metallic electrical conductivity, high carrier mobility, excellent transparency, tunable work function and superior mechanical property. In this review, all developments and applications of the Ti3C2Tx MXene (here, it is noteworthy that there are still no reports on other MXenes’ application in photovoltaics by far) as additive, electrode and hole/electron transport layer in solar cells are detailedly summarized, and meanwhile, the problems existing in the related studies are also discussed. In view of these problems, some suggestions are given for pushing exploration of the MXenes’ application in solar cells. It is believed that this review can provide a comprehensive and deep understanding into the research status and, moreover, helps widen a new situation for the study of MXenes in photovoltaics.
Highlights:
1 This review summarizes applications and developments of MXenes in solar cells by far.
2 The issues needing to be addressed for performance improvement of the related solar cells are discussed.
3 Suggestions are given for pushing exploration of MXenes’ application in solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wang, P. Shao, Q. Chen, Y. Li, J. Li et al., Nanostructural optimization of silicon/PEDOT: PSS hybrid solar cells for performance improvement. J. Phys. D-Appl. Phys. 50, 175105 (2017). https://doi.org/10.1088/1361-6463/aa64a9
- A.B. Ren, H.G. Lai, X. Hao, Z.G. Tang, H. Xu et al., Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule 4, 1263–1277 (2020). https://doi.org/10.1016/j.joule.2020.04.013
- B. Shi, L. Duan, Y. Zhao, J. Luo, X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32, 1806474 (2020). https://doi.org/10.1002/adma.201806474
- J. Li, H. Yu, S. Wong, X. Li, G. Zhang et al., Design guidelines of periodic Si nanowire arrays for solar cell application. Appl. Phys. Lett. 95, 3 (2009). https://doi.org/10.1063/1.3275798
- X. Ma, Y. Mi, F. Zhang, Q. An, M. Zhang et al., Efficient ternary polymer solar cells with two well-compatible donors and one ultranarrow bandgap nonfullerene acceptor. Adv. Energy Mater. 8, 1702854 (2018). https://doi.org/10.1002/aenm.201702854
- D. Zhao, C. Zhang, H. Kim, L.J. Guo, High-performance Ta2O5/Al-doped Ag electrode for resonant light harvesting in efficient organic solar cells. Adv. Energy Mater. 5, 1500768 (2015). https://doi.org/10.1002/aenm.201500768
- Y. Li, J. Li, H. Yu, S.-M. Wong, X. Sun et al., Novel silicon nanohemisphere-array solar cells with enhanced performance. Small 7, 3138–3143 (2011). https://doi.org/10.1002/smll.201100950
- S. Zhang, Y. Qin, J. Zhu, J. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018). https://doi.org/10.1002/adma.201800868
- Z. Wan, H. Lai, S. Ren, R. He, Y. Jiang et al., Interfacial engineering in lead-free tin-based perovskite solar cells. J. Energy Chem. 57, 147–168 (2020). https://doi.org/10.1016/j.jechem.2020.08.053
- Y. Zhao, X. Han, L. Chang, C. Dong, J. Li et al., Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S, Se)4 solar cells. Sol. Energy Mater. Sol. Cells 195, 274–279 (2019). https://doi.org/10.1016/j.solmat.2019.03.024
- A.B. Ren, J.H. Zou, H.G. Lai, Y.X. Huang, L.M. Yuan et al., Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons 7, 1901–1911 (2020). https://doi.org/10.1039/d0mh00537a
- J. Li, H. Yu, Y. Li, F. Wang, M. Yang et al., Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells. Appl. Phys. Lett. 98, 3 (2011). https://doi.org/10.1063/1.3537810
- D. Zhao, L. Ding, All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 65, 1144–1146 (2020). https://doi.org/10.1016/j.scib.2020.04.013
- J. Li, H. Yu, Y. Li, Aligned Si nanowire-based solar cells. Nanoscale 3, 4888–4900 (2011). https://doi.org/10.1039/c1nr10943j
