A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing
Corresponding Author: Meifang Zhu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 152
Abstract
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical. However, patients suffering from skin damage are struggling with the surrounding scene and situational awareness. Here, we report an interactive self-regulation electronic system by mimicking the human thermos-reception system. The skin-inspired self-adaptive system is composed of two highly sensitive thermistors (thermal-response composite materials), and a low-power temperature control unit (Laser-induced graphene array). The biomimetic skin can realize self-adjusting in the range of 35–42 °C, which is around physiological temperature. This thermoregulation system also contributed to skin barrier formation and wound healing. Across wound models, the treatment group healed ~ 10% more rapidly compared with the control group, and showed reduced inflammation, thus enhancing skin tissue regeneration. The skin-inspired self-adaptive system holds substantial promise for next-generation robotic and medical devices.
Highlights:
1 An interactive electronic system inspired by the temperature self-regulation of human skin.
2 Heat stimulation therapy and temperature monitoring during dynamic wound healing.
3 Mechanism of temperature self-regulation during dynamic wound healing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors toward E-skin: a delicate design for versatile sensing. Small 18, e2103734 (2022). https://doi.org/10.1002/smll.202103734
- M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al., Artificial skin perception. Adv. Mater. 33, 2003014 (2021). https://doi.org/10.1002/adma.202003014
- J.Y. Oh, Z. Bao, Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019). https://doi.org/10.1002/advs.201900186
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13, 12287–12293 (2019). https://doi.org/10.1021/acsnano.9b06576
- L.E. Osborn, R. Venkatasubramanian, M. Himmtann, C.W. Moran, J.M. Pierce et al., Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. (2023). https://doi.org/10.1038/s41551-023-01070-w
- S.R. Madhvapathy, J.J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023). https://doi.org/10.1126/science.adh7726
- M. Jiang, Q. Shen, J. Zhang, S. An, S. Ma et al., Bioinspired temperature regulation in interfacial evaporation. Adv. Funct. Mater. 30, 1910481 (2020). https://doi.org/10.1002/adfm.201910481
- C.L. Tan, E.K. Cooke, D.E. Leib, Y.C. Lin, G.E. Daly et al., Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016). https://doi.org/10.1016/j.cell.2016.08.028
- R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
- D. Lou, Q. Pang, X. Pei, S. Dong, S. Li et al., Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens. Bioelectron. 162, 112275 (2020). https://doi.org/10.1016/j.bios.2020.112275
- P. Tang, Y. Liu, Y. Liu, H. Meng, Z. Liu et al., Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 188, 12–23 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.008
- Y. Gao, H. Du, Z. Xie, M. Li, J. Zhu et al., Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B 7, 3644–3651 (2019). https://doi.org/10.1039/C9TB00481E
- G. Chen, K. Hou, N. Yu, P. Wei, T. Chen et al., Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat. Commun. 13, 7789 (2022). https://doi.org/10.1038/s41467-022-35440-w
- S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29, 1606151 (2017). https://doi.org/10.1002/adma.201606151
- Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
- K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023). https://doi.org/10.1038/s41551-023-01022-4
- W. Ouyang, W. Lu, Y. Zhang, Y. Liu, J.U. Kim et al., A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023). https://doi.org/10.1038/s41551-023-01029-x
- J. Tu, J. Min, Y. Song, C. Xu, J. Li et al., A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023). https://doi.org/10.1038/s41551-023-01059-5
- S. Kim, Y.S. Oh, K. Lee, S. Kim, W.-Y. Maeng et al., Battery-free, wireless, cuff-type, multimodal physical sensor for continuous temperature and strain monitoring of nerve. Small 19, 2206839 (2023). https://doi.org/10.1002/smll.202206839
- R. Chen, T. Luo, D. Geng, Z. Shen, W. Zhou, Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface. Carbon 187, 35–46 (2022). https://doi.org/10.1016/j.carbon.2021.10.064
- C. Okutani, T. Yokota, T. Someya, Ultrathin fiber-mesh polymer thermistors. Adv. Sci. 9, e2202312 (2022). https://doi.org/10.1002/advs.202202312
- C. Okutani, T. Yokota, R. Matsukawa, T. Someya, Suppressing the negative temperature coefficient effect of resistance in polymer composites with positive temperature coefficients of resistance by coating with parylene. J. Mater. Chem. C 8, 7304–7308 (2020). https://doi.org/10.1039/D0TC00702A
- M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34, e2105865 (2022). https://doi.org/10.1002/adma.202105865
- G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 (2018). https://doi.org/10.1002/adma.201803388
- M. Li, Y. Shi, H. Gao, Z. Chen, Bio-inspired nanospiky metal ps enable thin, flexible, and thermo-responsive polymer nanocomposites for thermal regulation. Adv. Funct. Mater. 30, 1910328 (2020). https://doi.org/10.1002/adfm.201910328
