Novel Ag@Nitrogen-doped Porous Carbon Composite with High Electrochemical Performance as Anode Materials for Lithium-ion Batteries
Corresponding Author: Xuetao Luo
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 32
Abstract
A novel Ag@nitrogen-doped porous carbon (Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries (LIBs). Using this method, Ag nanoparticles (Ag NPs) were embedded in NPC through thermal decomposition of AgNO3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 mAh g−1 after 200 cycles at a current density of 0.1 A g−1, showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance, reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC.
Highlights:
1 A novel Ag@nitrogen-doped porous carbon (Ag-NPC) composite was applied to lithium-ion batteries. The encapsulation of Ag nanoparticles (Ag NPs) into NPC boosts reversible capacity from 501.6 to 852 mAh g−1.
2 Ag-NPC shows a much better cycling performance than NPC due to the synergistic effect of NPC and Ag NPs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.S. Xie, Y.T. Ma, D.Q. Zeng, X.Q. Zhang, L.S. Wang, G.H. Yue, D.L. Peng, Hierarchical ZnO–Ag–C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 6(22), 19895–19904 (2014). doi:10.1021/am505352p
- X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
- Y.-M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). doi:10.1126/science.1198591
- Y. Han, P. Qi, S. Li, X. Feng, J. Zhou, H. Li, S. Su, X. Li, B. Wang, A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50(59), 8057–8060 (2014). doi:10.1039/c4cc02691h
- Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x
- X. Liu, C. Zhao, H. Zhang, Q. Shen, Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim. Acta 151, 56–62 (2015). doi:10.1016/j.electacta.2014.11.020
- S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1-xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect. J. Mater. Chem. A 3(33), 17181–17189 (2015). doi:10.1039/c5ta03785a
- F. Feng, W. Kang, F. Yu, H. Zhang, Q. Shen, High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. J. Power Sources 282, 109–117 (2015). doi:10.1016/j.jpowsour.2015.02.043
- F.H. Du, K.X. Wang, W. Fu, P.F. Gao, J.F. Wang, J. Yang, J.S. Chen, A graphene-wrapped silver-porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 1(43), 13648–13654 (2013). doi:10.1039/c3ta13092d
- J.X. Song, S.R. Chen, M.J. Zhou, T. Xu, D.P. Lv et al., Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2(5), 1257–1262 (2014). doi:10.1039/c3ta14100d
- C.D. Wang, Y.S. Chui, R.G. Ma, T.L. Wong, J.G. Ren, Q.H. Wu, X.F. Chen, W.J. Zhang, A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J. Mater. Chem. A 1(35), 10092–10098 (2013). doi:10.1039/c3ta11740e
- K. Shiva, K. Jayaramulu, H.B. Rajendra, T. Maji, A.J. Bhattacharyya, In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Z. Anorg. Allg. Chem. 640(6), 1115–1118 (2014). doi:10.1002/zaac.201300621
- Y.X. Wang, Y.G. Lim, M.S. Park, S.L. Chou, J.H. Kim, H.K. Liu, S.X. Dou, Y.J. Kim, Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2(2), 529–534 (2014). doi:10.1039/c3ta13592f
- J.F. Yin, H.Q. Cao, Z.F. Zhou, J.X. Zhang, M.Z. Qu, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J. Mater. Chem. 22(45), 23963–23970 (2012). doi:10.1039/c2jm35137d
- A. Shilpa, Sharma, Enhanced electrochemical performance of electrospun ag/hollow glassy carbon nanofibers as free-standing li-ion battery anode. Electrochim. Acta 176, 1266–1271 (2015). doi:10.1016/j.electacta.2015.07.093
- G. Taillades, J. Sarradin, Silver: high performance anode for thin film lithium ion batteries. J. Power Sources 125(2), 199–205 (2004). doi:10.1016/j.jpowsour.2003.07.004
- S. Li, J.G. Huang, A nanofibrous silver-nanoparticle/titania/carbon composite as an anode material for lithium ion batteries. J. Mater. Chem. A 3(8), 4354–4360 (2015). doi:10.1039/c4ta06562j