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- L. Jia, Y. Li, L. Su, D. Liu, Y. Fu et al., TiO2 nanoparticles in situ formed on Ti3C2 nanosheets by a one-step ethanol-thermal method for enhanced reversible lithium-ion storage. ChemistrySelect 5, 3124–3129 (2020). https://doi.org/10.1002/slct.202000521
- X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
- H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong et al., Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- P.K. Kalambate, N.S. Gadhari, X. Li, Z. Rao, S.T. Navale et al., Recent advances in MXene-based electrochemical sensors and biosensors. TrAC Trends Anal. Chem. 120, 115643 (2019). https://doi.org/10.1016/j.trac.2019.115643
- Y.J. Lei, E.N. Zhao, Y.Z. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15, 1901190 (2019). https://doi.org/10.1002/smll.201901190
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000883
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- S.Y. Li, Y. Zhang, W. Yang, H. Liu, X.S. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020). https://doi.org/10.1002/adma.201905443
- J.X. Chen, Z.L. Li, F.L. Ni, W.X. Ouyang, X.S. Fang, Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horizons 7, 1828–1833 (2020). https://doi.org/10.1039/d0mh00394h
- W.X. Ouyang, J.X. Chen, J.H. He, X.S. Fang, Improved photoelectric performance of UV photodetector based on ZnO nanoparticle-decorated biocl nanosheet arrays onto PDMS substrate: the heterojunction and Ti3C2Tx MXene conduction layer. Adv. Electron. Mater. 6, 2000168 (2020). https://doi.org/10.1002/aelm.202000168
- Q. Xu, W.J. Yang, Y.Y. Wen, S.K. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
- S. Ahn, T.H. Han, K. Maleski, J. Song, Y.H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32, 2000919 (2020). https://doi.org/10.1002/adma.202000919
- S. Lee, E.H. Kim, S. Yu, H. Kim, C. Park et al., Alternating-current MXene polymer light-emitting diodes. Adv. Funct. Mater. 30, 2001224 (2020). https://doi.org/10.1002/adfm.202001224
- I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
- Q.R. Zhang, J. Teng, G.D. Zou, Q.M. Peng, Q. Du et al., Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016). https://doi.org/10.1039/c5nr09303a
- X.Q. Xie, C. Chen, N. Zhang, Z.R. Tang, J.J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
- Y. Lu, D.Q. Fan, H.L. Xu, H.H. Min, C.H. Lu et al., Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification. Solar RRL 4, 2000232 (2020). https://doi.org/10.1002/solr.202000232
- X. Wu, M. Ding, H. Xu, W. Yang, K. Zhang et al., Scalable Ti3C2Tx MXene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACS Nano 14, 9125–9135 (2020). https://doi.org/10.1021/acsnano.0c04471
- X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
- Z.L. Li, Z.C. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30, 1803220 (2018). https://doi.org/10.1002/adma.201803220
- B. Ahmed, A.E. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30, 2000894 (2020). https://doi.org/10.1002/adfm.202000894
- J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability Li-S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
- Y.L. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S.N. Duan et al., 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
- M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
- M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
- M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 7, 1901975 (2020). https://doi.org/10.1002/advs.201901975
- Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14, 1802738 (2018). https://doi.org/10.1002/smll.201802738
- J. Cao, F. Meng, L. Gao, S. Yang, Y. Yan et al., Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Adv. 9, 34152–34157 (2019). https://doi.org/10.1039/c9ra06091j
- Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron-and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7, 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