- M. Li, G. Cai, J. Holoubek, K. Yu, H. Liu et al., Hierarchically structured metal carbides as conductive fillers in thermo-responsive polymer nanocomposites for battery safety. Nano Energy 103, 107726 (2022). https://doi.org/10.1016/j.nanoen.2022.107726
- Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016). https://doi.org/10.1038/nenergy.2015.9
- T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner et al., Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. U.S.A. 112, 14533–14538 (2015). https://doi.org/10.1073/pnas.1515650112
- M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang et al., A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 486, 249–256 (2019). https://doi.org/10.1016/j.apsusc.2019.04.271
- S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 (2021). https://doi.org/10.1002/adfm.202100940
- S. Xiang, J. Tang, L. Yang, Y. Guo, Z. Zhao et al., Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability. npj Flex. Electron. 6, 59 (2022). https://doi.org/10.1038/s41528-022-00195-3
- J. Huang, Z. Xu, W. Qiu, F. Chen, Z. Meng et al., Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 30, 1910547 (2020). https://doi.org/10.1002/adfm.201910547
- J. Wu, W. Huang, Y. Liang, Z. Wu, B. Zhong et al., Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 7, 2001084 (2021). https://doi.org/10.1002/aelm.202001084
- R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
- T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022). https://doi.org/10.1002/adfm.202205158
- G. Karimi, I. Lau, M. Fowler, M. Pope, Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy Res. 45, 13712–13725 (2021). https://doi.org/10.1002/er.6701
- Z. Sun, S. Fang, Y.H. Hu, 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120, 10336–10453 (2020). https://doi.org/10.1021/acs.chemrev.0c00083
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12, 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
- S.Y. Xia, Y. Long, Z. Huang, Y. Zi, L.Q. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator toward high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 (2022). https://doi.org/10.1016/j.nanoen.2022.107099
- J. Jeon, H.-B.-R. Lee, Z. Bao, Flexible wireless temperature sensors based on Ni microp-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013). https://doi.org/10.1002/adma.201204082
- Y. Geng, R. Cao, M.T. Innocent, Z. Hu, L. Zhu et al., A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A Appl. Sci. Manuf. 163, 107269 (2022). https://doi.org/10.1016/j.compositesa.2022.107269
- L. Liu, R. Li, F. Liu, L. Huang, W. Liu et al., Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 17, 9600–9610 (2023). https://doi.org/10.1021/acsnano.3c03087
- X. Tang, X. Chen, S. Zhang, X. Gu, R. Wu et al., Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv. Funct. Mater. 31, 2101320 (2021). https://doi.org/10.1002/adfm.202101320
- X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang et al., Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018). https://doi.org/10.1016/j.actbio.2018.07.030
- T. Someya, Z. Bao, G.G. Malliaras, The Rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004
References
W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors toward E-skin: a delicate design for versatile sensing. Small 18, e2103734 (2022). https://doi.org/10.1002/smll.202103734
M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al., Artificial skin perception. Adv. Mater. 33, 2003014 (2021). https://doi.org/10.1002/adma.202003014
J.Y. Oh, Z. Bao, Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019). https://doi.org/10.1002/advs.201900186
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
C. Wang, C. Pan, Z. Wang, Electronic skin for closed-loop systems. ACS Nano 13, 12287–12293 (2019). https://doi.org/10.1021/acsnano.9b06576
L.E. Osborn, R. Venkatasubramanian, M. Himmtann, C.W. Moran, J.M. Pierce et al., Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. (2023). https://doi.org/10.1038/s41551-023-01070-w
S.R. Madhvapathy, J.J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023). https://doi.org/10.1126/science.adh7726
M. Jiang, Q. Shen, J. Zhang, S. An, S. Ma et al., Bioinspired temperature regulation in interfacial evaporation. Adv. Funct. Mater. 30, 1910481 (2020). https://doi.org/10.1002/adfm.201910481
C.L. Tan, E.K. Cooke, D.E. Leib, Y.C. Lin, G.E. Daly et al., Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016). https://doi.org/10.1016/j.cell.2016.08.028
R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
D. Lou, Q. Pang, X. Pei, S. Dong, S. Li et al., Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens. Bioelectron. 162, 112275 (2020). https://doi.org/10.1016/j.bios.2020.112275
P. Tang, Y. Liu, Y. Liu, H. Meng, Z. Liu et al., Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 188, 12–23 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.008
Y. Gao, H. Du, Z. Xie, M. Li, J. Zhu et al., Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B 7, 3644–3651 (2019). https://doi.org/10.1039/C9TB00481E
G. Chen, K. Hou, N. Yu, P. Wei, T. Chen et al., Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat. Commun. 13, 7789 (2022). https://doi.org/10.1038/s41467-022-35440-w