- Y. Dai, S.D. Cai, W.J. Yang, L. Gao, W.P. Tang, J.Y. Xie, J. Zhi, X.M. Ju, Fabrication of self-binding noble metal/flexible graphene composite paper. Carbon 50(12), 4648–4654 (2012). doi:10.1016/j.carbon.2012.05.053
- R. Chen, S.Z. Zhao, G.Y. Han, J.H. Dong, Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Mater. Lett. 62(24), 4031–4034 (2008). doi:10.1016/j.matlet.2008.05.054
- J.T. Yin, M. Wada, Y. Kitano, S. Tanase, O. Kajita, T. Sakai, Nanostructured Ag-Fe-Sn/carbon nanotubes composites as anode materials for advanced lithium-ion batteries. J. Electrochem. Soc. 152(7), A1341–A1346 (2005). doi:10.1149/1.1921727
- C.T. Hsieh, C.Y. Lin, Y.F. Chen, J.S. Lin, H. Teng, Silver nanorods attached to graphene sheets as anode materials for lithium-ion batteries. Carbon 62, 109–116 (2013). doi:10.1016/j.carbon.2013.06.002
- Z.Q. Li, L.W. Yin, Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 3(43), 21569–21577 (2015). doi:10.1039/c5ta05733g
- C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen, B. Hu, Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(10), 5585–5591 (2015). doi:10.1039/c4ta06914e
- J.J. Ma, H.J. Wang, X. Yang, Y.Q. Chai, R. Yuan, Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3(22), 12038–12043 (2015). doi:10.1039/c5ta00890e
- L. Hu, Q.W. Chen, Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6(3), 1236–1257 (2014). doi:10.1039/c3nr05192g
- F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). doi:10.1038/ncomms6261
- H.-G. Wang, Y. Wang, Y. Li, Y. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). doi:10.1016/j.carbon.2014.10.041
- P. Li, M. Cui, M. Zhang, A. Guo, Y. Sun, H.-G. Wang, Y. Li, Q. Duan, Facile fabrication of Co3O4/nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm 18(19), 3383–3388 (2016). doi:10.1039/c6ce00462h
- C. Jiang, C. Yuan, P. Li, H.-G. Wang, Y. Li, Q. Duan, Nitrogen-doped porous graphene with surface decorated MnO2 nanowires as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 4(19), 7251–7256 (2016). doi:10.1039/c5ta10711c
- Y.H. Song, L. Zuo, S.H. Chen, J.F. Wu, H.Q. Hou, L. Wang, Porous nano-si/carbon derived from zeolitic imidazolate frameworks@nano-si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015). doi:10.1016/j.electacta.2015.05.111
- Z. Xie, Z. He, X. Feng, W. Xu, X. Cui et al., Hierarchical sandwich-like structure of ultrafine n-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8(16), 10324–10333 (2016). doi:10.1021/acsami.6b01430
- J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23(8), 2130–2141 (2011). doi:10.1021/cm103571y
- S.X. Hu, Y.L. Hsieh, Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr. Polym. 131, 134–141 (2015). doi:10.1016/j.carbpol.2015.05.060
- D. Zhang, Y. Li, M. Yan, Y.Z. Jiang, Fe2O3-Ag porous film anodes for ultrahigh-rate lithium-ion batteries. Chemelectrochem 1(7), 1155–1160 (2014). doi:10.1002/celc.201402045
- K. Huo, W. An, J. Fu, B. Gao, L. Wang, X. Peng, G.J. Cheng, P.K. Chu, Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 324, 233–238 (2016). doi:10.1016/j.jpowsour.2016.05.084
- K.L. Zhang, X.N. Li, J.W. Liang, Y.C. Zhu, L. Hu et al., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015). doi:10.1016/j.electacta.2014.12.108
- X.L. He, D. Hubble, R. Calzada, A. Ashtamkar, D. Bhatia, S. Cartagena, P. Mukherjee, H. Liang, A silver-nanoparticle-catalyzed graphite composite for electrochemical energy storage. J. Power Sources 275, 688–693 (2015). doi:10.1016/j.jpowsour.2014.11.061
- H.R. Jung, W.J. Lee, Ag/poly(3,4-ethylenedioxythiophene) nanocomposites as anode materials for lithium ion battery. Solid State Ionics 187(1), 50–57 (2011). doi:10.1016/j.ssi.2010.12.019
- C.Z. Yuan, B. Gao, X.G. Zhang, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 173(1), 606–612 (2007). doi:10.1016/j.jpowsour.2007.04.034
- X. Guo, L. Li, X.H. Zhang, J.H. Chen, Platinum nanoparticles encapsulated in nitrogen-doped mesoporous carbons as methanol-tolerant oxygen reduction electrocatalysts. Chemelectrochem 2, 404–411 (2015). doi:10.1002/celc.201402342