- Z. Wu, Y. Wang, Y. Zhang, W. Zhang, Q. Liu et al., Enhanced performance of polymer solar cells by adding SnO2 nanoparticles in the photoactive layer. Org. Electron. 73, 7–12 (2019). https://doi.org/10.1016/j.orgel.2019.05.038
- Z. Wu, W. Zhang, C. Xie, L. Zhang, Y. Wang et al., Bridging for carriers by embedding metal oxide nanoparticles in the photoactive layer to enhance performance of polymer solar cells. IEEE J. Photovolt. 10, 1353–1358 (2020). https://doi.org/10.1109/JPHOTOV.2020.3004926
- Y. Wang, Y. Zhang, L. Zhang, Z. Wu, Q. Su et al., Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer. Mater. Chem. Phys. 254, 123536 (2020). https://doi.org/10.1016/j.matchemphys.2020.123536
- P. Shao, X. Chen, X. Guo, W. Zhang, F. Chang et al., Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement. Org. Electron. 50, 77–81 (2017). https://doi.org/10.1016/j.orgel.2017.07.029
- A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0527-9
- Z. Zhang, Y. Li, C. Liang, G. Yu, J. Zhao et al., In situ growth of MAPbBr3 nanocrystals on few-layer MXene nanosheets with efficient energy transfer. Small 16, 1905896 (2020). https://doi.org/10.1002/smll.201905896
- X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30, 2003295 (2020). https://doi.org/10.1002/adfm.202003295
- L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
- L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12, 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
- A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct Mater. 30, 1909028 (2020). https://doi.org/10.1002/adfm.201909028
- C. Hou, H. Yu, Modifying the nanostructures of PEDOT: PSS/Ti3C2Tx composite hole transport layers for highly efficient polymer solar cells. J. Mater. Chem. C 8, 4169–4180 (2020). https://doi.org/10.1039/d0tc00075b
- C. Hou, H. Yu, Zno/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.127192
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020). https://doi.org/10.1002/adma.202001093
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, 1804779 (2018). https://doi.org/10.1002/adma.201804779
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018). https://doi.org/10.1002/smll.201703419
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- L. Mi, Y. Zhang, T. Chen, E. Xu, Y. Jiang, Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Adv. 10, 12298–12303 (2020). https://doi.org/10.1039/d0ra00288g
- H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene–silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330–25337 (2019). https://doi.org/10.1021/acsami.9b04113
- L. Qin, J. Jiang, Q. Tao, C. Wang, I. Persson et al., A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. J. Mater. Chem. A 8, 5467–5475 (2020). https://doi.org/10.1039/d0ta00687d
- H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang et al., MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 1900180 (2019). https://doi.org/10.1002/aenm.201900180
- L. Yu, A.S. Bati, T.S. Grace, M. Batmunkh, J.G. Shapter, Ti3C2Tx (MXene)-silicon heterojunction for efficient photovoltaic cells. Adv. Energy Mater. 9, 1901063 (2019). https://doi.org/10.1002/aenm.201901063
- Y. Chen, D. Wang, Y. Lin, X. Zou, T. Xie, In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells. Electrochim. Acta 316, 248–256 (2019). https://doi.org/10.1016/j.electacta.2019.05.132
- Z. Tian, Z. Qi, Y. Yang, H. Yan, Q. Chen et al., Anchoring CuS nanoparticles on accordion-like Ti3C2 as high electrocatalytic activity counter electrodes for QDSSCs. Inorg. Chem. Front. 7, 3727–3734 (2020). https://doi.org/10.1039/d0qi00618a
- T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7, 20597–20603 (2019). https://doi.org/10.1039/c9ta06035a
- L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29, 1905694 (2019). https://doi.org/10.1002/adfm.201905694