S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29, 1606151 (2017). https://doi.org/10.1002/adma.201606151
Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 (2020). https://doi.org/10.1002/adfm.201904523
K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023). https://doi.org/10.1038/s41551-023-01022-4
W. Ouyang, W. Lu, Y. Zhang, Y. Liu, J.U. Kim et al., A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023). https://doi.org/10.1038/s41551-023-01029-x
J. Tu, J. Min, Y. Song, C. Xu, J. Li et al., A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023). https://doi.org/10.1038/s41551-023-01059-5
S. Kim, Y.S. Oh, K. Lee, S. Kim, W.-Y. Maeng et al., Battery-free, wireless, cuff-type, multimodal physical sensor for continuous temperature and strain monitoring of nerve. Small 19, 2206839 (2023). https://doi.org/10.1002/smll.202206839
R. Chen, T. Luo, D. Geng, Z. Shen, W. Zhou, Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface. Carbon 187, 35–46 (2022). https://doi.org/10.1016/j.carbon.2021.10.064
C. Okutani, T. Yokota, T. Someya, Ultrathin fiber-mesh polymer thermistors. Adv. Sci. 9, e2202312 (2022). https://doi.org/10.1002/advs.202202312
C. Okutani, T. Yokota, R. Matsukawa, T. Someya, Suppressing the negative temperature coefficient effect of resistance in polymer composites with positive temperature coefficients of resistance by coating with parylene. J. Mater. Chem. C 8, 7304–7308 (2020). https://doi.org/10.1039/D0TC00702A
M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34, e2105865 (2022). https://doi.org/10.1002/adma.202105865
G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 (2018). https://doi.org/10.1002/adma.201803388
M. Li, Y. Shi, H. Gao, Z. Chen, Bio-inspired nanospiky metal ps enable thin, flexible, and thermo-responsive polymer nanocomposites for thermal regulation. Adv. Funct. Mater. 30, 1910328 (2020). https://doi.org/10.1002/adfm.201910328
M. Li, G. Cai, J. Holoubek, K. Yu, H. Liu et al., Hierarchically structured metal carbides as conductive fillers in thermo-responsive polymer nanocomposites for battery safety. Nano Energy 103, 107726 (2022). https://doi.org/10.1016/j.nanoen.2022.107726
Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016). https://doi.org/10.1038/nenergy.2015.9
T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner et al., Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. U.S.A. 112, 14533–14538 (2015). https://doi.org/10.1073/pnas.1515650112
M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang et al., A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 486, 249–256 (2019). https://doi.org/10.1016/j.apsusc.2019.04.271
S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 (2021). https://doi.org/10.1002/adfm.202100940
S. Xiang, J. Tang, L. Yang, Y. Guo, Z. Zhao et al., Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability. npj Flex. Electron. 6, 59 (2022). https://doi.org/10.1038/s41528-022-00195-3
J. Huang, Z. Xu, W. Qiu, F. Chen, Z. Meng et al., Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 30, 1910547 (2020). https://doi.org/10.1002/adfm.201910547
J. Wu, W. Huang, Y. Liang, Z. Wu, B. Zhong et al., Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 7, 2001084 (2021). https://doi.org/10.1002/aelm.202001084
R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2020). https://doi.org/10.1002/adma.201901981
T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022). https://doi.org/10.1002/adfm.202205158
G. Karimi, I. Lau, M. Fowler, M. Pope, Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy Res. 45, 13712–13725 (2021). https://doi.org/10.1002/er.6701
Z. Sun, S. Fang, Y.H. Hu, 3D graphene materials: from understanding to design and synthesis control. Chem. Rev. 120, 10336–10453 (2020). https://doi.org/10.1021/acs.chemrev.0c00083
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12, 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
S.Y. Xia, Y. Long, Z. Huang, Y. Zi, L.Q. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator toward high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 (2022). https://doi.org/10.1016/j.nanoen.2022.107099
J. Jeon, H.-B.-R. Lee, Z. Bao, Flexible wireless temperature sensors based on Ni microp-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013). https://doi.org/10.1002/adma.201204082
Y. Geng, R. Cao, M.T. Innocent, Z. Hu, L. Zhu et al., A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A Appl. Sci. Manuf. 163, 107269 (2022). https://doi.org/10.1016/j.compositesa.2022.107269
L. Liu, R. Li, F. Liu, L. Huang, W. Liu et al., Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 17, 9600–9610 (2023). https://doi.org/10.1021/acsnano.3c03087
X. Tang, X. Chen, S. Zhang, X. Gu, R. Wu et al., Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv. Funct. Mater. 31, 2101320 (2021). https://doi.org/10.1002/adfm.202101320
X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang et al., Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352–364 (2018). https://doi.org/10.1016/j.actbio.2018.07.030
T. Someya, Z. Bao, G.G. Malliaras, The Rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004