- B. Guo, X. Wang, P.F. Fulvio, M. Chi, S.M. Mahurin, X.-G. Sun, S. Dai, Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 23(40), 4661–4666 (2011). doi:10.1002/adma.201102032
- T. Yang, Z. Chen, H. Zhang, M. Zhang, T. Wang, Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks. Electrochim. Acta 217, 55–61 (2016). doi:10.1016/j.electacta.2016.09.062
- M. Zhang, Y. Li, E. Uchaker, S. Candelaria, L. Shen, T. Wang, G. Cao, Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy 2(5), 769–778 (2013). doi:10.1016/j.nanoen.2013.01.009
References
Q.S. Xie, Y.T. Ma, D.Q. Zeng, X.Q. Zhang, L.S. Wang, G.H. Yue, D.L. Peng, Hierarchical ZnO–Ag–C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 6(22), 19895–19904 (2014). doi:10.1021/am505352p
X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
Y.-M. Chiang, Building a better battery. Science 330(6010), 1485–1486 (2010). doi:10.1126/science.1198591
Y. Han, P. Qi, S. Li, X. Feng, J. Zhou, H. Li, S. Su, X. Li, B. Wang, A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50(59), 8057–8060 (2014). doi:10.1039/c4cc02691h
Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x
X. Liu, C. Zhao, H. Zhang, Q. Shen, Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim. Acta 151, 56–62 (2015). doi:10.1016/j.electacta.2014.11.020
S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1-xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect. J. Mater. Chem. A 3(33), 17181–17189 (2015). doi:10.1039/c5ta03785a
F. Feng, W. Kang, F. Yu, H. Zhang, Q. Shen, High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. J. Power Sources 282, 109–117 (2015). doi:10.1016/j.jpowsour.2015.02.043
F.H. Du, K.X. Wang, W. Fu, P.F. Gao, J.F. Wang, J. Yang, J.S. Chen, A graphene-wrapped silver-porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 1(43), 13648–13654 (2013). doi:10.1039/c3ta13092d
J.X. Song, S.R. Chen, M.J. Zhou, T. Xu, D.P. Lv et al., Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2(5), 1257–1262 (2014). doi:10.1039/c3ta14100d
C.D. Wang, Y.S. Chui, R.G. Ma, T.L. Wong, J.G. Ren, Q.H. Wu, X.F. Chen, W.J. Zhang, A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J. Mater. Chem. A 1(35), 10092–10098 (2013). doi:10.1039/c3ta11740e
K. Shiva, K. Jayaramulu, H.B. Rajendra, T. Maji, A.J. Bhattacharyya, In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Z. Anorg. Allg. Chem. 640(6), 1115–1118 (2014). doi:10.1002/zaac.201300621
Y.X. Wang, Y.G. Lim, M.S. Park, S.L. Chou, J.H. Kim, H.K. Liu, S.X. Dou, Y.J. Kim, Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2(2), 529–534 (2014). doi:10.1039/c3ta13592f
J.F. Yin, H.Q. Cao, Z.F. Zhou, J.X. Zhang, M.Z. Qu, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J. Mater. Chem. 22(45), 23963–23970 (2012). doi:10.1039/c2jm35137d
A. Shilpa, Sharma, Enhanced electrochemical performance of electrospun ag/hollow glassy carbon nanofibers as free-standing li-ion battery anode. Electrochim. Acta 176, 1266–1271 (2015). doi:10.1016/j.electacta.2015.07.093
G. Taillades, J. Sarradin, Silver: high performance anode for thin film lithium ion batteries. J. Power Sources 125(2), 199–205 (2004). doi:10.1016/j.jpowsour.2003.07.004
S. Li, J.G. Huang, A nanofibrous silver-nanoparticle/titania/carbon composite as an anode material for lithium ion batteries. J. Mater. Chem. A 3(8), 4354–4360 (2015). doi:10.1039/c4ta06562j
Y. Dai, S.D. Cai, W.J. Yang, L. Gao, W.P. Tang, J.Y. Xie, J. Zhi, X.M. Ju, Fabrication of self-binding noble metal/flexible graphene composite paper. Carbon 50(12), 4648–4654 (2012). doi:10.1016/j.carbon.2012.05.053
R. Chen, S.Z. Zhao, G.Y. Han, J.H. Dong, Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Mater. Lett. 62(24), 4031–4034 (2008). doi:10.1016/j.matlet.2008.05.054
J.T. Yin, M. Wada, Y. Kitano, S. Tanase, O. Kajita, T. Sakai, Nanostructured Ag-Fe-Sn/carbon nanotubes composites as anode materials for advanced lithium-ion batteries. J. Electrochem. Soc. 152(7), A1341–A1346 (2005). doi:10.1149/1.1921727