- Y. Wang, P. Xiang, A. Ren, H. Lai, Z. Zhang et al., MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl. Mater. Interfaces 12, 53973–53983 (2020). https://doi.org/10.1021/acsami.0c17338
- C. Hou, H. Yu, C. Huang, Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells. J. Mater. Chem. C 7, 11549–11558 (2019). https://doi.org/10.1039/c9tc03415c
- Y. Li, J. Wang, W. Zhang, Q. Liu, Q. Chen et al., A simple and efficient device configuration applicable in high-performance solar cells with limited material requirements. J. Phys. D: Appl. Phys. 52, 435501 (2019). https://doi.org/10.1088/1361-6463/ab35ac
- L. Zhou, Y. Zhang, Z. Zhuo, A.J. Neukirch, S. Tretiak, Interlayer-decoupled Sc-based MXene with high carrier mobility and strong light-harvesting ability. J. Phys. Chem. Lett. 9, 6915–6920 (2018). https://doi.org/10.1021/acs.jpclett.8b03077
- X. Chen, J. Wang, S. Qin, Q. Chen, Y. Li et al., Wedge-shaped semiconductor nanowall arrays with excellent light management. Opt. Lett. 42, 3928–3931 (2017). https://doi.org/10.1364/OL.42.003928
- Y. Zhang, R. Xiong, B. Sa, J. Zhou, Z. Sun, MXenes: Promising donor and acceptor materials for high-efficiency heterostructure solar cells. Sustain. Energy Fuels 5, 135–143 (2021). https://doi.org/10.1039/D0SE01443E
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- S.L. Zhang, P.F. Huang, J.L. Wang, Z.H. Zhuang, Z. Zhang et al., Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J. Phys. Chem. Lett. 11, 1247–1254 (2020). https://doi.org/10.1021/acs.jpclett.9b03682
- C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y.Z. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
- V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri et al., Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 58, 12655–12660 (2019). https://doi.org/10.1002/anie.201906138
- C.W. Wu, B. Unnikrishnan, I.W.P. Chen, S.G. Harroun, H.T. Chang et al., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 25, 563–571 (2020). https://doi.org/10.1016/j.ensm.2019.09.026
- J.J. Ji, L.F. Zhao, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. Flatchem 17, 100128 (2019). https://doi.org/10.1016/j.flatc.2019.100128
- Y. Lee, S.J. Kim, Y.J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8, 573–581 (2020). https://doi.org/10.1039/c9ta07036b
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
References
Y. Wang, P. Shao, Q. Chen, Y. Li, J. Li et al., Nanostructural optimization of silicon/PEDOT: PSS hybrid solar cells for performance improvement. J. Phys. D-Appl. Phys. 50, 175105 (2017). https://doi.org/10.1088/1361-6463/aa64a9
A.B. Ren, H.G. Lai, X. Hao, Z.G. Tang, H. Xu et al., Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses. Joule 4, 1263–1277 (2020). https://doi.org/10.1016/j.joule.2020.04.013
B. Shi, L. Duan, Y. Zhao, J. Luo, X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32, 1806474 (2020). https://doi.org/10.1002/adma.201806474
J. Li, H. Yu, S. Wong, X. Li, G. Zhang et al., Design guidelines of periodic Si nanowire arrays for solar cell application. Appl. Phys. Lett. 95, 3 (2009). https://doi.org/10.1063/1.3275798
X. Ma, Y. Mi, F. Zhang, Q. An, M. Zhang et al., Efficient ternary polymer solar cells with two well-compatible donors and one ultranarrow bandgap nonfullerene acceptor. Adv. Energy Mater. 8, 1702854 (2018). https://doi.org/10.1002/aenm.201702854
D. Zhao, C. Zhang, H. Kim, L.J. Guo, High-performance Ta2O5/Al-doped Ag electrode for resonant light harvesting in efficient organic solar cells. Adv. Energy Mater. 5, 1500768 (2015). https://doi.org/10.1002/aenm.201500768
Y. Li, J. Li, H. Yu, S.-M. Wong, X. Sun et al., Novel silicon nanohemisphere-array solar cells with enhanced performance. Small 7, 3138–3143 (2011). https://doi.org/10.1002/smll.201100950
S. Zhang, Y. Qin, J. Zhu, J. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018). https://doi.org/10.1002/adma.201800868
Z. Wan, H. Lai, S. Ren, R. He, Y. Jiang et al., Interfacial engineering in lead-free tin-based perovskite solar cells. J. Energy Chem. 57, 147–168 (2020). https://doi.org/10.1016/j.jechem.2020.08.053
Y. Zhao, X. Han, L. Chang, C. Dong, J. Li et al., Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S, Se)4 solar cells. Sol. Energy Mater. Sol. Cells 195, 274–279 (2019). https://doi.org/10.1016/j.solmat.2019.03.024
A.B. Ren, J.H. Zou, H.G. Lai, Y.X. Huang, L.M. Yuan et al., Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons 7, 1901–1911 (2020). https://doi.org/10.1039/d0mh00537a
J. Li, H. Yu, Y. Li, F. Wang, M. Yang et al., Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells. Appl. Phys. Lett. 98, 3 (2011). https://doi.org/10.1063/1.3537810
D. Zhao, L. Ding, All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 65, 1144–1146 (2020). https://doi.org/10.1016/j.scib.2020.04.013
J. Li, H. Yu, Y. Li, Aligned Si nanowire-based solar cells. Nanoscale 3, 4888–4900 (2011). https://doi.org/10.1039/c1nr10943j
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
L. Jia, Y. Li, L. Su, D. Liu, Y. Fu et al., TiO2 nanoparticles in situ formed on Ti3C2 nanosheets by a one-step ethanol-thermal method for enhanced reversible lithium-ion storage. ChemistrySelect 5, 3124–3129 (2020). https://doi.org/10.1002/slct.202000521
X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-020-0415-5
H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong et al., Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
P.K. Kalambate, N.S. Gadhari, X. Li, Z. Rao, S.T. Navale et al., Recent advances in MXene-based electrochemical sensors and biosensors. TrAC Trends Anal. Chem. 120, 115643 (2019). https://doi.org/10.1016/j.trac.2019.115643
Y.J. Lei, E.N. Zhao, Y.Z. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15, 1901190 (2019). https://doi.org/10.1002/smll.201901190
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000883
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
S.Y. Li, Y. Zhang, W. Yang, H. Liu, X.S. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020). https://doi.org/10.1002/adma.201905443
J.X. Chen, Z.L. Li, F.L. Ni, W.X. Ouyang, X.S. Fang, Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horizons 7, 1828–1833 (2020). https://doi.org/10.1039/d0mh00394h
W.X. Ouyang, J.X. Chen, J.H. He, X.S. Fang, Improved photoelectric performance of UV photodetector based on ZnO nanoparticle-decorated biocl nanosheet arrays onto PDMS substrate: the heterojunction and Ti3C2Tx MXene conduction layer. Adv. Electron. Mater. 6, 2000168 (2020). https://doi.org/10.1002/aelm.202000168
Q. Xu, W.J. Yang, Y.Y. Wen, S.K. Liu, Z. Liu et al., Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 16, 90–101 (2019). https://doi.org/10.1016/j.apmt.2019.05.001
S. Ahn, T.H. Han, K. Maleski, J. Song, Y.H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32, 2000919 (2020). https://doi.org/10.1002/adma.202000919
S. Lee, E.H. Kim, S. Yu, H. Kim, C. Park et al., Alternating-current MXene polymer light-emitting diodes. Adv. Funct. Mater. 30, 2001224 (2020). https://doi.org/10.1002/adfm.202001224
I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
Q.R. Zhang, J. Teng, G.D. Zou, Q.M. Peng, Q. Du et al., Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8, 7085–7093 (2016). https://doi.org/10.1039/c5nr09303a
X.Q. Xie, C. Chen, N. Zhang, Z.R. Tang, J.J. Jiang et al., Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2, 856–862 (2019). https://doi.org/10.1038/s41893-019-0373-4
Y. Lu, D.Q. Fan, H.L. Xu, H.H. Min, C.H. Lu et al., Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification. Solar RRL 4, 2000232 (2020). https://doi.org/10.1002/solr.202000232
X. Wu, M. Ding, H. Xu, W. Yang, K. Zhang et al., Scalable Ti3C2Tx MXene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACS Nano 14, 9125–9135 (2020). https://doi.org/10.1021/acsnano.0c04471