C.T. Hsieh, C.Y. Lin, Y.F. Chen, J.S. Lin, H. Teng, Silver nanorods attached to graphene sheets as anode materials for lithium-ion batteries. Carbon 62, 109–116 (2013). doi:10.1016/j.carbon.2013.06.002
Z.Q. Li, L.W. Yin, Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 3(43), 21569–21577 (2015). doi:10.1039/c5ta05733g
C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen, B. Hu, Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(10), 5585–5591 (2015). doi:10.1039/c4ta06914e
J.J. Ma, H.J. Wang, X. Yang, Y.Q. Chai, R. Yuan, Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3(22), 12038–12043 (2015). doi:10.1039/c5ta00890e
L. Hu, Q.W. Chen, Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6(3), 1236–1257 (2014). doi:10.1039/c3nr05192g
F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014). doi:10.1038/ncomms6261
H.-G. Wang, Y. Wang, Y. Li, Y. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). doi:10.1016/j.carbon.2014.10.041
P. Li, M. Cui, M. Zhang, A. Guo, Y. Sun, H.-G. Wang, Y. Li, Q. Duan, Facile fabrication of Co3O4/nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm 18(19), 3383–3388 (2016). doi:10.1039/c6ce00462h
C. Jiang, C. Yuan, P. Li, H.-G. Wang, Y. Li, Q. Duan, Nitrogen-doped porous graphene with surface decorated MnO2 nanowires as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 4(19), 7251–7256 (2016). doi:10.1039/c5ta10711c
Y.H. Song, L. Zuo, S.H. Chen, J.F. Wu, H.Q. Hou, L. Wang, Porous nano-si/carbon derived from zeolitic imidazolate frameworks@nano-si as anode materials for lithium-ion batteries. Electrochim. Acta 173, 588–594 (2015). doi:10.1016/j.electacta.2015.05.111
Z. Xie, Z. He, X. Feng, W. Xu, X. Cui et al., Hierarchical sandwich-like structure of ultrafine n-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8(16), 10324–10333 (2016). doi:10.1021/acsami.6b01430
J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23(8), 2130–2141 (2011). doi:10.1021/cm103571y
S.X. Hu, Y.L. Hsieh, Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr. Polym. 131, 134–141 (2015). doi:10.1016/j.carbpol.2015.05.060
D. Zhang, Y. Li, M. Yan, Y.Z. Jiang, Fe2O3-Ag porous film anodes for ultrahigh-rate lithium-ion batteries. Chemelectrochem 1(7), 1155–1160 (2014). doi:10.1002/celc.201402045
K. Huo, W. An, J. Fu, B. Gao, L. Wang, X. Peng, G.J. Cheng, P.K. Chu, Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 324, 233–238 (2016). doi:10.1016/j.jpowsour.2016.05.084
K.L. Zhang, X.N. Li, J.W. Liang, Y.C. Zhu, L. Hu et al., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015). doi:10.1016/j.electacta.2014.12.108
X.L. He, D. Hubble, R. Calzada, A. Ashtamkar, D. Bhatia, S. Cartagena, P. Mukherjee, H. Liang, A silver-nanoparticle-catalyzed graphite composite for electrochemical energy storage. J. Power Sources 275, 688–693 (2015). doi:10.1016/j.jpowsour.2014.11.061
H.R. Jung, W.J. Lee, Ag/poly(3,4-ethylenedioxythiophene) nanocomposites as anode materials for lithium ion battery. Solid State Ionics 187(1), 50–57 (2011). doi:10.1016/j.ssi.2010.12.019
C.Z. Yuan, B. Gao, X.G. Zhang, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor. J. Power Sources 173(1), 606–612 (2007). doi:10.1016/j.jpowsour.2007.04.034
X. Guo, L. Li, X.H. Zhang, J.H. Chen, Platinum nanoparticles encapsulated in nitrogen-doped mesoporous carbons as methanol-tolerant oxygen reduction electrocatalysts. Chemelectrochem 2, 404–411 (2015). doi:10.1002/celc.201402342
B. Guo, X. Wang, P.F. Fulvio, M. Chi, S.M. Mahurin, X.-G. Sun, S. Dai, Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 23(40), 4661–4666 (2011). doi:10.1002/adma.201102032
T. Yang, Z. Chen, H. Zhang, M. Zhang, T. Wang, Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks. Electrochim. Acta 217, 55–61 (2016). doi:10.1016/j.electacta.2016.09.062
M. Zhang, Y. Li, E. Uchaker, S. Candelaria, L. Shen, T. Wang, G. Cao, Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy 2(5), 769–778 (2013). doi:10.1016/j.nanoen.2013.01.009