X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020). https://doi.org/10.1016/j.carbon.2020.06.023
Z.L. Li, Z.C. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30, 1803220 (2018). https://doi.org/10.1002/adma.201803220
B. Ahmed, A.E. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30, 2000894 (2020). https://doi.org/10.1002/adfm.202000894
J. Wang, Z. Zhang, X. Yan, S. Zhang, Z. Wu et al., Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability Li-S battery. Nano-Micro Lett. 12, 4 (2020). https://doi.org/10.1007/s40820-019-0341-6
Y.L. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S.N. Duan et al., 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11, 79 (2019). https://doi.org/10.1007/s40820-019-0309-6
M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12, 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 7, 1901975 (2020). https://doi.org/10.1002/advs.201901975
Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14, 1802738 (2018). https://doi.org/10.1002/smll.201802738
J. Cao, F. Meng, L. Gao, S. Yang, Y. Yan et al., Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Adv. 9, 34152–34157 (2019). https://doi.org/10.1039/c9ra06091j
Z. Yu, W. Feng, W. Lu, B. Li, H. Yao et al., MXenes with tunable work functions and their application as electron-and hole-transport materials in non-fullerene organic solar cells. J. Mater. Chem. A 7, 11160–11169 (2019). https://doi.org/10.1039/c9ta01195a
Z. Wu, Y. Wang, Y. Zhang, W. Zhang, Q. Liu et al., Enhanced performance of polymer solar cells by adding SnO2 nanoparticles in the photoactive layer. Org. Electron. 73, 7–12 (2019). https://doi.org/10.1016/j.orgel.2019.05.038
Z. Wu, W. Zhang, C. Xie, L. Zhang, Y. Wang et al., Bridging for carriers by embedding metal oxide nanoparticles in the photoactive layer to enhance performance of polymer solar cells. IEEE J. Photovolt. 10, 1353–1358 (2020). https://doi.org/10.1109/JPHOTOV.2020.3004926
Y. Wang, Y. Zhang, L. Zhang, Z. Wu, Q. Su et al., Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer. Mater. Chem. Phys. 254, 123536 (2020). https://doi.org/10.1016/j.matchemphys.2020.123536
P. Shao, X. Chen, X. Guo, W. Zhang, F. Chang et al., Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement. Org. Electron. 50, 77–81 (2017). https://doi.org/10.1016/j.orgel.2017.07.029
A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0527-9
Z. Zhang, Y. Li, C. Liang, G. Yu, J. Zhao et al., In situ growth of MAPbBr3 nanocrystals on few-layer MXene nanosheets with efficient energy transfer. Small 16, 1905896 (2020). https://doi.org/10.1002/smll.201905896
X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30, 2003295 (2020). https://doi.org/10.1002/adfm.202003295
L. Yang, Y. Dall’Agnese, K. Hantanasirisakul, C.E. Shuck, K. Maleski et al., SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k
L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12, 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct Mater. 30, 1909028 (2020). https://doi.org/10.1002/adfm.201909028
C. Hou, H. Yu, Modifying the nanostructures of PEDOT: PSS/Ti3C2Tx composite hole transport layers for highly efficient polymer solar cells. J. Mater. Chem. C 8, 4169–4180 (2020). https://doi.org/10.1039/d0tc00075b
C. Hou, H. Yu, Zno/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.127192
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020). https://doi.org/10.1002/adma.202001093
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, 1804779 (2018). https://doi.org/10.1002/adma.201804779
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, 1703419 (2018). https://doi.org/10.1002/smll.201703419
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020). https://doi.org/10.1002/adfm.202000842
L. Mi, Y. Zhang, T. Chen, E. Xu, Y. Jiang, Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Adv. 10, 12298–12303 (2020). https://doi.org/10.1039/d0ra00288g
H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene–silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330–25337 (2019). https://doi.org/10.1021/acsami.9b04113
L. Qin, J. Jiang, Q. Tao, C. Wang, I. Persson et al., A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. J. Mater. Chem. A 8, 5467–5475 (2020). https://doi.org/10.1039/d0ta00687d
H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang et al., MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 1900180 (2019). https://doi.org/10.1002/aenm.201900180
L. Yu, A.S. Bati, T.S. Grace, M. Batmunkh, J.G. Shapter, Ti3C2Tx (MXene)-silicon heterojunction for efficient photovoltaic cells. Adv. Energy Mater. 9, 1901063 (2019). https://doi.org/10.1002/aenm.201901063
Y. Chen, D. Wang, Y. Lin, X. Zou, T. Xie, In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells. Electrochim. Acta 316, 248–256 (2019). https://doi.org/10.1016/j.electacta.2019.05.132
Z. Tian, Z. Qi, Y. Yang, H. Yan, Q. Chen et al., Anchoring CuS nanoparticles on accordion-like Ti3C2 as high electrocatalytic activity counter electrodes for QDSSCs. Inorg. Chem. Front. 7, 3727–3734 (2020). https://doi.org/10.1039/d0qi00618a
T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7, 20597–20603 (2019). https://doi.org/10.1039/c9ta06035a
L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao et al., Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29, 1905694 (2019). https://doi.org/10.1002/adfm.201905694
Y. Wang, P. Xiang, A. Ren, H. Lai, Z. Zhang et al., MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Appl. Mater. Interfaces 12, 53973–53983 (2020). https://doi.org/10.1021/acsami.0c17338
C. Hou, H. Yu, C. Huang, Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells. J. Mater. Chem. C 7, 11549–11558 (2019). https://doi.org/10.1039/c9tc03415c
Y. Li, J. Wang, W. Zhang, Q. Liu, Q. Chen et al., A simple and efficient device configuration applicable in high-performance solar cells with limited material requirements. J. Phys. D: Appl. Phys. 52, 435501 (2019). https://doi.org/10.1088/1361-6463/ab35ac
L. Zhou, Y. Zhang, Z. Zhuo, A.J. Neukirch, S. Tretiak, Interlayer-decoupled Sc-based MXene with high carrier mobility and strong light-harvesting ability. J. Phys. Chem. Lett. 9, 6915–6920 (2018). https://doi.org/10.1021/acs.jpclett.8b03077
X. Chen, J. Wang, S. Qin, Q. Chen, Y. Li et al., Wedge-shaped semiconductor nanowall arrays with excellent light management. Opt. Lett. 42, 3928–3931 (2017). https://doi.org/10.1364/OL.42.003928
Y. Zhang, R. Xiong, B. Sa, J. Zhou, Z. Sun, MXenes: Promising donor and acceptor materials for high-efficiency heterostructure solar cells. Sustain. Energy Fuels 5, 135–143 (2021). https://doi.org/10.1039/D0SE01443E
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
S.L. Zhang, P.F. Huang, J.L. Wang, Z.H. Zhuang, Z. Zhang et al., Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J. Phys. Chem. Lett. 11, 1247–1254 (2020). https://doi.org/10.1021/acs.jpclett.9b03682
C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y.Z. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
V. Natu, J.L. Hart, M. Sokol, H. Chiang, M.L. Taheri et al., Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 58, 12655–12660 (2019). https://doi.org/10.1002/anie.201906138
C.W. Wu, B. Unnikrishnan, I.W.P. Chen, S.G. Harroun, H.T. Chang et al., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 25, 563–571 (2020). https://doi.org/10.1016/j.ensm.2019.09.026
J.J. Ji, L.F. Zhao, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. Flatchem 17, 100128 (2019). https://doi.org/10.1016/j.flatc.2019.100128
Y. Lee, S.J. Kim, Y.J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8, 573–581 (2020). https://doi.org/10.1039/c9ta07036b
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394